
Dillon et al. Environmental Health           (2024) 23:43  
https://doi.org/10.1186/s12940-024-01080-4

RESEARCH Open Access

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. Open 
Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, 
distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permit‑
ted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecom‑
mons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Environmental Health

Associations between long-term exposure 
to air pollution and kidney function utilizing 
electronic healthcare records: a cross-sectional 
study
David Dillon1, Cavin Ward‑Caviness1, Abhijit V. Kshirsagar2, Joshua Moyer1, Joel Schwartz3, Qian Di4 and 
Anne Weaver1* 

Abstract 

Background Chronic kidney disease (CKD) affects more than 38 million people in the United States, predominantly 
those over 65 years of age. While CKD etiology is complex, recent research suggests associations with environmental 
exposures.

Methods Our primary objective is to examine creatinine‑based estimated glomerular filtration rate  (eGFRcr) 
and diagnosis of CKD and potential associations with fine particulate matter  (PM2.5), ozone  (O3), and nitrogen dioxide 
 (NO2) using a random sample of North Carolina electronic healthcare records (EHRs) from 2004 to 2016. We estimated 
 eGFRcr using the serum creatinine‑based 2021 CKD‑EPI equation.  PM2.5 and  NO2 data come from a hybrid model 
using 1  km2 grids and  O3 data from 12  km2 CMAQ grids. Exposure concentrations were 1‑year averages. We used 
linear mixed models to estimate  eGFRcr per IQR increase of pollutants. We used multiple logistic regression to estimate 
associations between pollutants and first appearance of CKD. We adjusted for patient sex, race, age, comorbidities, 
temporality, and 2010 census block group variables.

Results We found 44,872 serum creatinine measurements among 7,722 patients. An IQR increase in PM2.5 was asso‑
ciated with a 1.63 mL/min/1.73m2 (95% CI: ‑1.96, ‑1.31) reduction in eGFRcr, with  O3 and  NO2 showing positive 
associations. There were 1,015 patients identified with CKD through e‑phenotyping and ICD codes. None of the envi‑
ronmental exposures were positively associated with a first‑time measure of  eGFRcr < 60 mL/min/1.73m2.  NO2 
was inversely associated with a first‑time diagnosis of CKD with aOR of 0.77 (95% CI: 0.66, 0.90).

Conclusions One‑year average  PM2.5 was associated with reduced  eGFRcr, while  O3 and  NO2 were inversely associ‑
ated. Neither  PM2.5 or  O3 were associated with a first‑time identification of CKD,  NO2 was inversely associated. We 
recommend future research examining the relationship between air pollution and impaired renal function.
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Introduction
Chronic kidney disease (CKD) is a prevalent and grow-
ing health concern. Globally, CKD resulted in 1.2 million 
premature deaths in 2017, with an estimated prevalence 
of 697.5 million [1, 2]. Annual mortality is expected to 
increase 2.2–4.0 million by 2040 [2]. More than 38 mil-
lion people in the United States live with CKD, most of 
whom are over the age of 65 [3, 4]. Following worldwide 
trends, the prevalence in the US is expected to increase 
in the coming decades; for those over 65 years of age, 
the prevalence is expected to increase by 37.8% by 2030. 
Older adults often experience higher levels of difficulty 
with both the successful management of CKD and, once 
the disease has progressed to end-stage kidney disease 
(ESKD), access to the resources necessary for kidney 
transplantation [5].

CKD is broadly defined by the presence of an estimated 
glomerular filtration rate (eGFR) of less than 60 mL/min 
per 1.73  m2, markers of kidney damage such as albumi-
nuria or hematuria, or both for a duration of >  = 90 days, 
or the need for kidney replacement therapy [6]. Even a 
moderate decrease (eGFR of 59 to 30 mL/min per 1.73 
 m2) in kidney function increases the risk of hospitaliza-
tion [7]. There are five stages of CKD, with stage 1 being 
the mildest and stage 5 indicated either severe impair-
ment (eGFR < 15 mL/min per 1.73  m2) or kidney failure. 
Given the relatively mild symptoms of mild to moder-
ate decreased kidney function, most individuals are not 
aware when they are in the first few stages of CKD. Prev-
alence of early CKD appears to be higher in females, but 
males progress more quickly through the disease stages 
and have a higher risk of mortality [8]. While standard-
ized mortality rates for other non-communicable diseases 
such as cancer and cardiovascular disease have declined, 
CKD has not seen the same substantial decrease [9].

Most cases of CKD are caused by diabetes, hyperten-
sion, or a combination of both conditions, while other 
less common causes include primary glomerulonephri-
tis, chronic tubulointerstitial nephritis, hereditary dis-
ease, secondary glomerulonephritis or vasculitis, etc. 
[10]. These issues are the manifestation of a combination 
of genetic, behavior, and environmental factors [11]. The 
mechanisms by which these diseases damage the kidneys 
over time include, but are not limited to, systemic/intra-
glomerular hypertension, glomerular hypertrophy, pre-
cipitation of intrarenal calcium phosphate, inflammation, 
and altered metabolism [10]. This chronic, consistent 
damage changes the overall architecture of the kidney, 
leading to scarring, and reduces their ability to function 
normally.

Recent research suggests environmental exposures 
as potential factors associated with the onset and pro-
gression of CKD in addition to these other factors [12]. 

Long-term exposure to air pollutants, specifically coarse 
particulate matter  (PM10), fine particulate matter  (PM2.5), 
and nitrogen dioxide  (NO2), show a mixed, but overall, 
consistent relationship with low kidney function [13, 
14]. It is possible that there is translocation of ultrafine 
particles directly into the bloodstream, oxidative stress 
responses, or changes in the ratios and total number of 
immune cells [15, 16]. Ozone  (O3) may impact the kid-
neys as inhalation induces immunosuppressive and 
metabolic responses in the kidneys, heart, and liver [17]. 
Animal models suggest that inhalation of  O3 alters gene 
expression in pathways involving inflammatory signaling, 
antioxidation, and endothelial function [18]. However, 
few studies have examined the effect of  O3 on kidney dis-
ease in humans.

Our primary objective is to examine if airborne expo-
sure to  PM2.5,  O3, or  NO2 is associated with (1) reduced 
renal function as measured by serum creatinine esti-
mated  eGFRcr or (2) a diagnosis of CKD in a random 
sample of patients from the University of North Carolina 
Healthcare System (UNCHCS).

Methods
Study population
We defined the sampling frame for this study to include 
patients with available electronic health records (EHRs) 
containing information on kidney health. Specifically, we 
include those with available serum creatinine laboratory 
test results and ICD codes relevant to CKD (available in 
Supplemental Table 1). We then separate this population 
into two distinct groups. The first group consists of all 
individuals with reported lab values for serum creatinine. 
We will use this group to analyze associations between 
air pollution and  eGFRcr continuously. The second group 
is restricted to patients with two measures of  eGFRcr < 60 
mL/min per 1.73  m2 > 90 days apart and/or an ICD code 
indicating a physician diagnosis of CKD III-V. This group 
we consider as a positive case for CKD. These positive 
cases will be matched with controls for analysis.

To accomplish this, we utilize data from EHRs in the 
in Environmental Protection Agency’s Clinical and 
Archived Records Research for Environmental Studies 
(EPA CARES) [19, 20]. Our sampling frame from the EPA 
CARES population is a random sample of 19,989 individ-
uals (504,406 unique visits), who were seen at a UNCHCS 
affiliated hospital or clinic from January 1st, 2004, to 
December 31st, 2016. Any participants with implausible 
demographic information (e.g., older than 110 years, BMI 
above 50, etc.) were removed prior to any analysis as it 
is likely these values were introduced during errors in 
entering information in electronic health records. Addi-
tionally, we removed any individuals who did not reside 
in North Carolina (n = 403). For both groups (continuous 
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outcome and binary), we linked the 1-year average  PM2.5, 
 O3, and  NO2 prior to the date of the (group 1) serum cre-
atinine laboratory tests or (group 2) the second  eGFRcr 
value < 60 mL/min per 1.73  m2 or ICD code, whichever 
occurs earliest.

Assessment of renal function
For the eGFR analyses, we use serum creatinine levels 
to assess kidney function as our first outcome. We esti-
mated  eGFRcr using the 2021 CKD-EPI equation for 
serum creatinine:

This equation was updated in 2021 to no longer include 
race in estimates of  eGFRcr. Here, Scr is serum creati-
nine in mg/dL, κ is 0.7 for females and 0.9 for males, α 
is -0.241 for females and -0.302 for males, the min and 
max represent the minimum or maximum of the speci-
fied measurement or 1 [21]. We used the Tukey method 
to remove outliers, eliminating serum creatinine values 
more than 1.5 standard deviations above Q3 or those 1.5 
standard deviations below Q1 before we calculate  eGFRcr 
[22]. Information on UACR and serum cystatin C were 
not included in this analysis as they were not available in 
the data. The analyses focused on  eGFRcr as a continuous 
outcome includes all recorded measures. Individuals may 
be included multiple times in the same dataset.

For our second outcome of interest, we designate an 
e-phenotype using similar methods described in previ-
ous research focused on kidney health utilizing EHRs 
[23, 24]. We consider a positive case of CKD stage III-V 
if a patient presents with two  eGFRcr measures < 60 mL/
min per 1.73  m2 greater than 90 days apart or has an ICD 
code indicating physician diagnosis. If patient data con-
tains both types of diagnoses, we take the earliest diag-
nostic date. If a patient only has  eGFRcr measures, we 
take the second measure as the diagnostic date. ICD-9 
codes include 585.3 – 585.6 and ICD-10 codes include 
N-18.3 – N18.6. We use this method as many people liv-
ing with CKD are unknowingly living with CKD and may 
not be diagnosed by a physician. Using similar methods, 
Paik et al. 2021 achieved positive predictive values > 80% 
[23]. One-year annual air pollutant averages for the pre-
ceding 365 days are linked to the exact serum creatinine 
laboratory date as exposures.

Matching identified CKD cases and controls
For our CKD analyses, to ensure that our sampling was 
robust against bias, we matched each case to four con-
trols (1:4) who were never diagnosed or identified as hav-
ing CKD by e-phenotyping. We performed this matching 

eGFRcr = 142×min(Scr/κ, 1)
α
×max(Scr/κ, 1)

-1.200
×0.9938Age×1.012 [if female]

using the ‘MatchIt’ package in RStudio. This package 
allowed for matching cases and controls based on desig-
nated input variables to produce more robust results with 
less sensitivity to assumptions. We matched according 
to propensity scores based on diagnosis date, age, race, 
and sex. For controls, who do not have a diagnosis date, 
we match on the closest hospital visit (Supplementary 
Fig.  2). We matched on the ‘optimal’ controls using the 
propensity score generating by matching variables. To 
ensure that we were not selecting matches from different 
geographic regions of the state, potentially introducing 

confounding, we compared cases and control percent-
ages taken from the eight climate divisions of the state 
(see Supplementary information) [25]. This matching was 
only done for patients with identified CKD. We then cal-
culate differences in dates between cases and controls to 
ensure that we are sampling from similar time frames.

Exposure assessment
For  PM2.5 and  NO2 data, we used an ensemble model 
constructed by Di et  al. that incorporates satellite aero-
sol measures, land-use regression, chemical transport 
models, and meteorological data [26]. This model incor-
porates three machine learning algorithms that pre-
dict pollutant concentrations in 1 × 1 km grids for the 
entirety of the contiguous Unites States. This model has 
been cross validated with an  R2 of 0.89 (for the US Mid-
dle Atlantic Region) and shows accurate performance up 
to concentrations of approximately 60 µg/m3 or less [26]. 
The CARES patient data has the primary addresses of 
patients which we link to the appropriate 1 × 1 km grid. 
Where primary addresses were not successfully geo-
coded, we matched patients to the 1 × 1 km grid cell of 
the centroid of their primary residence ZIP code.  O3 data 
come from the 12  km2 Community Multiscale Air Qual-
ity Modeling System (CMAQ) model; specifically, we use 
averaged 8-h maximum concentrations for  O3 and aver-
aged 24-h for  NO2 [27]. CMAQ utilizes hourly measured 
pollutant data along with meteorological information 
to estimate pollutant concentrations at the census tract 
level. For all three pollutants, we estimate annual aver-
ages for all included patients.

Covariates
We chose covariates based on previously published 
research examining associations between air pollution 
and renal function [28]. We include individual-level 
sociodemographic information of age, race (Caucasian, 
African American, other), and sex as factors. We created 
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the ‘other’ race category as there were too few patients 
of other racial backgrounds that were not Caucasian 
or African American to include separately in models. 
Clinical diagnosis of both diabetes and hypertension 
were included in descriptive statistics based on ICD-9 
and ICD-10 codes (250.x and E11.x for diabetes and 
401.9 and I10 for primary hypertension) (full list of ICD 
codes available in Supplementary information). How-
ever, these were excluded from models as they are both 
likely mediators of kidney function and onset of CKD. 
Event-specific instances of these diseases (e.g., preg-
nancy induced hypertension) were not included in this 
analysis. We adjusted for the following 2010 census/2013 
5-year ACS variables at the block group level: income, 
percent older housing (built before 1979), percent living 
in poverty, urbanicity, and percent of the population on 
public assistance, all as continuous covariates. Education 
(percent with a bachelor’s degree or higher) and median 
price of housing were included in descriptive statistics 
but excluded from final models due to high collinearity 
(r >|0.7|) with income. Lastly, climate zones (identified 
from climatechange.nc.gov) were included as regional 
adjustment for unmeasured factors that differ between 
regions in North Carolina as a factor in our models. 
Smoking status and body mass index (BMI) were not 
included in the main analyses as they were not recorded 
for a large portion of patients and only reported as sec-
ondary analyses.

Statistical analyses
We analyzed associations between  eGFRcr and air pollut-
ants using linear mixed models, presenting unadjusted 
and fully adjusted models, with a random intercept for 
patient ID. We first calculated descriptive statistics for 
patients. Following this we calculated Pearson correla-
tions between  PM2.5,  O3, and  NO2 to examine the rela-
tionship between the exposures of interest. To make 
exposures more comparable we then calculate interquar-
tile range (IQR) for use in the models. We controlled for 
the continuous census block group covariates includ-
ing average income, percent older housing (built before 
1979), percent living in poverty, urbanicity, and percent 
of the population on public assistance. Demographic 
covariates included age, sex, and race. As patients were 
more likely to be sampled from geographic regions closer 
to hospitals near the flagship UNC Chapel Hill hospital, 
we control for the climate zones (as identified by the NC 
Climate Division, map available in Supplementary infor-
mation) in North Carolina. There are eight climate zones 
in North Carolina, however due to too few observations 
we only include zones 3–8 in our analyses (n = 15 patients 
removed).

We calculated  eGFRcr as a continuous outcome along 
with serum creatinine pre-transformation as a second-
ary outcome. 1-year average concentrations for  PM2.5, 
 O3, and  NO2 were matched to the date the laboratory 
test for serum creatinine was completed. We then calcu-
lated IQRs for each pollutant during the 1-year period to 
make them more comparable. Our fully adjusted models 
included age and race, census block group information 
(median income, % older housing, % poverty, urbanicity, 
% on public assistance), geographic region, and expo-
sures  (PM2.5,  O3, and  NO2) along with unrestricted 
natural cubic spline adjustment for long-term tempo-
ral variations with the number of splines based on the 
Aikake information criteria. We present only the results 
of multipollutant models, information on single pollutant 
models is available in Supplementary table S3.

We conducted unconditional multiple logistic regres-
sion to estimate odds ratios between first indication 
date of CKD and air quality for 1-year prior to diagnosis 
comparing our cases and controls (results of conditional 
are available in Table S4) [29]. The census block group, 
demographic, and comorbidity covariates included in 
our multiple logistic regression models were the same as 
those included in the linear mixed models. All analyses 
and visualizations were completed using SAS software 
version 9.4 and RStudio 4.0.3 [30, 31]. In RStudio we used 
the package ‘matchit’ for matching cases and controls for 
our multiple logistic regression models [32].

Sensitivity analysis
Body mass index (BMI) and smoking status were not 
reported for all patients in the random sample and were 
used in secondary analyses to ensure that their inclusion 
did not alter the linear mixed models described previ-
ously. BMI is available for n = 18,639 (n = 4,834 patients) 
serum creatinine lab measures and smoking status is 
available for n = 30,913 (n = 5,532 patients). Smoking sta-
tus was separated into five categories including current, 
current/former, former, never/former, and never. Smok-
ing status was attached to the same day serum creatinine 
tests were taken, or if it was not assessed that day, then 
the nearest prior date where smoking status was avail-
able. We ran two additional fully adjusted models with 
the same covariates in addition to BMI (continuous) and 
smoking status. For both analyses including BMI and 
smoking status, we calculate associations with and with-
out the additional confounder to ensure that differences 
seen are not driven by underlying characteristics of the 
new sampling frames. We ran the fully adjusted models 
comparing cases of CKD to the entire random sample 
(available in Supplementary data). For patients without 
CKD, we ran two models, attaching an exposure date as 
both first appearance in the hospital system and median 
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visit to ensure that results were consistent at different 
time points. Lastly, we include only those with street-
level geocoded addresses (some patients were coded 
at zip code) to ensure the most accurate assignment of 
exposures.

Stratified analysis
We also stratified by individuals who were exposed to 
1-year  PM2.5 averages ≥ 12 µg/m3 and those < 12 µg/m3 
[33]. This threshold was chosen based on current (2022) 
National Ambient Air Quality Standards (NAAQS) pri-
mary standard for  PM2.5. To estimate associations of air 
pollution on patients with low functioning kidneys we 
stratify by those patients with a measure of an  eGFRcr < 60 
mL/min/1.73m2.

Results
There were N = 7,722 patients with available serum cre-
atinine to calculate  eGFRcr and exposure data linked to 
primary address. Within this group there were N = 44,486 
serum creatinine tests available during our study period 
(Tables 1 and 2). BMI is available for n = 18,639 (n = 4,834 
patients) serum creatinine lab measures and smoking sta-
tus is available for n = 30,913 (n = 5,532 patients). Patients 
with serum creatinine measures average 53.6 (SD: 17.9) 
years of age, are majority female (58.2%), and majority 
Caucasian (64.7%). The prevalence of diabetes and hyper-
tension in this group were 25.6% and 57.6% respectively. 
This group was, on average, exposed to 1-year median 
concentrations at 9.52 (IQR: 1.57) of  PM2.5 µg/m3, 39.7 
ppb  O3 (IQR: 3.21), and 12.8 ppb  NO2 (IQR: 8.68).

We included N = 4,952 patients in our case–control 
sample that captures all patients identified with CKD and 
corresponding controls. Within this group, we identified 
1,015 patients with severely limited kidney function (ICD 
code or two  eGFRcr < 60 mL/min per 1.73  m2), and 3,937 
non-CKD patients as controls. Those with CKD were 
more likely to be diagnosed with diabetes and/or hyper-
tension. Patients with CKD had patterns of lower block 
group SES status as indicated by higher percent poverty, 
lower average income, and median house value. However, 
there were few differences between block-level percent-
age poverty or those on public assistance. Those diag-
nosed with CKD were exposed to lower 1-year median 
concentrations of  PM2.5 (11.2 µg/m3 IQR: 3.64),  O3 (41.4 
ppb IQR: 3.39), and  NO2 (14.1 ppb IQR: 10.8) when com-
pared to the non-CKD patients median  PM2.5 11.3 µg/m3 
(IQR: 3.33),  O3 41.7 ppb (IQR: 3.35), and  NO2 15.4 ppb 
(IQR: 10.8). Standardized mean difference (SMD) in pro-
pensity scores for diagnostic date vs. hospital visit dates 
between cases and controls were 0.048 on average (full 
table of summary balances for matched data available in 
Supplementary table S2). All our SMDs between cases 

and control were less than 0.1, indicating adequate bal-
ancing, with the exception of African American patients 
(SMD = 0.11) and Other Race (SMD = -0.11) and may 
limit the interpretability of the results in these cases.

Results from multiple linear regression models esti-
mate an association between IQR increases in  PM2.5and 
a decline in  eGFRcr (-1.63 mL/min/1.73m2, 95% CI: 
-1.96, -1.31). The results for  O3 and  NO2 are 0.28 mL/
min/1.73m2 (95% CI: 0.00 0.55) and 0.48 (95% CI: 0.03, 
0.92), respectively. Likewise, there was a positive associa-
tion between  PM2.5 and serum creatinine (0.052 mg/dL, 
95% CI: 0.031, 0.073). We observed an inverse associa-
tion between  O3 and serum creatinine and no association 
between  NO2 and serum creatinine, with estimates of 
-0.030 (95% CI: -0.048, -0.012) and 0.024 (95% CI: -0.005, 
0.052), respectively (Table 3 and Fig. 1).

In the fully adjusted logistic regression model, neither 
 PM2.5 or  O3 were associated with CKD with aORs of 1.04 
(95% CI: 0.88, 1.22) and 0.89 (95% CI: 0.78, 1.01) respec-
tively.  NO2 was inversely associated with CKD with an 
aOR of 0.79 (95% CI: 0.68, 0.92 (Fig. 2).

For patients with an  eGFRcr ≥ 60 mL/min/1.73  m2 the 
association between IQR increases in  PM2.5 and  eGFRcr 
was -1.06 (95% CI: -1.34, -0.77). For those with impaired 
renal function, < 60 mL/min/1.73  m2, the association was 
weaker, -0.51 (95% CI: -0.90, -0.13). For those exposed to 
less than 12 µg/m3 of  PM2.5 the associated with  eGFRcr 
were weaker, while at concentrations above 12 µg/m3 the 
associations were stronger at -0.78 (95% CI: -1.13, -0.43) 
and -2.58 (95% CI: -3.82, -1.33). When BMI was included 
in our fully adjusted model, the association of  PM2.5 with 
 eGFRcr was -0.74 (95% CI: -1.21, -0.28). In the second 
model with smoking status included, the association of 
 PM2.5 with  eGFRcr were -1.00 (95% CI: -1.30, -0.70) (note, 
we did not include both BMI and smoking status in the 
same model). To ensure that our models including smok-
ing status or BMI cohorts were not altering our general 
results we ran these two groups without the additional 
covariates. The results of our models without includ-
ing the confounder were -1.01 (95% CI: -1.31, -0.71) for 
smoking status and -0.74 (95% CI: -1.20, -0.28) for BMI.

PM2.5 was more strongly associated with reduced renal 
function in African American patients (-2.40, 95% CI: 
-3.00, -1.79). While Caucasian patients (-1.27, 95% CI: 
-1.66, -0.88) showed weaker association between  PM2.5 
and renal function than the main model. The associa-
tion between  PM2.5 and  eGFRcr was -1.85 (95% CI: -2.32, 
-1.39 for men and -1.31 (95% CI: -1.76, -0.87) for women. 
After restricting to only patients with street-level geo-
coded addresses, there were 6,710 patients and 40,461 
unique tests for serum creatinine left in our sample. For 
those with street-level geocoded addresses the asso-
ciation between  PM2.5 and  eGFRcr was similar as for 
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Table 1 Descriptive characteristics for the subset of NC‑CARES with (1) available  eGFRcr values and (2) cases and controls for patients 
diagnosed with CKD

* Data for block groups come from the 2010 US Census/2013 5-Year ACS; any category that does not sum to 100% is a result of rounding; Education is measure by 
percentage with a bachelor’s degree or higher; older housing refers to the percentage of houses built before 1979

Patients with eGFRcr N = 7,722
Characteristics n (%)
 Female 4,498 (58.2)

 Male 3,227 (41.8)

 Caucasian 5,000 (64.7)

 African American 2,128 (27.6)

 Other 596 (7.72)

 Diabetes 1,976 (25.6)

 Hypertension 4,453 (57.6)

Mean (SD or %)
 Age 53.6 (17.9)

 Education 36.3 (24.8)

 Older housing 40.6 (23.3)

 Income (USD) 58,005.9 (29,470.8)

 Median house value (USD) 203,462.7 (119,096.6)

 Poverty (%) 16.6 (13.8)

 Public assistance (%) 1.99 (3.05)

 Urbanicity 62.9 (41.8)

Median (IQR)
  PM2.5 (µg/m3) 9.52 (1.57) NO2 (ppb) 12.8 (8.68)

  O3 (ppb) 39.7 (3.21)

Patients with CKD and never-diagnosed N = 4,952
Non‑CKD CKD Total

n (%)
 Female 2,199 (55.9) 553 (54.5) 2,752

 Male 1,738 (44.2) 462 (45.5) 2,200

 Caucasian 2,279 (57.9) 560 (55.2) 2,839

 African American 1,419 (36.0) 415 (40.9) 1,834

 Other Race 239 (6.1) 40 (3.9) 279

 Diabetes 1,049 (26.6) 476 (46.9) 1,525

 Hypertension 2,422 (61.5) 860 (84.7) 3,282

Mean (SD)
 Age 65.4 (16.4) 65.3 (16.4) 65.4 (16.4)

Area level covariates*
 Income 58,199.3 (27,147.3) 54,710.5 (25,511.6) 57,484.2 (26,854.7)

 Poverty (%) 16.1 (12.6) 17.6 (13.9) 16.41 (12.9)

 Urbanicity 66.7 (40.7) 60.9 (42.1) 65.47 (41.1)

 Public assistance (%) 1.7 (2.7) 2.0 (2.9) 1.75 (2.8)

 Median house value 211,306.8 (120,322.1) 197,977.3 (117,589.7) 208,574.7 (119,876.2)

 Education 38.2 (25.47) 35.0 (24.8) 37.5 (25.4)

Median (IQR)
  PM2.5 (µg/m3) 11.31 (3.33) 11.18 (3.64) 11.27 (3.39)

  O3 (ppb) 41.66 (3.35) 41.41 (3.39) 41.59 (3.37)

  NO2 (ppb) 15.44 (10.77) 14.11 (10.82) 15.10 (10.80)



Page 7 of 11Dillon et al. Environmental Health           (2024) 23:43  

the entire patient group with an estimate of -1.57 (95% 
CI: -1.91, -1.23). For this group both  O3 and  NO2 were 
not associated with  eGFRcr (available in Supplementary 
information).

Discussion
In this study, we examined the relationship between 
1-year average  PM2.5,  O3, and  NO2 concentrations with 
kidney function as measured by  eGFRcr and first indica-
tion of CKD. Only increases in 1-year mean concentra-
tions of  PM2.5 were associated with a decrease in  eGFRcr 
while both  O3 and  NO2 were not associated. The trends 
seen for  eGFRcr were similar to the associations between 
the three air pollutants and serum creatinine prior to 

Table 2 Pearson correlations of  PM2.5,  O3, and  NO2 for both the 
linear mixed and the multiple logistic regression models

Linear mixed models
PM2.5 O3 NO2

     PM2.5 1.00 0.53 0.40

     O3 ‑ 1.00 0.11

     NO2 ‑ ‑ 1.00

Multiple logistic regression models
PM2.5 O3 NO2

     PM2.5 1.00 0.55 0.38

     O3 ‑ 1.00 0.2

     NO2 ‑ ‑ 1.00

Table 3 Results from mixed linear models & logistic regression of 1‑year  PM2.5,  O3,  NO2 and kidney function among a random sample 
of NC CARES serum creatinine laboratory results (N = 44,486)

a Model 1 Estimate with only random intercepts for patients and spline adjustment for temporal variation
b Model 2 fully adjusted linear mixed model estimate for temporal variations, age, sex, race, comorbidities, and census block group
c IQR for exposures in our eGFRcr analysis are:  PM2.5 – 1.43 µg/m3;  O3 – 2.81 ppb;  NO2 – 8.49 ppb
d IQR for exposures in our CKD analysis are:  PM2.5 – 3.39 µg/m3;  O3 – 3.36 ppb;  NO2 – 10.45 ppb

IQR 1-year  PM2.5 (µg/m3) IQR 1-year  O3 (ppb) IQR 1-year  NO2 (ppb)

eGFRcr (mL/min/1.73m2) β (95% CI)

 Model 1 ‑1.44 (‑1.72, ‑1.15) ‑0.32 (‑0.56, ‑0.08) 0.80 (0.34, 1.25)

 Model 2 ‑1.63 (‑1.96, ‑1.31) 0.28 (0.00 0.55) 0.48 (0.03, 0.92)

CKD aOR (95% CI)

 Model 1 0.87 (0.73, 1.05) 0.91 (0.84, 1.00) 0.73 (0.66, 0.80)

 Model 2 1.04 (0.88, 1.22) 0.89 (0.78, 1.01) 0.79 (0.68, 0.92)

Fig. 1 Results of linear mixed models examining the associations of air pollutants with  eGFRcr
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transformation. For first indication of CKD, we observe 
null associations between 1-year concentrations of  PM2.5 
and  O3 and inverse association with  NO2.

These results support other epidemiologic studies that 
report an inverse association between IQR increases in 
 PM2.5 and  eGFRcr [34–36]. Likewise, observed positive 
associations between  O3 and  eGFRcr has been reported 
in other studies [37]. Weaver et al. report a lack of asso-
ciation between long term  O3 exposure and decreased 
eGFR in a manner consistent to these results [28]. 
These findings contrast to prior studies that find asso-
ciations between  NO2 and kidney function as measured 
by both eGFR and risk of CKD/ESKD [38, 39]. Li et al., 
2021 examined a smaller population (n = 169) of older 
adults, while Liang et  al. 2021 reported the results of a 
large (n = 47,086) nationally representative sample. It is 
possible that there is a relationship between  NO2 and 
decreased renal function, but 1-year concentrations 
are not long enough to capture the relationship.  NO2 
is very source dependent, and future work may want to 
investigate those living near roadways, as this is a major 
source of NOx exposure in the United States. In a nation-
wide cross-sectional study in China, Liang et al. show an 
increased risk of developing CKD with longer term expo-
sure to higher concentrations of  NO2, with the risk being 
greatest at 5-years of exposure (for example Liang et al. 
and Li et  al. report median concentrations for  NO2 at 
approximately 24 and 23 ppb respectively) [38]. Though, 
generally, levels of air pollution in China are higher 
than the US/Europe, so there may be dose-dependent 
responses we do not see in this study, particularly as 
these two studies reported higher concentrations of  NO2.

Despite higher concentrations of  PM2.5 being associ-
ated with lower  eGFRcr, we do not see a similar rela-
tionship between  PM2.5 and first-time indication of 
CKD. Inverse associations were seen with  O3 and  NO2 
with incident CKD. Prior studies, such as Yang et  al., 
2022 have reported positive association between  O3 
and the prevalence of CKD in a nationwide Chinese 
study [37]. Similar findings in other studies have found 
no associations between  O3 and incidence of CKD, 
suggesting that more studies are needed that reflect 
impacts on the general population [40].  O3 is relatively 
less studied than other criteria air pollutants in asso-
ciation with CKD [41]. It is notable that the majority of 
studies focusing on air pollution and kidney function/
disease take place in either the United States or Asia or 
studied a special population such as military veterans 
[13, 35]. As such, more research should be conducted 
to better understand these associations in other geo-
graphic regions, cultural and social context, climatic 
regions, etc.

African American patients were exposed to higher con-
centrations of  PM2.5 on average than both Caucasian and 
patients of another race. In our stratified analyses, Afri-
can American patients were more likely to have lower 
 eGFRcr when compared to Caucasians. These differences 
in outcome by race are likely a result of social determi-
nants of health impacting disparities in renal health [42]. 
The African American population in the US, relative to 
other ethnicities, make up a disproportionately large per-
centage of those with CKD [43]. It is important for future 
research to investigate other potential environmental, 

Fig. 2 Results of logistic regression models examining the associations of air pollutants with CKD
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social contributors, and interactions between these to 
these health disparities.

We further conducted stratified analyses by  PM2.5 con-
centrations, age, and limited analyses to those with street-
level geocoded addresses. We found the associations 
between  PM2.5 and decreased in  eGFRcr were decreased 
at concentrations < 12 µg/m3 but increased at higher lev-
els. This particular result needs further investigation as 
these findings do not directly support the growing body 
of evidence that even at lower concentrations (e.g., US 
NAAQS standards), air pollution has deleterious impacts 
on health [44–46]. On the impacts of age, the estimate 
for  PM2.5 and  eGFRcr was stronger for those < 65 years of 
age, with weaker associations observed for older patients. 
This may be a result of older patients being more likely 
to be on anti-hypertensive medication or medication for 
diabetes. After stratifying by CKD status, or those not 
identified with CKD, the association with  O3 is inverse. 
For individuals diagnosed with CKD this may be that, 
given the high percentage of comorbidities, the impact 
of air pollution may be exacerbated by directly impacting 
regulation of both blood sugar and pressure [47].

A limitation of this study is that the patients included 
in these analyses resided predominantly in central North 
Carolina, where the majority of UNCHCS affiliated hos-
pitals or clinics are located. Due to relative underrepre-
sentation our African American and Other Race patients 
were not matched to the level of our Caucasian patients, 
which could introduce bias. With address geocoding 
there is always the possibility of misclassification that 
cannot be assumed to trend towards the null. As such 
this study may lack generalizability to the general popu-
lation. Using 1-year average air pollution concentrations 
does not capture the entirety of the time air pollution 
potentially impacted kidney health. Census block group 
level covariates do not necessarily capture individual SES, 
which ideally would have been at the individual level; 
there could be residual confounding by SES. Finally, it 
is likely that serum creatinine was measured more often 
for patients with suspected renal dysfunction, biasing the 
sample towards those with already impaired kidney func-
tion. Unexpected directionality arose concerning associa-
tions between  NO2 and kidney function in our analyses. 
This is likely due to additional, unmeasured confounding, 
dose-dependent effects, geographic proximity to road-
ways, etc. that were not addressed in the scope of this 
work. This is an area we recommend additional research 
be focused. Further, there is the possibility that there is 
the possibility that there is a time x exposure interaction 
that was not accounted for in this current study. Lastly 
there are limitations when using EHR data such as rep-
resentativeness, the data available, missing or incorrectly 
entered measures, etc.

One of the strengths of this study is that it takes a 
random sample of patients visiting the North Carolina 
healthcare system and does not focus on a special sub-
population. This random sample has near complete 
clinical phenotyping and well validating air pollution 
modeling estimates, matched with high precision geoco-
ding. Additionally, by utilizing e-phenotyping of CKD, we 
may be more accurately estimating associations between 
air pollution and reduced renal function as CKD is often 
not diagnosed until the latter stages.

In conclusion, we observed reduced renal function, 
as measured by  eGFRcr, with 1-year concentrations 
on  PM2.5, but not with  O3 or  NO2. No exposures were 
associated with increased odds of CKD, while  NO2 was 
inversely associated. This study provides further evidence 
that long-term exposure to fine particulate matter is 
associated to reduced renal function and may contribute 
to adverse outcomes.
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