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Abstract 

Background Organophosphorus pesticides (OP) have been associated with various human health conditions. 
Animal experiments and in-vitro models suggested that OP may also affect the gut microbiota. We examined associa-
tions between ambient chronic exposure to OP and gut microbial changes in humans.

Methods We recruited 190 participants from a community-based epidemiologic study of Parkinson’s disease living 
in a region known for heavy agricultural pesticide use in California. Of these, 61% of participants had Parkinson’s 
disease and their mean age was 72 years. Microbiome and predicted metagenome data were generated by 16S 
rRNA gene sequencing of fecal samples. Ambient long-term OP exposures were assessed using pesticide applica-
tion records combined with residential addresses in a geographic information system. We examined gut microbiome 
differences due to OP exposures, specifically differences in microbial diversity based on the Shannon index and Bray–
Curtis dissimilarities, and differential taxa abundance and predicted Metacyc pathway expression relying on regres-
sion models and adjusting for potential confounders.

Results OP exposure was not associated with alpha or beta diversity of the gut microbiome. However, the predicted 
metagenome was sparser and less evenly expressed among those highly exposed to OP (p = 0.04). Additionally, we 
found that the abundance of two bacterial families, 22 genera, and the predicted expression of 34 Metacyc pathways 
were associated with long-term OP exposure. These pathways included perturbed processes related to cellular respi-
ration, increased biosynthesis and degradation of compounds related to bacterial wall structure, increased biosynthe-
sis of RNA/DNA precursors, and decreased synthesis of Vitamin B1 and B6.

Conclusion In support of previous animal studies and in-vitro findings, our results suggest that ambient chronic OP 
pesticide exposure alters gut microbiome composition and its predicted metabolism in humans.
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Background
The microbiome refers to the collective genome of all 
microorganisms (bacteria, viruses, archaea, fungi, etc.) 
colonizing the human body [1, 2]. The gut microbiome 
has drawn special attention in recent decades, as it plays 
important roles in human health and pathology [3, 4] as 
well as in metabolism, including energy intake, synthe-
sis and absorption of nutrients, and detoxification [5, 6]. 
The gut microbiome also plays a major role in the regu-
lation of immune defenses [7, 8]. Recent animal studies 
have indicated that environmental exposures such as pes-
ticides, air pollution, and heavy metals can influence the 
human gut microbiome and the immune system [9–12]. 
To date, human evidence is still sparse but efforts to link 
environmental factors to the human microbiome are 
growing. Furthermore, the gut microbiome may have 
the potential to serve as a crucial link between envi-
ronmental exposure and development of neurological 
diseases via the gut-brain axis [13]. Bidirectional connec-
tions between the gut microbiome and the brain are sup-
ported by the actions and functions of the autonomous 
nervous system, the endocrine and immune systems. The 
growing recognition that the gut and the brain interact 
has inspired new avenues of research linking environ-
mental exposures to the gut microbiome [14]. Gut dys-
biosis presents an imbalance in microbial composition 
that can alter human metabolism. In addition to lifestyle 
factors (e.g., diet, physical activity), ubiquitous toxicants 
in the human environment may contribute to such an 
imbalance.

Organophosphorus pesticides (OP), commonly used 
as insecticides and nematicides, are toxicants of inter-
est as their metabolites have been found in a majority 
(60 percent or more) of urine samples of participants 
in NHANES 2011–2012, 2015–2016, and 2017–2018, a 
multi-wave nationwide representative sample of the US 
population [15]. While acute toxicity of OP to humans is 
well established [16], effects of chronic low-level expo-
sure remain less explored [2, 17]. Thus far, chronic OP 
exposures have been suggested to be involved in meta-
bolic conditions such as obesity, glucose intolerance, and 
diabetes [18], neurological conditions including Parkin-
son’s disease [19], Alzheimer’s disease [20, 21], and some 
chronic mental disorders such as depression and anxiety 
[22].

The current developments in microbiome research 
have enabled us to assess potential dysbiosis by evaluat-
ing the biodiversity of gut microorganisms [23], as well 
as discover associations between bacterial groups (e.g., 
phyla, families, genera, etc.) and exposure or disease sta-
tus through differential abundance analysis [24]. Addi-
tionally, predicted metagenomic data reflecting potential 
metabolic functions allow us to generate hypotheses 

about the possible biological mechanisms underlying 
interactions between the environment, the gut microbi-
ome, and the human host’s health [25]. Here, we explore 
whether ambient long-term exposure to OP pesticides 
may alter the human gut microbiome composition and/
or function in a community-based epidemiological study 
in rural California. We relied on a geographic informa-
tion systems (GIS)-based approach to link pesticide 
application records with participant addresses and esti-
mated ambient pesticide exposure levels.

Methods
Study population and sample collection
This study relies on data collected in the Parkinson’s, 
Environment and Gene study (PEG), a population-based, 
case–control study conducted in Kern, Tulare and Fresno 
counties of California. It was initially designed to inves-
tigate the etiology of Parkinson’s disease (PD) and par-
ticipants were recruited in two study waves: 2001–2007 
and 2012–2017. At baseline, PD patients were diagnosed 
within the past 5  years and randomly selected commu-
nity controls were also recruited. Since 2017, we invited 
previous study participants who could be contacted to 
enroll in a pilot study of the gut microbiome. In addi-
tion, we invited a household or community member of 
PD patients to participate. All participants were asked to 
submit a fecal sample and allow us to conduct standard-
ized interviews if they met the following eligibility crite-
ria: they did not have  1) acute/chronic gastrointestinal 
conditions; or  2) an immunocompromised state and/or 
were taking immunosuppressants; 3) antibiotic intake 
continuously or within the past three months. In total 
190 participants with complete data were included in 
the study. This study was approved by the UCLA Insti-
tutional Review Board. Informed written consent was 
obtained from all study participants.

Trained research staff conducted structured interviews 
with the participants and recorded information for demo-
graphics and lifetime occupational and residential histo-
ries. Each participant was provided with a standardized 
self-collection kit that included all materials needed for 
fecal sample collection and also detailed instructions. The 
collection kit was assembled by our study research staff 
based on the protocol developed by the UCLA Microbi-
ome Core (currently part of the Microbiome Core of the 
Goodman-Luskin Microbiome Center) [26]. Briefly, fecal 
samples were collected by participants at home and pre-
served in sterilized ParaPak® vial with 96% ethanol. Sam-
ples were received within 14 days of collection and stored 
at -80  °C degrees until DNA extraction and sequencing. 
Studies of stool preservation methods have consistently 
found that self-collected stool immediately preserved in 
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ethanol will give similar results as the gold standard of 
immediately fresh frozen stool [27–29].

Microbiome assessment and metagenomic prediction
The  ZymoBIOMICS DNA kit was used to extract bac-
terial DNA from fecal samples with bead beating. The 
V4 region of 16s rRNA genes was amplified and under-
went pair-ended 250 × 2 sequencing on Illumina plat-
forms (HiSeq 2500 or MiSeq). Raw sequencing data 
were obtained and processed using the DADA2 pipe-
line (v1.22.0) and phyloseq package (v1.34.0) in R (v4). 
Sequencing reads were quality-filtered and processed 
into amplicon sequence variants (ASVs); a classification 
that  corresponds to species level taxonomy. ASVs were 
further assigned to corresponding taxonomy by closed-
reference picking against the Silva v132 database [30]. 
ASVs were further filtered by taxonomy in two steps: first 
by total abundance—ASVs were removed if the phyla 
they belong to have a total abundance of less than 50, 
then by prevalence—ASVs were removed if prevalence 
was less than 10% in all samples. The sequencing depths 
ranged from 5,365 to 65,499 with a mean depth of 32,637 
± 11,879 per sample after the filtering steps, which cor-
responds to 410 ASVs, 147 genera, 49 families, and 10 
phyla. ASVs were also rarefied to even depth without 
abundance/prevalence filtering to assess alpha diversity. 
The relative abundance of bacterial taxa for the study 
sample are shown in Figure S1 and S2.

PICRUST2 (v2.4.1) was used to predict the functional 
potential of the bacterial community based on 16s rRNA 
marker sequencing data, i.e., the metagenomic profile 
of the gut microbiome [31]. Based on the 16s marker 
gene sequences, the gene contents of the gut microbes, 
classified by enzyme commission (EC) number, and its 
metabolic functions, i.e., Metacyc pathway profiles were 
predicted. Predicted bacterial genes and pathways were 
removed if the total abundance was less than 100, or the 
prevalence was less than 10% in study samples. 1,823 
EC and 363 Metacyc pathways remained after the abun-
dance/prevalence filtering step.

Pesticide exposure assessment
We used a GIS method to estimate the ambient pesticide 
exposure of each study participant. With this method, we 
linked data from three sources: (1) California Pesticide 
Use Reports (PUR), a mandatory commercial pesticide 
application reporting system collecting data  since 1974; 
(2) land-use survey data (based on California’s Public 
Land Survey System), which provide the exact loca-
tion of specific crops; and (3) lifetime residential history 
reported by participants, which provides the location of 
and duration at the participants’ residence. We generated 
the annual poundage of every reported pesticide applied 

within 500-m of a participant’s residential address relying 
on their lifelong self-reported address histories. A 500-m 
buffer was selected based on evidence from studies meas-
uring deposits of ground and aerial pesticide applications 
[32, 33], California studies of pesticide residues measured 
inside homes in proximity to agricultural applications 
[34, 35], and to maintain consistency with previously 
published work from the PEG study [36]. Our main anal-
yses were based on a 10-year exposure period prior to 
fecal sample collection to represent a plausible window 
for chronic effects of pesticides on the gut microbiome. 
Thus, we calculated 10-year average exposures from the 
annual measures prior to fecal sample collection. In sen-
sitivity analyses, we additionally explored two alternative 
exposure periods, one 5-year window with and one with-
out a 5-year lag, i.e., the period 6–10 years or 0–5-years 
priors to sample collection, respectively.

Here, we focus on the 36 chemicals categorized as OP 
from the PUR records (Table 1). As the toxicity of expo-
sure per pound applied varies across different OP chemi-
cals, we first evaluated each OP pesticide separately. For 
each specific OP pesticide, we considered a participant 
exposed if their annual averaged exposure poundage was 
higher than the median poundage observed in non-PD 
participants. The dichotomized OP exposure values (yes/
no) for all 36 OP were then summed to derive the overall 
OP exposure (theoretically ranging from 0 to 36). Finally, 
based on all 36 individual chemicals, we categorized par-
ticipants into high OP exposure and low/no OP expo-
sure: participants who were exposed to > 1 chemical were 
considered highly exposed and those with exposure to ≤ 1 

Table 1 List of organophosphorus pesticides of interest

Acephate Merphos

Azinphos-Methyl Methamidophos

Bensulide Methidathion

Carbophenothion Methyl Parathion

Chlorpyrifos Mevinphos

Ddvp Monocrotophos

Demeton Naled

Dialifor Oxydemeton-Methyl

Diazinon Parathion

Dicrotophos Phorate

Dimethoate Phosalone

Dioxathion Phosmet

Disulfoton Phosphamidon

Ethephon Profenofos

Ethion S,S,S-Tributyl Phosphorotrithioate

Fenamiphos Sulfotep

Leptophos Tepp

Malathion Trichlorfon
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made up the reference group. Participants’ exposure to 
other pesticide groups other than OP were combined 
into a summary estimate (ever/never) based on five major 
pesticide use types: fumigants, herbicides, fungicides, 
insecticides, and fungicides/insecticides (pesticides used 
as both fungicides and/or insecticides). Briefly, covering 
the same exposure period as the OP exposure measures, 
we generated exposure categories for other pesticide 
groups. Ever/never instead of a high/low category was 
used as the exposure prevalence was generally low in 
these periods. Participants thus are considered “exposed 
to other pesticides beside OPs” if they were exposed to 
any of the five other pesticide groups.

Statistical analysis
We examined the global microbiome profile for alpha 
diversity (Shannon index) and beta diversity (Bray–Cur-
tis dissimilarity). The mean differences in alpha diversity 
between exposure groups was assessed using the Wil-
coxon test statistic and multivariable linear regression, 
while exposure group-based beta diversity differences 
were visually examined using plots from Principal Coor-
dinate Analysis and tested with permutation multivariate 
analysis of variance (PERMANOVA).

Taxa abundance was compared between exposure 
groups at genus, family, and phylum levels separately. 
Using MaAsLin2, an R package designed for univariate 
differential taxa abundance analysis, we assumed a nega-
tive binomial distribution and normalized our micro-
biome data using the trimmed mean method [37]. We 
adjusted for sex, age, race (white vs non-white), PD sta-
tus (PD vs non-PD), exposure to other pesticide groups 
(fumigants, herbicides, fungicides, and insecticides other 
than OP, Table S1), and sequencing platform (HiSeq vs 
MiSeq) in the regression model to control for potential 
confounding. We used Benjamini–Hochberg corrections 
to control for false discovery rate at < 0.05.

Similarly, we explored associations between predicted 
metagenomic data and pesticide exposure using the 
Wilcoxon test to assess differences in gene richness (i.e. 
Shannon diversity of predicted bacterial functional genes 
within each sample), the PERMANOVA test to assess dif-
ferences in beta diversity (Bray–Curtis dissimilarity of 
the gene count between samples), and MaAslin2 to per-
form regression modeling for differential abundance of 
Metacyc pathways by pesticide exposure status, control-
ling at a minimum for race, sex, age, PD status, co-expo-
sure to other pesticide groups and sequencing platform. 
The analyses described above were performed with SAS 
9.4 and R (v4).

We conducted sensitivity analyses to assess potential 
bias arising from exposure misclassifications and con-
founding by PD status. First, to examine the changes in 

microbial and predicted metabolic pathways related to 
change of exposure window, we employed two alternative 
windows—exposure to OP during 6–10  years (Sensitiv-
ity Model 1) and 0–5  years (Sensitivity Model 2) prior 
to sample collection (Figure S3). 19 participants previ-
ously considered highly exposed were moved into the 
low exposure group in the 0–5-year window, whereas in 
the 6–10-year window prior to samples collection, only 
2 participants changed exposure status compared to the 
entire 10-year window. Second, to assess whether PD 
status confounded the associations, we compared effect 
estimates from models that did and did not control for 
PD status (Sensitivity Model 3).

Results
The 190 participants with a fecal sample and complete 
demographic information in the analysis (Table 2), were 
on average 72 years old, 53% were males (N = 101), 74% 
were white (N = 140), 61% (N = 116) had PD, and 36 par-
ticipants (19%) were considered highly exposed to OP 
pesticides at their residences within the 10-year period 
prior to fecal sample collection. The distribution of OP 
exposure is shown in Figure S4.

Crude comparisons of alpha (Shannon index) and beta 
diversity (Bray–Curtis dissimilarity) showed no differ-
ences in bacterial diversity with OP exposure (Figure S5). 
Similarly, neither multivariable linear regression analysis 

Table 2 Demographics and exposure to pesticides of the study 
population (N = 190)

Minority

 White 140 (73.7%)

 Non-white 50 (26.3%)

Sex

 Male 101 (53.2%)

 Female 89 (46.8%)

Age at sample collection

 Mean (SD) 72.1 (8.73)

 Median [Min, Max] 72.5 [43.0, 95.0]

Parkinson’s Disease (PD) status

 Non-PD 74 (38.9%)

 PD 116 (61.1%)

Sequencing platform

 HiSeq 141 (74.2%)

 MiSeq 49 (25.8%)

Exposure to organophosphates

 Low Exposure 154 (81.1%)

 High Exposure 36 (18.9%)

Exposure to other pesticide groups

 Low Exposure 115 (60.5%)

 High Exposure 75 (39.5%)
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using the Shannon index and adjusting for potential 
confounders (p = 0.31) nor the PERMANOVA test for 
difference in bacterial composition (p = 0.64) showed 
associations with OP exposures. However, differential 
abundance analyses found 13 genera and one family that 
exhibited positive associations with OP exposure, while 
9 genera and one family were negatively associated with 
OP exposure. The majority of the differentially abundant 
genera belong to the family of Lachnospiraceae (9 genera) 
and Ruminococcaceae (7 genera) within the Clostridia 
class, with the remainder belonging to the family of 
Burkholderiaceae, Erysipelotrichaceae, Clostridiales_
vadinBB60_group, Acidaminococcaceae, Synergistaceae, 
and Veillonellaceae (Table 3, Table S2-S4, Figure S6).

According to the Shannon index, the richness and 
evenness of bacterial genes predicted from gut micro-
biota composition was marginally higher in participants 
exposed to fewer OP than in  participants considered 
highly exposed (Figure S7, p = 0.04). The composition of 
the metagenome, however, was not associated with OP 
exposure (PERMANOVA, p = 0.28). Overall, 20 path-
ways were predicted to have increased expression and 

14 pathways exhibited decreased expression with higher 
chronic OP exposure (Table  4, Table S5, Figure S8-S9). 
These pathways belong to the superclasses of: 1) Cofac-
tor, prosthetic group, electron carrier, and vitamin bio-
synthesis; 2) Nucleoside and nucleotide biosynthesis and 
degradation; 3) Carbohydrate biosynthesis and degrada-
tion; 4) Amino acid biosynthesis and degradation; 5) Cell 
structure biosynthesis; 6) Fermentation; 7) Amine and 
polyamine degradation; 8) C1 compound utilization and 
assimilation 9) Cell structure biosynthesis; 10) Polymeric 
compound degradation; 11) Respiration; 12) Secondary 
metabolite biosynthesis; and 13) Superpathways of histi-
dine, purine, and pyrimidine biosynthesis.

In analyses using the 6–10  year window prior to 
sample collection (Sensitivity Model 1), all observed 
associations for bacterial abundance remained very 
similar, except for the Coriobacteriales_Incertae_Sedis 
family and six genera for which differences were no 
longer formally statistically significant (alpha = 0.05). 
For the 0–5  year window prior to sample collection 
(Sensitivity Model 2), results were more varied and 
only six genera we identified overlapped with the full 

Table 3 Differential taxa abundance associated with organophosphorus pesticides (N = 190)

Model was adjusted for sex, minority status, age, Parkinson’s disease status, pesticide co-exposure, and sequencing platform

Abbreviations Log2FC, Log2 Fold Change, SE Standard Error, Adj Adjusted

Phylum Family Genus Log2FC SE Adj P

Bacteroidetes Barnesiellaceae – 0.59 0.05 8.739E-35

Actinobacteria Coriobacteriales_Incertae_Sedis – -1.02 0.08 4.644E-35

Firmicutes Lachnospiraceae Sellimonas 0.94 0.04 1.908E-113

Proteobacteria Burkholderiaceae Sutterella 0.59 0.03 1.621E-69

Firmicutes Lachnospiraceae Blautia 0.53 0.17 6.613E-03

Firmicutes Ruminococcaceae Ruminococcaceae_UCG-014 0.40 0.04 3.839E-19

Firmicutes Lachnospiraceae UC5-1-2E3 0.38 0.05 6.201E-14

Firmicutes Ruminococcaceae Ruminococcaceae_UCG-010 0.34 0.06 7.809E-07

Firmicutes Lachnospiraceae Lachnospiraceae_UCG-004 0.32 0.05 4.073E-10

Firmicutes Lachnospiraceae Tyzzerella_4 0.31 0.04 1.174E-16

Firmicutes Clostridiales_vadinBB60_group Unspecified 0.28 0.06 2.469E-06

Firmicutes Lachnospiraceae Coprococcus_1 0.23 0.02 4.847E-20

Firmicutes Lachnospiraceae CAG-56 0.20 0.04 3.477E-07

Firmicutes Ruminococcaceae Ruminococcaceae_UCG-004 0.11 0.03 7.231E-04

Firmicutes Acidaminococcaceae Acidaminococcus 0.07 0.02 4.827E-03

Firmicutes Lachnospiraceae Lachnospiraceae_FCS020_group -0.15 0.06 3.938E-02

Firmicutes Veillonellaceae Dialister -0.17 0.02 1.383E-20

Firmicutes Lachnospiraceae Tyzzerella -0.20 0.06 4.041E-03

Firmicutes Ruminococcaceae DTU089 -0.35 0.06 3.874E-09

Firmicutes Erysipelotrichaceae Holdemania -0.43 0.12 1.088E-03

Firmicutes Ruminococcaceae Anaerotruncus -0.63 0.11 8.867E-08

Firmicutes Erysipelotrichaceae Turicibacter -1.54 0.61 4.351E-02

Proteobacteria Burkholderiaceae Parasutterella -2.13 0.49 6.251E-05

Synergistetes Synergistaceae Cloacibacillus -2.47 0.93 3.179E-02
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10-year exposure window. When excluding PD status 
from the regression models, all associations remained, 
except that for the Sellimonas and the Turicibacter 
genus associations that were no longer formally statis-
tically significant (Table S2-S4). In predicted Metacyc 
pathway expression analyses, all associations remained 
consistent in direction and effect size, except for 
L-valine degradation I, for which there was no asso-
ciation seen in the 6–10 year exposure window (Table 
S5).

Discussion
We explored associations between long-term ambi-
ent OP exposure from agricultural applications and the 
human gut microbiome. The ultimate goal was to assess 
whether pesticide exposures affect human neurodegen-
erative diseases via the gut microbiome, its metabolome, 
or its influence on immune function. Viewing the gut 
microbiome as an ecosystem, we did not observe changes 
in bacterial diversity or general composition with OP 
exposures. This is not unexpected as the exposures we 

Table 4 Differential predicted Metacyc pathways abundance associated organophosphorus pesticides (N = 190)

Model was adjusted for sex, minority status, age, Parkinson’s disease status, pesticide co-exposure, and sequencing platform

Abbreviations: Log2FC Log2 Fold Change, SE Standard Error, Adj Adjusted

Metacyc Pathway Log2 FC SE Adj P

Pyrimidine deoxyribonucleotides de novo biosynthesis IV 0.40 0.12 1.626E-02

Methanogenesis from acetate 0.40 0.12 9.864E-03

Pyrimidine deoxyribonucleotides biosynthesis from CTP 0.37 0.11 1.513E-02

Teichoic acid (poly-glycerol) biosynthesis 0.37 0.09 2.158E-03

dTDP-N-acetylthomosamine biosynthesis 0.36 0.12 3.302E-02

Fucose degradation 0.33 0.09 3.398E-03

L-valine degradation I 0.26 0.06 1.046E-04

Superpathway of N-acetylglucosamine, N-acetylmannosamine and N-acetylneuram-
inate degradation

0.26 0.06 1.150E-03

Superpathway of L-alanine biosynthesis 0.24 0.08 3.529E-02

Sucrose degradation III (sucrose invertase) 0.21 0.06 1.843E-02

Acetylene degradation 0.20 0.06 2.007E-02

Peptidoglycan maturation (meso-diaminopimelate containing) 0.20 0.07 3.053E-02

Superpathway of pyrimidine deoxyribonucleosides degradation 0.19 0.05 8.221E-03

Superpathway of purine deoxyribonucleosides degradation 0.19 0.06 1.909E-02

Purine ribonucleosides degradation 0.17 0.06 4.512E-02

L-lysine biosynthesis I 0.14 0.04 1.453E-02

Galactose degradation I (Leloir pathway) 0.13 0.04 3.328E-02

Pyruvate fermentation to isobutanol (engineered) 0.11 0.04 3.302E-02

L-lysine biosynthesis VI 0.10 0.03 4.718E-02

Calvin-Benson-Bassham cycle 0.09 0.03 4.892E-02

Superpathway of thiamin diphosphate biosynthesis II -0.23 0.08 3.390E-02

Chitin derivatives degradation -0.34 0.04 4.191E-14

Creatinine degradation II -0.36 0.05 1.233E-12

Superpathway of histidine, purine, and pyrimidine biosynthesis -0.37 0.11 1.215E-02

Superpathway of pyridoxal 5’-phosphate biosynthesis and salvage -0.39 0.13 3.378E-02

Pyridoxal 5’-phosphate biosynthesis I -0.41 0.14 3.959E-02

Isoprene biosynthesis II (engineered) -0.45 0.02 2.081E-146

4-aminobutanoate degradation V -0.51 0.14 5.027E-03

Ubiquinol-7 biosynthesis (prokaryotic) -0.71 0.25 4.830E-02

Ubiquinol-9 biosynthesis (prokaryotic) -0.71 0.25 4.830E-02

Ubiquinol-10 biosynthesis (prokaryotic) -0.71 0.25 4.830E-02

Ubiquinol-8 biosynthesis (prokaryotic) -0.71 0.25 4.830E-02

Superpathway of ubiquinol-8 biosynthesis (prokaryotic) -0.72 0.25 4.505E-02

Formaldehyde assimilation I (serine pathway) -0.94 0.04 1.613E-132
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modeled are chronic and low dose, and inherent resil-
ience allows the gut microbiome to return to an equi-
librium following even major perturbations such as 
antibiotic treatment [38]. Therefore, dramatic changes 
in microbial load or diversity that have been observed in 
acute exposure scenarios used in animal experiments are 
unlikely to be replicated in humans who are not acutely 
pesticide poisoned.

However, at a higher resolution, we found differences 
in the abundance of individual bacterial taxa at the fam-
ily and genus level. At the family level, we observed an 
increase of Barnesiellaceae and decrease of Coriobacte-
riales Incertae Sedis with exposure to OP. Barnesiellaceae 
have been linked to chronic conditions such as obesity 
[39], cognitive dysfunction [40], depression [41], cardio-
vascular disease [42], and Crohn’s disease [43]. Corio-
bacteriales Incertae Sedis is a family of Coriobacteriia 
of uncertain origin identified in various environments 
including soil, water, as well as the animal and human 
gut. Both bacterial families have not been associated with 
OP exposure previously, and the observed associations 
appear less consistent in our sensitivity analysis, indicat-
ing that they may have been due to chance. Further study 
is necessary to understand their impact on human health.

Most abundance changes at the genus level associ-
ated with high ambient OP exposure belong to the 
Lachnospiraceae (seven genera were increased and two 
were decreased) and Ruminococcaceae (3 genera were 
increased and 2 were decreased) families in the Clostridia 
class. Lachnospiraceae and Ruminococcaceae are two 
groups of closely related strictly anaerobic bacteria that 
dwell in the gut of healthy individuals. Although some 
species or genera within the family are linked to certain 
diseases [44–46], Lachnospiraceae and Ruminococcaceae 
are often considered beneficial bacteria as they produce 
short-chain fatty acids (SCFAs) via fermentation of die-
tary fibers [47, 48]. SCFAs mostly refer to acetate,  pro-
pionate,  and butyrate, metabolites which are critical 
in maintaining the homeostasis of the gut microbiome 
including gut barrier integrity, immunomodulation and 
regulation of the metabolism of lipids, cholesterol, and 
glucose [48–50]. The production of SCFAs is determined 
by the type of dietary fibers, the fermenting bacteria, the 
gut environment, and the substrate [51]. Therefore, it is 
possible that the observed changes in SCFA-producing 
bacteria are an indicator of disturbed homeostasis of the 
gut environment due to chronic OP exposure, and the 
body’s response to such changes. Interestingly, the pro-
duction of SCFAs, specifically acetate, has been observed 
during bacterial degradation of OP pesticides  [52, 53]. 
Acetate has been shown to enhance glycogen repletion in 
liver and skeletal muscle and to account for glucose intol-
erance [54, 55]. Thus, as OP exposures have previously 

been reported to be associated with some metabolic con-
ditions such as obesity these effects may be mediated by 
the gut microbiome, more specifically via the production 
and function of SCFAs.

Based on the predicted metagenome of gut micro-
biota, lower bacterial gene diversity and altered relative 
abundance of several metabolic pathways were linked to 
higher OP exposure. This suggests an alteration of the 
gut environment that generally leads to a decrease in 
expressed genetic abundance and related metabolic func-
tion. In addition, our predicted metagenomic pathway 
data indicated increased methanogenesis from acetate, 
which reflects the expected increased production of ace-
tate metabolites from OPs.

Interestingly, we noticed that a series of pathways 
affected by OP exposure were related to cellular respira-
tion and subsequent energy production (Fig. 1), such as 
processes involved in glycolysis, the citric acid cycle, and 
electron transport chain, resembling the aerobic respira-
tion in the mitochondria of eukaryotes. OPs have been 
shown to induce cellular oxidative stress and impair enzy-
matic pathways involved in metabolism of carbohydrates, 
fats and protein within the cytoplasm, mitochondria, and 
peroxisomes [56]. Mitochondria have previously been 
proposed as potential targets of OP pesticides [57]. Mito-
chondrial symbiosis, i.e. prokaryotes taken inside another 
through endosymbiosis, is believed to be the genesis of 
eukaryotes [58]. Therefore, the predicted metagenomic 
change in gut microbiota of chronically OP exposed 
individuals provides a unique perspective on OP mito-
chondrial toxicity in humans. OPs seem to affect the gut 
microbiome mitochondrial metabolism similar to human 
cell mitochondrial function. In addition, OP exposure is 
predicted to affect a number of fermentation processes in 
microbes, which may also affect the production of energy 
and precursor metabolites for downstream pathways, 
altering the metabolic activity of microbes.

We also predicted a higher abundance of several path-
ways related to the formation of bacterial walls with 
higher exposure to OP pesticides (Fig. 2). Teichoic acids 
are found in the cell wall of gram-positive bacteria and 
peptidoglycan is the main component in the envelope of 
both gram-positive and gram-negative bacteria. These 
two polymeric macromolecules are responsible for main-
taining the structure, shape, and stability of bacteria, 
protecting the bacteria from environmental stress such 
as antimicrobial molecules, host interaction, and bio-
film formation [59, 60]. They also play important roles in 
cell division and fundamental bacterial physiology [61]. 
In addition, increased biosynthesis and degradation of 
amino sugars (N-acetylglucosamine, N-acetylmannosa-
mine and N-acetylneuraminate), and increased biosyn-
thesis of nucleotides, nucleosides, and sugar nucleotides 
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Fig. 1 Predicted respiration pathways perturbed by ambient organophosphorus pesticides exposure

Fig. 2 Predicted pathways related to bacterial wall structure synthesis altered by ambient organophosphorus pesticides exposure
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were predicted. These compounds are utilized in bacteria 
as precursors of DNA/RNA, and sources of carbon and 
energy. We suspect that these pathways reflect the collec-
tive increase in metabolic activity of the gut microbiota 
in defense against harmful changes in the gut environ-
ment such as chronic OP toxicity.

It is important to highlight that the altered predicted 
pathways we observed were found when we considered 
the gut microbiome as an ecosystem in its entirety. These 
changes do not indicate changes in any particular bacte-
rial groups specifically.

In sensitivity analyses, the largest discrepancy in esti-
mates of differential bacterial abundance was observed 
for a 0–5 year exposure window prior to fecal sample col-
lection. As the actual window for ambient pesticide expo-
sure to affect the microbiome is unknown, we believe 
this mainly results from sparser data for exposure: In the 
0–5-year window, 19 participants previously considered 
highly exposed were moved into the low exposure group, 
leaving less participants in the exposed group (N = 17). 
In the analysis without PD status in the model, all results 
remained consistent in terms of direction of change. 
This indicates that PD status is not confounding the OP 
exposure related differences in the gut microbiome we 
observed.

The current understanding of associations between 
OPs and the gut microbiome is derived solely from ani-
mal models and in-vitro studies. OP treatment of ani-
mals resulted in changes of the host gastrointestinal tract 
such as shorter and thinner intestinal villi, decreased 
tight junction proteins, increased intestinal permeabil-
ity and bacterial translocation [62–64]. Gut microbiome 
dysbiosis [63, 65], abundance changes of certain bacte-
rial groups [9, 62, 63, 66–68], as well as altered metabolic 
function with OP exposure was also observed in ani-
mal models and human gut simulation systems [67, 69]. 
Manipulation of the gut microbiome (e.g., fecal micro-
biota transplants, administration of probiotics) in animal 
experiments alleviated OP toxicity, which underscores 
the essential role of the gut microbiome in the organismal 
response to OP exposure [53, 70–72]. However, findings 
from these experimental studies have been inconsistent 
and sometimes outright contradictory, possibly due to 
differences in animals used, specific pesticides or doses 
investigated or other features of the experimental design. 
Evidence from human studies of pesticide exposure and 
the gut microbiome is needed to elucidate real world 
exposure scenarios and vulnerabilities. To date, only a 
handful of human studies are available, as controlled 
human exposure trials are unethical and accurate expo-
sure assessment in observational studies is challenging. 
A UK study investigating the fecal microbiome by esti-
mating pesticide exposures from dietary questionnaire 

as well as measured pesticides metabolites in the urine 
of  65 twin pairs reported positive associations between 
OP metabolites (sum of dimethyl- and diethyl-containing 
metabolites) and several Clostridium spp [73]. A fecal 
microbiome study in Japan enrolled 38 healthy subjects, 
measured biomarkers of pesticides in urine and collected 
lifestyle information including diet; they only reported an 
increased abundance of Agathobacter as being associated 
with higher OP exposure [74]. These studies are small 
in size, and the pesticide biomarkers likely reflect only 
recent exposure, thus, they do not inform on microbiome 
changes from long-term exposure. Another study in the 
US found that the microbiome composition on indoor 
surfaces of farm worker homes were influenced by work-
ers’ occupational exposure to OP pesticides, serving as an 
indicator for the influence that pesticide exposure has on 
the microbiome in general [75].

Our study is the largest microbiome study investigat-
ing the effect of OP pesticides in human samples to date. 
The California counties of Fresno, Tulare, and Kern are 
heavily agricultural with large-scale commercial appli-
cations of OP and other types of pesticides, and many 
have been shown to travel in the air to nearby areas and 
contaminate the outdoor and indoor environment of 
buildings [76, 77]. Thus, residents may inhale airborne 
pesticides or ingest them from contaminated soil, water, 
or food. Our PUR-based exposure assessment method 
has both strengths and limitations. This record-based 
system allows us to estimate long-term exposure at resi-
dential addresses without the potential for introducing 
recall bias. On the other hand, our measures of ambient 
pesticide exposure are probably affected by non-differen-
tial exposure misclassification as: 1) the actual exposure 
depends on where and how long a study participant spent 
time in contaminated areas, information that is not avail-
able; 2) we did not consider potential OP exposure from 
food residues or household pesticides use, as additional 
sources of OP exposures to the gut microbiome. Our cur-
rent OP exposure estimate, therefore, may underestimate 
the actual OP exposure levels and their effect on the gut 
microbiome. Furthermore, the study sample had a mean 
age of 72 years and 61% had PD, limiting the generaliz-
ability of the study results to younger, healthier popula-
tions. In addition, as a number of factors can potentially 
affect the composition and abundance of gut bacteria 
over time, it is nevertheless generally believed that due 
to immunologic properties etc., the major gut bacteria 
composition within individuals are relatively robust and 
remain stable over time. In support of this, a study of 37 
healthy adults collected fecal samples 2 to 13 times for up 
to 296 weeks apart and found that individual microbiota 
were fairly stable, with 60% of all strains remaining stable 
over the course of 5 years [78]. The National Institutes of 



Page 10 of 12Zhang et al. Environmental Health           (2024) 23:41 

Health Human Microbiome Project also reported on the 
strain stability of gut microbes over time [79]. Lastly, our 
sequencing and annotation pipeline had limited species-
level resolution. Some of these limitations are expected 
to be resolved in the near future due to improvements in 
the size of the microbiome/metagenome reference data-
base and the affordability of sequencing technology, such 
as full-length 16S or shotgun sequencing.

Conclusion
In conclusion, our study provides evidence that expo-
sure to OP is associated with changes in the abundance 
of several bacterial groups and differential functional 
capacity in metabolic pathways supported by the human 
gut microbiome. These findings support previous in-vivo 
and in-vitro studies and suggest that chronic and long-
term OP pesticide exposures may also have an impact on 
the human gut microbiome. However, additional human 
studies are needed to confirm these results and elucidate 
possible health consequences of these observations.

Abbreviations
OP  Organophosphorus
GIS  Geographic information systems
PEG  Parkinson’s, Environment and Gene study
PD  Parkinson’s disease
ASV  Amplicon sequence variants
EC  Enzyme commission
PUR  Pesticide Use Reports
PERMANOVA  Permutation multivariate analysis of variance
SCFAs  Short-chain fatty acids

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12940- 024- 01078-y.

Additional file 1: Table S1. List of other pesticide groups. Table S2. Dif-
ferential taxa abundance associated with organophosphorus pesticides - 
Main model and sensitivity analyses - Phylum (N=190). Table S3. Differen-
tial taxa abundance associated with organophosphorus pesticides - Main 
model and sensitivity analyses - Family (N=190). Table S4. Differential taxa 
abundance associated with organophosphorus pesticides - Main model 
and sensitivity analyses - Genus (N=190). Table S5. Differential taxa abun-
dance associated with organophosphorus pesticides - Main model and 
sensitivity analyses - predicted Metacyc pathways (N=190). Supplemen-
tary Figures: Figure S1. Relative abundance plot at phylum level (Sorted 
by Firmicutes). Figure S2. Averaged relative taxa abundance grouped by 
organophosphorus pesticide exposures. Figure S3. Exposure windows of 
main model and sensitivity analyses. Figure S4. Distribution of organo-
phosphorus pesticide exposures. Figure S5. Comparison of microbiome 
profile between organophosphorus exposure groups. Figure S6. Bacterial 
taxa associated with organophosphorus pesticide exposures. Figure S7. 
Comparison of predicted metagene diversity between organophospho-
rus pesticids exposure groups. Figure S8. Predicted Metacyc pathways 
associated with organophosphorus pesticide exposure, grouped by level 
2 superclasses. Figure S9. Predicted Metacyc pathways associated with 
organophosphorus pesticides exposure, grouped by level 1 superclasses

Acknowledgements
We acknowledge the Microbiome Core of the Goodman-Luskin Microbiome 
Center for performing microbiome sequencing.

Authors’ contributions
KZ conceptualized and designed the study, participated in the acquisition 
of data, performed data analysis, interpreted the study results, drafted, and 
edited the original manuscript. KP conceptualized and designed the study, 
interpreted the study results, reviewed, and edited the manuscript. JPJ con-
ceptualized and designed the study, participated in the acquisition of data, 
interpreted the study results, reviewed, and edited the manuscript. MC partici-
pated in the acquisition of data, interpreted the study results, reviewed, and 
edited the manuscript. JB participated in the acquisition of data, interpreted 
the study results, reviewed, and edited the manuscript. IDR participated in 
the acquisition of data, reviewed, and edited the manuscript. BR conceptual-
ized and designed the study, interpreted the study results, and reviewed and 
edited the manuscript.

Funding
This work was supported by National Institute of Environmental Health 
Sciences of the National Institutes of Health (grants numbers: R01 ES031106, 
R01 ES010544, U54-ES012078, P01-ES016732, P50-NS038367, and initial pilot 
funding P30-ES07048), the American Parkinson’s disease Association (grant 
number 20161386), Parkinson Alliance (2018 and 2019 Grant). KZ is supported 
by Burroughs Wellcome Fund Interschool Training Program in Chronic Dis-
eases, Toffler Scholar Award, and Wilshire Fellowship. JPJ was supported by VA 
IK2CX001717. KCP was supported by K01AG07204401.

Availability of data and materials
The data generated in this study are held by the study Principal Investiga-
tor Dr. Beate Ritz (britz@ucla.edu) and may be shared upon request for the 
purpose of replicating analyses results. The data are currently not deposited in 
publicly available repositories as data collection is ongoing. A comprehensive 
dataset will be made accessible in accordance with the requirements of fund-
ing agencies upon the completion of the study.

Declarations

Ethics approval and consent to participate and publication
This study was approved by the UCLA Institutional Review Board (IRB#20–
001352). Informed written consent was obtained from all study participants.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Epidemiology, UCLA Fielding School of Public Health, Los 
Angeles, CA, USA. 2 Department of Neurology, UCLA David Geffen School 
of Medicine, Los Angeles, CA, USA. 3 The Vatche and Tamar Manoukian Division 
of Digestive Diseases, Department of Medicine, David Geffen School of Medi-
cine at UCLA, Los Angeles, CA, USA. 4 Division of Gastroenterology, Hepatol-
ogy and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los 
Angeles, CA, USA. 5 Department of Population and Public Health Sciences, 
Keck School of Medicine, University of Southern California, Los Angeles, CA, 
USA. 6 Department of Environmental Health Sciences, UCLA Fielding School 
of Public Health, Los Angeles, CA, USA. 

Received: 16 January 2024   Accepted: 2 April 2024

References
 1. Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. 

Microbiome. 2015;3:31.
 2. Foxman B, Martin ET. Use of the Microbiome in the Practice of Epidemiol-

ogy: A Primer on -Omic Technologies. Am J Epidemiol. 2015;182(1):1–8.
 3. Liang D, Leung RK, Guan W, Au WW. Involvement of gut microbiome in 

human health and disease: brief overview, knowledge gaps and research 
opportunities. Gut Pathog. 2018;10:3.

https://doi.org/10.1186/s12940-024-01078-y
https://doi.org/10.1186/s12940-024-01078-y


Page 11 of 12Zhang et al. Environmental Health           (2024) 23:41  

 4. Van Treuren W, Dodd D. Microbial Contribution to the Human 
Metabolome: Implications for Health and Disease. Annu Rev Pathol. 
2020;15:345–69.

 5. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut 
microbiota as an environmental factor that regulates fat storage. Proc 
Natl Acad Sci U S A. 2004;101(44):15718–23.

 6. Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. Effects of gut 
microbes on nutrient absorption and energy regulation. Nutr Clin Pract. 
2012;27(2):201–14.

 7. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflamma-
tion. Cell. 2014;157(1):121–41.

 8. Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immu-
nity. Nature. 2016;535(7610):65–74.

 9. Gao B, Bian X, Mahbub R, Lu K. Sex-Specific Effects of Organophosphate 
Diazinon on the Gut Microbiome and Its Metabolic Functions. Environ 
Health Perspect. 2017;125(2):198–206.

 10. Liu Q, Shao W, Zhang C, Xu C, Wang Q, Liu H, et al. Organochloride pesti-
cides modulated gut microbiota and influenced bile acid metabolism in 
mice. Environ Pollut. 2017;226:268–76.

 11. Chi L, Gao B, Bian X, Tu P, Ru H, Lu K. Manganese-induced sex-specific 
gut microbiome perturbations in C57BL/6 mice. Toxicol Appl Pharmacol. 
2017;331:142–53.

 12. Kish L, Hotte N, Kaplan GG, Vincent R, Tso R, Ganzle M, et al. Environmen-
tal particulate matter induces murine intestinal inflammatory responses 
and alters the gut microbiome. PLoS ONE. 2013;8(4):e62220.

 13. Morais LH, Schreiber HLt, Mazmanian SK. The gut microbiota-brain axis in 
behaviour and brain disorders. Nat Rev Microbiol. 2021;19(4):241–55.

 14. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interac-
tions between enteric microbiota, central and enteric nervous systems. 
Ann Gastroenterol. 2015;28(2):203–9.

 15. CDC. Centers for Disease Control and Prevention: Biomonitoring Data 
Tables for Environmental Chemicals [Available from: https:// www. cdc. 
gov/ expos urere port/ data_ tables. html? NER_ Secti onItem= NHANES.

 16. Blain PG. Organophosphorus poisoning (acute). BMJ Clin Evid. 2011;2011.
 17. Integrative HMPRNC. The Integrative Human Microbiome Project: 

dynamic analysis of microbiome-host omics profiles during periods of 
human health and disease. Cell Host Microbe. 2014;16(3):276–89.

 18. Slotkin TA. Does early-life exposure to organophosphate insecticides lead 
to prediabetes and obesity? Reprod Toxicol. 2011;31(3):297–301.

 19. Ritz BR, Paul KC, Bronstein JM. Of Pesticides and Men: a California Story of 
Genes and Environment in Parkinson’s Disease. Curr Environ Health Rep. 
2016;3(1):40–52.

 20. Paul KC, Ling C, Lee A, To TM, Cockburn M, Haan M, et al. Cognitive 
decline, mortality, and organophosphorus exposure in aging Mexican 
Americans. Environ Res. 2018;160:132–9.

 21. Sanchez-Santed F, Colomina MT, Herrero HE. Organophosphate pesticide 
exposure and neurodegeneration. Cortex. 2016;74:417–26.

 22. Harrison V, Mackenzie RS. Anxiety and depression following cumula-
tive low-level exposure to organophosphate pesticides. Environ Res. 
2016;151:528–36.

 23. Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA. The 
application of ecological theory toward an understanding of the human 
microbiome. Science. 2012;336(6086):1255–62.

 24. Cappellato M, Baruzzo G, Di Camillo B. Investigating differential abun-
dance methods in microbiome data: A benchmark study. PLoS Comput 
Biol. 2022;18(9):e1010467.

 25. New FN, Brito IL. What Is Metagenomics Teaching Us, and What Is Missed? 
Annu Rev Microbiol. 2020;74(1):117–35.

 26. Tong M, Jacobs JP, McHardy IH, Braun J. Sampling of intestinal microbiota 
and targeted amplification of bacterial 16S rRNA genes for microbial 
ecologic analysis. Curr Protoc Immunol. 2014;107:7 41 1–7 11.

 27. Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J, Earl AM, et al. 
Relating the metatranscriptome and metagenome of the human gut. 
Proc Natl Acad Sci U S A. 2014;111(22):E2329–38.

 28. Song SJ, Amir A, Metcalf JL, Amato KR, Xu ZZ, Humphrey G, et al. Preser-
vation Methods Differ in Fecal Microbiome Stability, Affecting Suitability 
for Field Studies. mSystems. 2016;1(3):e00021–16.

 29. Marotz C, Cavagnero KJ, Song SJ, McDonald D, Wandro S, Humphrey G, 
et al. Evaluation of the Effect of Storage Methods on Fecal, Saliva, and 
Skin Microbiome Composition. mSystems. 2021;6(2):e01329–20.

 30. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. 
DADA2: High-resolution sample inference from Illumina amplicon data. 
Nat Methods. 2016;13(7):581–3.

 31. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, 
et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 
2020;38(6):685–8.

 32. Chester G, Ward RJ. Occupational exposure and drift hazard during 
aerial application of paraquat to cotton. Arch Environ Contam Toxicol. 
1984;13(5):551–63.

 33. Maccollom GB, Currier WW, Baumann GL. Drift Comparisons 
Between Aerial and Ground Orchard Application. J Econ Entomol. 
1986;79(2):459–64.

 34. Ward MH, Lubin J, Giglierano J, Colt JS, Wolter C, Bekiroglu N, et al. Prox-
imity to crops and residential exposure to agricultural herbicides in iowa. 
Environ Health Perspect. 2006;114(6):893–7.

 35. Gunier RB, Ward MH, Airola M, Bell EM, Colt J, Nishioka M, et al. Deter-
minants of agricultural pesticide concentrations in carpet dust. Environ 
Health Perspect. 2011;119(7):970–6.

 36. Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B. Parkinson’s disease 
and residential exposure to maneb and paraquat from agricul-
tural applications in the central valley of California. Am J Epidemiol. 
2009;169(8):919–26.

 37. Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, et al. Mul-
tivariable association discovery in population-scale meta-omics studies. 
PLoS Comput Biol. 2021;17(11):e1009442.

 38. Backhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, et al. 
Defining a healthy human gut microbiome: current concepts, future 
directions, and clinical applications. Cell Host Microbe. 2012;12(5):611–22.

 39. Del Chierico F, Abbatini F, Russo A, Quagliariello A, Reddel S, Capoccia D, 
et al. Gut Microbiota Markers in Obese Adolescent and Adult Patients: 
Age-Dependent Differential Patterns. Front Microbiol. 2018;9:1210.

 40. Komanduri M, Savage K, Lea A, McPhee G, Nolidin K, Deleuil S, et al. The 
Relationship between Gut Microbiome and Cognition in Older Austral-
ians. Nutrients. 2021;14(1):64.

 41. Liu P, Gao M, Liu Z, Zhang Y, Tu H, Lei L, et al. Gut Microbiome Composi-
tion Linked to Inflammatory Factors and Cognitive Functions in First-
Episode, Drug-Naive Major Depressive Disorder Patients. Front Neurosci. 
2021;15:800764.

 42. Valentini V, Silvestri V, Bucalo A, Marraffa F, Risicato M, Grassi S, et al. A 
Possible Link between Gut Microbiome Composition and Cardiovascular 
Comorbidities in Psoriatic Patients. J Pers Med. 2022;12(7):1118.

 43. Teofani A, Marafini I, Laudisi F, Pietrucci D, Salvatori S, Unida V, et al. 
Intestinal Taxa Abundance and Diversity in Inflammatory Bowel Disease 
Patients: An Analysis including Covariates and Confounders. Nutrients. 
2022;14(2):260.

 44. Higuchi BS, Rodrigues N, Gonzaga MI, Paiolo JCC, Stefanutto N, Omori 
WP, et al. Intestinal Dysbiosis in Autoimmune Diabetes Is Correlated With 
Poor Glycemic Control and Increased Interleukin-6: A Pilot Study. Front 
Immunol. 2018;9:1689.

 45. Punzalan C, Qamar A. Chapter 40 - Probiotics for the Treatment of Liver 
Disease. In: Floch MH, Ringel Y, Allan Walker W, editors. The Microbiota 
in Gastrointestinal Pathophysiology. Boston: Academic Press; 2017. p. 
373–81.

 46. Kang S, Denman SE, Morrison M, Yu Z, Dore J, Leclerc M, et al. Dysbiosis 
of fecal microbiota in Crohn’s disease patients as revealed by a custom 
phylogenetic microarray. Inflamm Bowel Dis. 2010;16(12):2034–42.

 47. Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M. 
The Controversial Role of Human Gut Lachnospiraceae. Microorganisms. 
2020;8(4):573.

 48. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain 
fatty acids in microbiota-gut-brain communication. Nat Rev Gastroen-
terol Hepatol. 2019;16(8):461–78.

 49. Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids From 
Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Laus-
anne). 2020;11:25.

 50. Portincasa P, Bonfrate L, Vacca M, De Angelis M, Farella I, Lanza E, et al. Gut 
Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeo-
stasis. Int J Mol Sci. 2022;23(3):1105.

 51. Deleu S, Machiels K, Raes J, Verbeke K, Vermeire S. Short chain fatty acids 
and its producing organisms: An overlooked therapy for IBD? EBioMedi-
cine. 2021;66:103293.

https://www.cdc.gov/exposurereport/data_tables.html?NER_SectionItem=NHANES
https://www.cdc.gov/exposurereport/data_tables.html?NER_SectionItem=NHANES


Page 12 of 12Zhang et al. Environmental Health           (2024) 23:41 

 52. Harishankar MK, Sasikala C, Ramya M. Efficiency of the intestinal bac-
teria in the degradation of the toxic pesticide, chlorpyrifos. 3 Biotech. 
2013;3(2):137–42.

 53. Velmurugan G, Ramprasath T, Swaminathan K, Mithieux G, Rajendhran 
J, Dhivakar M, et al. Gut microbial degradation of organophosphate 
insecticides-induces glucose intolerance via gluconeogenesis. Genome 
Biol. 2017;18(1):8.

 54. Fushimi T, Tayama K, Fukaya M, Kitakoshi K, Nakai N, Tsukamoto Y, et al. 
Acetic acid feeding enhances glycogen repletion in liver and skeletal 
muscle of rats. J Nutr. 2001;131(7):1973–7.

 55. Johnston CS, Kim CM, Buller AJ. Vinegar improves insulin sensitivity to 
a high-carbohydrate meal in subjects with insulin resistance or type 2 
diabetes. Diabetes Care. 2004;27(1):281–2.

 56. Karami-Mohajeri S, Abdollahi M. Toxic influence of organophosphate, 
carbamate, and organochlorine pesticides on cellular metabolism of 
lipids, proteins, and carbohydrates: a systematic review. Hum Exp Toxicol. 
2011;30(9):1119–40.

 57. Leung MCK, Meyer JN. Mitochondria as a target of organophosphate and 
carbamate pesticides: Revisiting common mechanisms of action with 
new approach methodologies. Reprod Toxicol. 2019;89:83–92.

 58. Boguszewska K, Szewczuk M, Kaźmierczak-Barańska J, Karwowski BT. The 
Similarities between Human Mitochondria and Bacteria in the Context 
of Structure, Genome, and Base Excision Repair System. Molecules. 
2020;25(12):2857.

 59. Swoboda JG, Campbell J, Meredith TC, Walker S. Wall teichoic acid func-
tion, biosynthesis, and inhibition. ChemBioChem. 2010;11(1):35–45.

 60. Vollmer W, Blanot D, de Pedro MA. Peptidoglycan structure and architec-
ture. FEMS Microbiol Rev. 2008;32(2):149–67.

 61. Brown S, Santa Maria JP, Walker S Jr. Wall teichoic acids of gram-positive 
bacteria. Annu Rev Microbiol. 2013;67:313–36.

 62. Joly Condette C, Bach V, Mayeur C, Gay-Queheillard J, Khorsi-Cauet H. 
Chlorpyrifos Exposure During Perinatal Period Affects Intestinal Micro-
biota Associated With Delay of Maturation of Digestive Tract in Rats. J 
Pediatr Gastroenterol Nutr. 2015;61(1):30–40.

 63. Joly Condette C, Khorsi-Cauet H, Morliere P, Zabijak L, Reygner J, Bach V, 
et al. Increased gut permeability and bacterial translocation after chronic 
chlorpyrifos exposure in rats. PLoS ONE. 2014;9(7):e102217.

 64. Liang Y, Zhan J, Liu D, Luo M, Han J, Liu X, et al. Organophosphorus pesti-
cide chlorpyrifos intake promotes obesity and insulin resistance through 
impacting gut and gut microbiota. Microbiome. 2019;7(1):19.

 65. Zhao Y, Zhang Y, Wang G, Han R, Xie X. Effects of chlorpyrifos on the gut 
microbiome and urine metabolome in mouse (Mus musculus). Chemos-
phere. 2016;153:287–93.

 66. Fang B, Li JW, Zhang M, Ren FZ, Pang GF. Chronic chlorpyrifos exposure 
elicits diet-specific effects on metabolism and the gut microbiome in 
rats. Food Chem Toxicol. 2018;111:144–52.

 67. Reygner J, Joly Condette C, Bruneau A, Delanaud S, Rhazi L, Depeint F, 
et al. Changes in Composition and Function of Human Intestinal Micro-
biota Exposed to Chlorpyrifos in Oil as Assessed by the SHIME® Model. Int 
J Environ Res Public Health. 2016;13(11):1088.

 68. Gao B, Chi L, Tu P, Bian X, Thomas J, Ru H, et al. The organophosphate 
malathion disturbs gut microbiome development and the quorum-
Sensing system. Toxicol Lett. 2018;283:52–7.

 69. Vismaya, Rajini PS. Oral exposure to the organophosphorus insecticide, 
Monocrotophos induces intestinal dysfunction in rats. Food Chem Toxi-
col. 2014;71:236–43.

 70. Requile M, Gonzalez Alvarez DO, Delanaud S, Rhazi L, Bach V, Depeint F, 
et al. Use of a combination of in vitro models to investigate the impact of 
chlorpyrifos and inulin on the intestinal microbiota and the permeability 
of the intestinal mucosa. Environ Sci Pollut Res Int. 2018;25(23):22529–40.

 71. Reygner J, Lichtenberger L, Elmhiri G, Dou S, Bahi-Jaber N, Rhazi L, et al. 
Inulin Supplementation Lowered the Metabolic Defects of Prolonged 
Exposure to Chlorpyrifos from Gestation to Young Adult Stage in Off-
spring Rats. PLoS ONE. 2016;11(10):e0164614.

 72. Trinder M, McDowell TW, Daisley BA, Ali SN, Leong HS, Sumarah MW, et al. 
Probiotic Lactobacillus rhamnosus Reduces Organophosphate Pesticide 
Absorption and Toxicity to Drosophila melanogaster. Appl Environ Micro-
biol. 2016;82(20):6204–13.

 73. Mesnage R, Bowyer RCE, El Balkhi S, Saint-Marcoux F, Gardere A, 
Ducarmon QR, et al. Impacts of dietary exposure to pesticides on faecal 
microbiome metabolism in adult twins. Environ Health. 2022;21(1):46.

 74. Ueyama J, Hayashi M, Hirayama M, Nishiwaki H, Ito M, Saito I, et al. Effects 
of Pesticide Intake on Gut Microbiota and Metabolites in Healthy Adults. 
Int J Environ Res Public Health. 2022;20(1):213.

 75. Dalton KR, Lee M, Wang Z, Zhao S, Parks CG, Beane-Freeman LE, et al. 
Occupational farm work activities influence workers’ indoor home micro-
biome. Environ Res. 2023;243:117819.

 76. Wofford P, Segawa R, Schreider J, Federighi V, Neal R, Brattesani M. Com-
munity air monitoring for pesticides. Part 3: using health-based screening 
levels to evaluate results collected for a year. Environ Monit Assess. 
2014;186(3):1355–70.

 77. Ward MH, Colt JS, Metayer C, Gunier RB, Lubin J, Crouse V, et al. Resi-
dential exposure to polychlorinated biphenyls and organochlorine 
pesticides and risk of childhood leukemia. Environ Health Perspect. 
2009;117(6):1007–13.

 78. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Good-
man AL, et al. The long-term stability of the human gut microbiota. 
Science. 2013;341(6141):1237439.

 79. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. 
Strains, functions and dynamics in the expanded Human Microbiome 
Project. Nature. 2017;550(7674):61–6.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Ambient long-term exposure to organophosphorus pesticides and the human gut microbiome: an observational study
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Background
	Methods
	Study population and sample collection
	Microbiome assessment and metagenomic prediction
	Pesticide exposure assessment
	Statistical analysis

	Results
	Discussion
	Conclusion
	Acknowledgements
	References


