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Abstract 

Background The prevalence of metabolic syndrome (MetS) in American adults increased from 37.6% in the 2011–12 
period to 41.8% in 2017–2018. Environmental exposure, particularly to common compounds such as glyphosate, 
has drawn increasing attention as a potential risk factor.

Methods We employed three cycles of data (2013–2018) from the National Health and Nutrition Examination Survey 
(NHANES) in a cross-sectional study to examine potential associations between urine glyphosate measurements 
and MetS incidence. We first created a MetS score using exploratory factor analysis (EFA) of the International Diabe-
tes Federation (IDF) criteria for MetS, with data drawn from the 2013–2018 NHANES cycles, and validated this score 
independently on an additional associated metric, the albumin-to-creatinine (ACR) ratio. The score was validated 
via a machine learning approach in predicting the ACR score via binary classification and then used in multivariable 
regression to test the association between quartile-categorized glyphosate exposure and the MetS score.

Results In adjusted multivariable regressions, regressions between quartile-categorized glyphosate exposure 
and MetS score showed a significant inverted U-shaped or saturating dose‒response profile, often with the largest 
effect for exposures in quartile 3. Exploration of potential effect modification by sex, race, and age category revealed 
significant differences by race and age, with older people (aged > 65 years) and non-Hispanic African American par-
ticipants showing larger effect sizes for all exposure quartiles.

Conclusions We found that urinary glyphosate concentration is significantly associated with a statistical score 
designed to predict MetS status and that dose–response coefficient is nonlinear, with advanced age and non-His-
panic African American, Mexican American and other Hispanic participants exhibiting greater effect sizes.

Keywords Exploratory factor analysis, Quantitative score, Metabolic syndrome, MetS, NHANES, Albuminuria, 
Glyphosate

*Correspondence:
Laura E. Jones
lejones@albany.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12940-024-01098-8&domain=pdf


Page 2 of 14Otaru et al. Environmental Health           (2024) 23:58 

Background
Metabolic syndrome (MetS) consists of a constellation 
of conditions—high blood pressure, high blood sugar 
levels, excess abdominal fat, and elevated cholesterol 
and triglyceride levels—that collectively amplify the risk 
of cardiovascular disease, stroke, and type 2 diabetes 
mellitus [3]. In the United States, prevalence of MetS 
increased from 37.6% in the 2011–12 period to 41.8% 
in 2017–2018 among adults, as shown by an analysis of 
data from the National Health and Nutrition Examina-
tion Survey (NHANES) [34]. This upward trend under-
scores the urgency of understanding and mitigating the 
factors contributing to MetS.

Risk factors for MetS are broadly categorized into non-
modifiable and modifiable factors. Age, sex, and race/
ethnicity are nonmodifiable factors that can influence the 
likelihood of developing MetS, with variations observed 
across different demographic groups. Diet, physical 
activity, weight, and environmental chemical exposure 
are modifiable factors. Among these, the role of envi-
ronmental chemical exposure, particularly to common 
compounds such as glyphosate, has drawn increasing 
attention.

Glyphosate is the most widely used broadleaf herbi-
cide globally and is marketed as Roundup™ in the United 
States [8]. It blocks a pathway required for synthesis of 
aromatic amino acids found in plants but not animals 
[49], although some gut bacteria are sensitive, and is 
applied to eliminate weeds and grasses. Since its intro-
duction in the 1970s, usage has increased by a factor of 
at least 100 due in part to introduction of glyphosate tol-
erant “Roundup™-ready” cereal crops [8]. A major use of 
glyphosate is to kill weeds before harvesting grain crops, 
and it is also applied directly to grain and pulse crops to 
speed desiccation [45]. These practices, however, lead 
to glyphosate residues in foods made of wheat, oats and 
other grains, as well as beans and lentils, contributing to 
exposure via dietary intake among the general population 
[45]. In addition to dietary exposure, inhalation and der-
mal contact are significant exposure pathways for farm-
ers and others who apply Roundup™ [12].

Although glyphosate was originally thought to have 
no effect on humans, it is now rated by the International 
Agency for Research on Cancer (IARC) as a probable 
human carcinogen [21], and has effects on both female 
and male fertility [54],has neurological effects [1, 36] and 
causes mitochondrial damage [46]. Animal and in  vitro 
studies indicate that glyphosate exposure interferes with 
glucose uptake into adipocytes [13, 47], is associated with 
liver fibrosis [40], increases apoptosis [11, 20], induces 
oxidative stress [38, 46], and alters the gut microbiome 
[24, 33, 39, 48, 51, 59]. These mechanisms are linked to 
the pathogenesis of MetS [9, 35].

Epidemiological research exploring the association 
between glyphosate and MetS is limited, with only two 
studies conducted thus far. The CHAMACOS Study 
by [14], focused on mother–child dyads and revealed 
a significant association between glyphosate exposure 
and MetS risk by young adulthood. Similarly [14, 17], 
observed a positive association between glyphosate lev-
els and MetS among U.S. adults. However, both of these 
studies have limitations. Eskenazi et  al. studied a small 
farming population with high levels of multiple chemi-
cal exposures, leading to poor generalizability to the 
U.S. population. Glover et  al. [17] adjusted for features 
intrinsic to the syndrome itself, such as hypercholester-
olemia, hypertension, and diabetes, potentially biasing 
estimations of the associations between glyphosate and 
metabolic syndrome. These studies also employ thresh-
old-based definitions of MetS based on dichotomized 
continuous variables, leading to loss of information and 
potentially statistical power. Clinical studies suggest that 
it is desirable to include continuous variables to create 
accurate scoring systems for MetS [10, 26].

Given the limitations in the available studies and the 
problems associated with the use of threshold-based def-
initions from a research standpoint, our study aims are 
twofold: (1) to create and validate a score that captures 
the continuous nature of risk factors that comprise MetS 
and (2) to employ this score in linear regression analyses 
that explore associations between urine glyphosate con-
centrations and MetS. We anticipate that our approach 
will provide a more nuanced understanding of how 
glyphosate exposure affects the risk of MetS.

Methods
Study population
We employ data from the National Health and Nutrition 
Examination Survey (NHANES), accessible via the Cent-
ers for Disease Control and Prevention (CDC) website 
(https:// www. cdc. gov/ nchs/ nhanes), in a cross-sectional 
study to examine potential associations between urine 
glyphosate measurements and metabolic syndrome 
(MetS). NHANES is a comprehensive research initia-
tive designed to assess the health and nutritional status 
of adults and children in the United States, surveying 
approximately 5,000 individuals annually through inter-
views, physical examinations, and laboratory investiga-
tions. The research protocols were sanctioned by the 
National Center for Health Statistics of the U.S. CDC, 
and informed consent was obtained from all participants.

Our analysis included NHANES datasets from 2013–
2018 (3 cycles) with urinary glyphosate measurements. 
Glyphosate measurements were obtained from one-third 
of the participants who consented to future analysis of 
their laboratory samples. Therefore, from the initial pool 

https://www.cdc.gov/nchs/nhanes
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of 29,400 participants, 22,333 were excluded due to a 
lack of urine glyphosate data and incomplete covariate 
information. Since the earliest symptoms of metabolic 
syndrome do not occur or are undefined among the very 
young [30], children under the age of 10 years (n = 1180) 
were excluded, yielding a sample size for the primary 
analysis of 5224 (Fig. 1).

Exposure: urine glyphosate
Urinary glyphosate levels were measured in a 200-µl 
urine sample utilizing a 2D online ion chromatography 
system paired with tandem mass spectrometry (IC-MS/
MS) along with isotope dilution for quantification. The 
results are expressed in nanograms per milliliter (ng/ml), 
with the assay sensitivity established at a lower limit of 
detection (LLOD) of 0.2 ng/ml. For our analysis, we cate-
gorized urinary glyphosate levels by quartile (see Table 1 
for a summary of exposure and outcome).

Outcome: metabolic syndrome score
Metabolic syndrome was defined roughly per the Inter-
national Diabetes Federation (IDF) criteria and includes 

the presence of central obesity and any two of four addi-
tional risk factors [2, 4, 30]. We included a total of 5 fea-
tures based on biometric measurements and laboratory 
assessments reported in the NHANES. Following work 
by Cavero et al. [10], we included HbA1c as a dysglyce-
mia indicator [10], as well as the composite risk factors 
triglyceride-to-HDL ratio and mean arterial pressure 
(MAP) in our selected features, and extracted a single 
factor score as described below. The mean arterial pres-
sure (MAP) was estimated as SBP + 1/3 (SBP—DBP). The 
selected risk and composite factors include the following:

• Waist circumference
• Fasting glucose
• glycoheme (HbA1c)
• Triglyceride-to-HDL ratio
• Mean arterial pressure (MAP)

These measures are common to most definitions of 
MetS [3, 6, 15, 19, 30, 61] for a comprehensive list of defi-
nitions with citations.

Fig. 1 Workflow and sample sizes showing sample size evolution from the initial raw sample (three NHANES cycles, 2013–2018) to the final 
complete case sample with the created MetS score
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Potential confounders/effect modifiers
Potential confounders in this study included participant 
age, sex, race/ethnicity, BMI, and family income-to-
poverty ratio, which ranged from 0 to 5. Age was cat-
egorized into four groupings as follows: 10 to 19  years, 
20 to 39  years, 40 to 59  years, and 60  years and above. 
The reference level was 10 to 19  years. Race was cat-
egorized as Non-Hispanic White (white), Non-Hispanic 
Black (Black), Non-Hispanic Asian (Asian), Mexican–
American, Other Hispanic, or Non-Hispanic Multiracial 
(Multiracial), with a reference level of white. Finally, we 
included urine creatinine measurements as a covariate to 
adjust for variations in the concentration of urinary ana-
lytes due to dilution effects [7].

Statistical analyses
Factor analysis to create a MetS index
We used exploratory factor analysis (EFA) to create a sin-
gle index from the five risk factors described above (waist 
circumference, triglyceride-to-HDL ratio, fasting glucose, 
glycoheme (HbA1c), and MAP). EFA works by captur-
ing common variance in one or more directions in the 
multivariable space of interest, among MetS risk factors. 
Each of these “directions” is a factor. After extracting sig-
nificant factor(s) from our analysis, we obtained a table of 

weightings that may be used to create the index or indi-
ces. These indices can be considered weighted sums of 
the variables of interest. A goal of our study was to con-
struct a working single-factor model for MetS, and our 
model is a modification of one of three models developed 
and tested by Cavero-Redondo et al. [10], including both 
HbAlc and fasting glucose.

As missing values for the MetS risk factors ranged 
from 7.9% to 61.5%, we first imputed the data using 
sorted and grouped hot-deck single imputation, which 
involves randomly selecting appropriate donors from 
the existing distributions in specified columns after 
sorting by age category and grouping by sex. Grouped 
and sorted hot-deck is an efficient donor-based method 
that works well for large datasets with mixed con-
tinuous and categorical variables, and for calcula-
tions that do not directly involve inference [37]. Data 
driven donor-based methods are conservative in that 
they draw samples from existing distributions. This 
approach yields a sample size of 22,258 on the five fea-
tures selected for the EFA process. Following imputa-
tion, an average systolic blood pressure measurement 
was created by averaging the first three systolic blood 
pressure measurements. We then computed the MAP, 
estimated as SBP + 1/3 (SBP—DBP). Since HDL levels 

Table 1 Baseline characteristics of the complete case study population (N = 5224). Sample size is limited by the number complete 
cases for glyphosate and creatinine measurements

a Units: mg/dL
b Units: ng/mL
c Units: mg/gm

Covariate Level Male (n = 2605) Female (n = 2619)

Sex Male 2605 (100.0) -

Female - 2619 (100.0)

Age Category Ref: < 19 years  < 19yrs 619 (23.8) 537 (20.5)

20-39yrs 646 (24.8) 678 (25.9)

40-59yrs 659 (25.3) 716 (27.3)

 > 60yrs 681 (26.1) 688 (26.3)

Race-Ethnicity Ref: White White (ref ) 1021 (39.2) 958 (36.6)

Mexican American 412 (15.8) 421 (16.1)

Other Hispanic 244 (9.4) 279 (10.7)

Black 519 (19.9) 552 (21.1)

Asian 276 (10.6) 293 (11.2)

Multiracial 133 (5.1) 116 (4.4)

BMI Mean (SD) 27.71 (6.83) 28.78 (8.07)

Income-Poverty Ratio Med [IQR] 2.02 [1.06, 3.91] 1.94 [1.03, 3.82]

Mean (Median) values by Quartile (N = 5789)

Urinary Metric Min Quartile 1 Quartile 2 Quartile 3 Quartile 4 Max

Creatininea 0.035 0.40 (0.64) 0.89 (1.12) 1.39 (1.72) 2.39 6.0

Glyphosateb 0.071 0.12 (0.14) 0.26 (0.34) 0.45 (0.61) 1.22 8.2

ACR c 0.31 3.7 (4.9) 6.1 (7.5) 10.1 (14.3) 157 21152

MetS Score -1.80 -0.89 (-0.56) -0.31 (0.08) 0.17 (0.47) 1.2 4.2
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vary inversely with MetS incidence and we sought a 
positively weighted score, we computed the triglyc-
eride-to-HDL ratio, a measure of cardiovascular risk 
found in all three candidate MetS score models tested 
by Cavero-Redondo et  al. [10]. We then standardized 
the data, and since factor analysis is a linear method 
that does not respond well to highly correlated data, 
we checked for excessive multicollinearity by comput-
ing a correlogram and confirming that the selected 
metrics all had pairwise correlations less than 0.8 (see 
Supplemental Fig.  1 for the correlogram). Finally, the 
appropriateness of the EFA was checked by running 
the Kaiser–Meyer–Olkin (KMO) measure of sampling 
adequacy test [27, 29] and Bartlett’s sphericity test 
(p < 0.00001; [53]). The KMO test measures the propor-
tion of common variance in a group of variables; the 
higher the statistic is (closer to one), the more appro-
priate the grouping is for EFA [28]. Our KMO val-
ues ranged from 0.65 to 0.72 (median 0.67), and our 
selected features were confirmed to be adequate for 
factor analysis. Bartlett’s sphericity test indicates that 
the correlation matrix of the selected features is suit-
able for detecting structure.

As EFA assumes multivariate normality for extracting 
factor loadings via maximum likelihood, MetS metrics 
were first visualized and then log-transformed since all 
data were slightly skewed [53]. Parallel analysis by Horn’s 
test of principal components or factors indicated that one 
factor was sufficient to explain common variance in the 
five risk features [23]; see Supplemental Fig. 2 for a Par-
allel Analysis Plot. EFA was performed on the standard-
ized metrics, and the score for one factor was extracted. 
Factor loadings > 0.4 were considered criteria for inclu-
sion in the MetS model, and all five selected features met 
this criterion for inclusion. The EFA procedure assumed 
orthogonality, was computed on a correlation matrix, and 
used a varimax rotation. As a limited check on the single 
imputation approach, we also multiply imputed the data, 
creating 10 imputed datasets via the grouped and sorted 
hot-deck method described above. After imputation, cor-
relation matrices were calculated for each imputed data-
set and pooled following a method outlined by Nassiri 
[42]. EFA was then performed on a single pooled corre-
lation matrix and a score extracted as above. All impu-
tation and EFA were performed in the R programming 
language (R 4.3.0) using the “hot-deck” algorithm from 
the VIM library [31], parallel analysis from the paran 
library, and “factanal” from the psych library.

Validation of the MetS score
While we lacked many IDF metrics for validating the 
MetS score, NHANES does provide ACR, the ratio of 
urine albumin to creatinine, available as the “URDACT” 

variable (see Table 1 for a summary of ACR by quartile). 
Neither creatinine nor albumin measurements are used 
in the creation of the score, so this provides at least one 
opportunity to test the proposed MetS score for MetS-
associated symptoms; however, of the three test metrics, 
the ACR score was the least correlated with the MetS 
scores developed by Cavero-Redondo et al. [10]. An ACR 
score above 30 and below 300 indicates “microalbumi-
nuria,” but this range of transitional effects comprises 
an order of magnitude. Microalbuminuria is an indica-
tor of kidney disease, is associated with diabetes and 
was recently included in the comprehensive definition of 
MetS proposed by the World Health Organization [52]. 
However, while microalbuminuria is more common in 
MetS patients, it is not unique to MetS. We validated the 
MetS score proposed in this paper using a logistic model 
as a classifier and a dataset that included only the MetS 
and ACR scores (n = 20,765). Cutoff values of ACR > 30 
(microalbuminuria), ACR > 100 (microalbuminuria) and 
ACR > 300 (macroalbuminuria) were selected, and binary 
ACR variables were created based on these values. The 
data were divided into training and testing sets using a 
stratified sampling scheme to ensure that nonzero ACS 
indicator values appeared in both the testing and training 
sets. Logistic models were fit on the training set, and pre-
dictions were made on the test set, with the model error 
rate, sensitivity, specificity, accuracy and diagnostic odds 
ratio [16] computed.

Bivariate and multivariate analysis
Bivariate analysis was conducted using linear regressions, 
with t tests or ANOVA (analysis of variance) for con-
tinuous variables to examine the exposure and outcome 
across categorical covariate levels.

We employed multivariable linear regression models to 
explore adjusted associations between urinary glyphosate 
levels and the MetS index. Confounders were selected 
using a directed acyclic graph (DAG) and included age 
category, race, sex, BMI, and income-poverty ratio (see 
Supplemental Fig. 4). Creatinine was included as a linear 
term to adjust for urine dilution [7]. BMI and creatinine 
levels were continuous, though creatinine was square-root 
transformed and both covariates were then standardized 
before regressions were run. The MetS score was stand-
ardized to facilitate comparisons across stratified mod-
els, and the exposure was categorized by quartile to allow 
for potential nonlinearities. Finally, we assessed for effect 
modification by age category, race and sex [55], stratifying 
on each variable and repeating the analysis on each stra-
tum. Since this is an exploratory study, we do not adjust 
for multiplicity. All statistical analyses were performed 
using the R programming language (R version 4.3.3 and a 
p-value of less than 0.05 indicated statistical significance.
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Results
Baseline characteristics of the study population 
(n = 5,224) are summarized in Table  1, stratified by sex. 
The characteristics of all three NHANES cycles utilized, 
including missing units, are summarized in Supplemen-
tal Table 1, and the workflow for data cleaning and sam-
ple assembly is shown in Fig. 1. From the initial sample, 
we first omitted children under the age of 10 (n = 7,142), 
leaving a sample size of 22,258. We then omitted par-
ticipants lacking information on urinary glyphosate (74% 
missing), creatinine (6.7% missing), BMI (5.5% missing) 
or poverty-income ratio information (10.7% missing). 
The degree of missing units in the exposure makes impu-
tation of the exposure for inference purposes impossible. 
However, a comparison of summary information from 
the complete case sample (Table 1) and the original data-
set (Supplemental Table  1) suggests the complete case 
sample is representative. The sample is roughly balanced 
by sex, with 2,605 males and 2,619 females. The largest 
single ethnic group is Non-Hispanic White (about 38%), 
followed by Non-Hispanic Black (about 20%). Hispan-
ics as a group (Mexican American and ‘Other Hispanic’) 
comprised about 25%. Non-Hispanic Asians comprised 
about 22% and multiracial participants less than 10%. 
The cohort was older, with 52% of participants age 40 
or over, and 26% age 60 or over. Variables used in EFA 
(n = 22,258) to create the MetS score were imputed using 
a conservative donor-based single-imputation method 
before proceeding with EFA (see Fig. 1 for details). Fea-
tures used in the EFA to create the MetS score are sum-
marized in Table 2.

Exploratory factor analysis resulted in positive weight-
ings and yielded a single index score. The weightings are 
shown in a factor analysis diagram (Fig.  2): glycoheme 

and glucose dominate, but just slightly. Biometric meas-
urements including waist circumference and MAP were 
similarly weighted and triglyceride:HDL ratio weighted 
the least, though well within the range of inclusion. 
Weightings were identical for the score obtained from 
EFA on multiply imputed risk factor metrics. Summary 
statistics for the indices are listed by quartile in Table 1 
and for the component variables, Table  2. Distributions 
and missing units for the component variables are sum-
marized in Supplemental Table 2.

As demonstrated in Cavero-Redondo et  al. [10], we 
validated our score by using it to predict vascular dam-
age (associated with MetS) according to the albumin-to-
creatinine ratio (e.g., ACR ≥ 30mg/g ), a typical, though 
not alone sufficient, metric of clinical performance for 
a MetS score [52, 56, 57]. Results from the validation 
procedure suggested that the sensitivity, specificity and 
accuracy increase with the ACS cutoff (Supplemental 
Table 3), with an error rate of 12% for an ACR cutoff of 30 
and above (microalbuminuria) and 2% for an ACR cutoff 
of 300 and above (albuminuria). Again, because microal-
buminuria is associated with MetS but is not completely 
predictive of it, this is not an ideal test.

We explored bivariate associations between the out-
come and exposure plus patterns of bivariate associa-
tions between both the outcome and the exposure with 
covariates identified as confounders or potential effect 
modifiers (age, sex, race). Exposure and outcome are 
summarized by quartile in Table 3A-C. Unadjusted asso-
ciations between the standardized MetS outcome score 
and glyphosate concentration, categorized by quartile, 
were significant for the reference quartile and quartiles 3 

Table 2 Variables used to create the metabolic syndrome (MetS) 
score (n = 22,258)

a Variables and composite variables (the latter shown below the double line 
at the bottom of the table) used in the score are in boldface. MAP = SBP + 1/3 
(SBP—DBP). The MetS score is estimated on as many samples as possible to 
create a score broadly applicable to the general population. The missing data 
are summarized in Supplemental Table 2

Featurea Min 25% 50% 75% Max

Waist circumference 49.5 81.8 94.5 107 177.9

Systolic blood pressure 64.67 108 117.33 130.67 231.33

Diastolic blood pressure 0 60 68 76 135.33

Glycoheme (HbA1c) 3.5 5.2 5.5 5.8 17.5

Fasting Glucose 21 93 100 109 479

HDL 6 42 51 62 226

Triglycerides 10 57 85 129 4233

Triglyceride: HDL Ratio 0.13 1.03 1.65 2.69 103.24

Mean Arterial Pressure (MAP) 71.56 122.89 134.44 150.22 279.56

Fig. 2 Factor analysis diagram. Variable loadings for the MetS index 
were created via factor analysis on hot-deck imputed risk factor 
metrics (Table 2)
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(Q3) and 4 (Q4), suggesting an inverted U-shaped dose‒
response (maximum at Q3; Table 3A).

We found two race-ethnicity levels (Mexican–Ameri-
can and NH Asian) with significantly different mean esti-
mates from the reference (White) for log-transformed 
glyphosate from regression (Table  3A; p < 0.0001). For 
the outcome MetS score, Mexican–American and Black 
participants had significantly higher scores than the ref-
erence group, and the ANOVA results were also highly 
significant (p < 0.0001) (Table 3B). A visualization of dif-
ferences in exposure by race is shown in Supplemental 
Fig. 3A.

Unadjusted regressions of exposure and outcome with 
age category are consistent, showing significant dif-
ferences in exposure between the reference level (ages 
10–19) and ages 20–39 and 40–59  years, which are 
slightly reduced relative to the reference level (p = 0.004). 
Interestingly, the estimates for patients ages 60 years and 
older were not significantly different than the reference 
level (Supplemental Fig.  3B). The MetS score was sig-
nificantly different across all age categories, which was 
unsurprising (Table  3C). Finally, there were significant 
differences in exposure and outcome levels according 
to sex (reference Male); women had, on average, slightly 
but significantly lower exposure levels (p < 0.0001) and 
slightly lower MetS scores than men did (p < 0.0001), 
from unadjusted regressions (Table  3D). As expected, 
the results for the MetS score did not significantly dif-
fer across races/ethnicities; however, the score increased 
with age and was slightly greater among men than 
women.

Adjusted associations between the standardized meta-
bolic score and glyphosate levels categorized by quartile, 
from regressions adjusted for scaled BMI, square-root 
transformed and standardized creatinine levels, sex 
(reference Male), age category (reference 10–19  years), 
race-ethnicity (reference White) and standardized 
income-to-poverty ratio, are shown in Fig. 3 and Table 4 
Estimates and confidence intervals from the confirma-
tory multiply imputed study are consistent and are shown 
in Supplemental Table  4. Results for adjusted quartile-
categorized exposure models were significantly stronger 
than the unadjusted results (Table  3A) and showed the 
same suggestion of a nonlinear dose‒response, with peak 
estimates occurring in the third quartile. In the adjusted 
model, the score estimates increase with age, and related 
estimates are slightly elevated over reference and over 
other races for Asian and multiracial participants. This 
reverses in stratified models. Female sex is protective.

We explored the possibility of effect modification 
by age, race-ethnicity and sex in a series of stratified, 
adjusted models. The data were stratified according 
to the key variable, and models were run separately for 

each stratum. The results for models stratified by age 
are shown in Supplemental Table 5. While there are sig-
nificant differences in quartile estimates by age category 
(relative to the reference level), confidence intervals over-
lap. The MetS score increased slightly but inconsistently 
with age (Fig. 4). Among the 10- to 19-year cohort, only 

Table 3 Bivariate analysis. Note that every level value is relative 
to reference

A. Bivariate association between MetS score outcome and glyphosate 
level by exposure quartile

Glyphosate Estimate 95% CI p value
Quartile 1 (ref ) -0.072 -0.126, -0.018 -

Quartile 2 0.071 -0.005, 0.148 0.069

Quartile 3 0.127 0.051, 0.204 0.001

Quartile 4 0.090 0.014, 0.167 0.021

B. Exposure and outcome by race/ethnicity

Log(Glyphosate) exposure by Race
Race/Ethnicity Estimate 95% CI p value Pr(> F)
White (ref ) 0.530 0.504, 0.555 - F = 8.35

p < 0.0001Mexican–American -0.076 -0.123, -0.029 0.002

Other Hispanic -0.030 -0.086, 0.026 0.291

Black 0.038 -0.005, 0.081 0.083

Asian -0.110 -0.164, -0.055 0.0001

Multiracial 0.037 -0.039, 0.114 0.33

Standardized MetS score (outcome) by Race
White (ref ) -0.040 -0.084, 0.004 - F = 19.0

p < 0.0001Mexican–American 0.089 0.008, 0.170 0.030

Other Hispanic 0.083 -0.013, 0.180 0.090

Black 0.112 0.038, 0.187 0.003

Asian -0.063 -0.156, 0.031 0.188

Multiracial 0.018 -0.114, 0.149 0.792

C. Exposure and Outcome by Age Category

Log(Glyphosate) exposure by Age Grouping
Age Category Estimate 95% CI p value Pr(> F)
10-19yrs (ref ) 0.586 0.553, 0.62 - F = 22.6

p < 0.000120-39yrs -0.136 -0.182, -0.09  < 0.0001

40-59yrs -0.125 -0.170, -0.08  < 0.0001

 > 60yrs -0.025 -0.070, 0.02 0.281

Standardized MetS score (outcome) by Age Grouping
10-19yrs (ref ) -0.695 -0.745, -0.645 - F = 4113

p < 0.000120-39yrs 0.385 0.317, 0.454  < 0.0001

40-59yrs 0.966 0.898, 1.034  < 0.0001

 > 60yrs 1.308 1.240, 1.376  < 0.0001

D. Exposure and outcome by sex

Glyphosate exposure by Sex
Sex Estimate 95% CI p value
Male (ref ) 0.546 0.524, 0.568 -

Female -0.067 -0.099, -0.036  < 0.0001

Standardized MetS score (outcome) by Sex
Male (ref ) 0.070 0.031, 0.108 -

Female -0.139 -0.193, -0.085  < 0.0001
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Fig. 3 Change in MetS score by Quartile Glyphosate, full model with all covariates (n = 5,224). Model was adjusted as shown for sex (reference 
Male), age category (reference 10–19 years), race-ethnicity (reference Non-Hispanic White), scaled BMI, standardized creatinine, and standardized 
income-poverty ratio. See Table 4 for estimates, confidence intervals, and p-values

Table 4 Associations between standardized metabolic score, glyphosate exposure and covariates (n = 5224). The models were 
adjusted for sex (ref. Male), age category (ref. 10–19 years), race-ethnicity (ref. Non-Hispanic White), scaled BMI, standardized creatinine, 
and standardized income-poverty ratio

Covariate Level/Reference Estimate 95% CI p value

(Intercept) -0.604 -0.681, -0.527  < 0.0001

Glyphosate
Categorized by Quartile
Ref: Quartile 1

Quartile 2 0.092 0.029, 0.155 0.0043

Quartile 3 0.185 0.119, 0.250  < 0.0001

Quartile 4 0.177 0.107, 0.248  < 0.0001

BMI (standardized) 0.352 0.328, 0.376  < 0.0001

Creatinine (sqrt, standardized) -0.067 -0.094, -0.040  < 0.0001

Sex (Female) Reference Male -0.233 -0.278, -0.188  < 0.0001

Age Category
Ref: 10–19 years

20–39 years 0.180 0.114, 0.247  < 0.0001

40–59 years 0.702 0.634, 0.770  < 0.0001

 > 60 years 1.072 1.004, 1.139  < 0.0001

Race/Ethnicity
Ref: Non-Hispanic White

Mexican American 0.175 0.108, 0.242  < 0.0001

Other Hispanic 0.147 0.069, 0.224 0.0002

Black 0.135 0.074, 0.197 0.0002

Asian 0.193 0.117, 0.269  < 0.0001

Multi 0.187 0.081, 0.293 0.00055

Income-Poverty Ratio (standardized) -0.049 -0.072, -0.027 0.00002
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the fourth quartile was significantly different from the 
reference quartile (0.18, 95% CI = 0.035, 0.316, p = 0.015). 
For the age 20 to 39 cohort, the scores increased signifi-
cantly in quartile 2, decreased and were marginal in Q3 
and increased slightly to become significant in Q4. The 
cohorts aged 40 years and older had a non-monotonically 
increasing dose‒response profile. The results are strong-
est (p = 0.00005 at Q3) for participants 60 years and older. 
We do not adjust p-values for multiplicity.

While confidence intervals for the models stratified on 
race-ethnicity do overlap, there are two- to threefold dif-
ferences in the effect sizes, relative to White participants, 
of estimates for Mexican-Americans (Q4 is 2.1 × greater 
than reference/White Q4), Other Hispanic (Q4 is 
3.5 × larger) and Black participants (Q4 is a factor of 2.44 
greater). Significant estimates for Mexican American and 
Black participants suggest the inverted U-shaped dose‒
response profile we observe in the study population as a 
whole (Fig. 5, Supplemental Table 6).

Finally, estimates for models stratified on sex show a 
significant and inverted U-shaped profile for females 
and a significant and increasing profile for males (Fig. 6). 
Aside from the patterns of increase across levels, values 
are consistent between the sexes (Supplemental Table 7), 

and confidence intervals overlap, suggesting no evidence 
of effect modification by sex.

Discussion
The detailed analysis of associations between urinary 
glyphosate levels and Metabolic Syndrome (MetS) 
scores, performed using data from the National Health 
and Nutrition Examination Survey (NHANES) from 
2013 to 2018, revealed significant findings that contrib-
ute to the growing body of research on environmen-
tal chemical exposure and metabolic health risks. We 
found significant associations between urinary glypho-
sate levels and the MetS score, often with a non-mono-
tonic (inverted U-shaped) dose‒response relationship 
across exposure quartiles. This relationship persisted 
even after we adjusted for potential confounders, indi-
cating that higher levels of glyphosate exposure are 
associated with increased MetS risk, peaking at the 
third quartile of exposure. The observed dose‒response 
relationship aligns with the notion that moderate lev-
els of exposure may have a more pronounced effect on 
metabolic health than either low or very high expo-
sures; a nonmonotonic dose‒response relationship 
(NMDR) suggests a threshold or a range of exposure 

Fig. 4 Changes in MetS score by quartile glyphosate exposure from adjusted regression models stratified by age group. The reference level 
for age in the full model was age 10–19 years (< 19 years). Results from a MetS score derived from multiply imputed risk features are shown 
in Supplemental Fig. 5A. See supplemental Table 5 for details, including sample sizes and p values. To simplify the presentation, only associations 
for outcome and exposure by quartile are shown for each age grouping
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Fig. 5 Changes in MetS score by quartile glyphosate exposure from adjusted regression models stratified on race/ethnicity. Results from a MetS 
score derived from multiply imputed risk features are shown in Supplemental Fig. 5B. See supplemental Table 6 for details including sample sizes 
and p values. To simplify presentation, only associations for outcome and exposure by quartile are shown for each grouping

Fig. 6 Changes in MetS score by quartile glyphosate exposure from adjusted regression models stratified on sex. Results from a MetS score derived 
from multiply imputed risk features are d shown in Supplemental Fig. 5C. See supplemental Table 7 for details including sample sizes and p values. 
To simplify presentation, only associations for outcome and exposure by quartile are shown for each grouping
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within which the deleterious effects of glyphosate on 
metabolic health are most pronounced.

NMDR patterns have been observed in the con-
text of endocrine disruption [60]. Indeed, glyphosate 
and glyphosate-based herbicides are linked to endo-
crine disruption in animal models, altering the mRNA 
and protein expression levels of insulin receptor (IR) 
and several other receptors and signaling molecules 
involved in glucose metabolism, such as glucose trans-
porter-2 (GLUT2), JNK, IKKβ, NFkB, IL-6, IL-1β, 
and TNF-α, as well as transcription factors such as 
SREBP1c and PPAR-γ [47]. Glyphosate and glyphosate-
based herbicides have also been linked to inflammation 
and cirrhosis of the liver, which leads to the develop-
ment of insulin resistance and type 2 diabetes in animal 
models [18, 25, 47]. Our findings suggest the need for 
further investigation into the mechanistic underpin-
nings of these relationships and their implications for 
human health, especially considering the widespread 
use of glyphosate and the prevalence of metabolic syn-
drome [32]. A deeper inquiry could yield additional 
insight into the health effects of glyphosate as well as 
potential interaction effects with other variables not 
fully captured in the current study.

Bivariate analysis shows a surprising result for age cat-
egory, in that the highest exposures occurred among par-
ticipants aged 10 to 19 years and participants older than 
65 years, consistent with exposure results from the 2013–
14 NHANES cycle obtained by Ospina et  al. [44]. Yet 
only the older cohort shows very elevated associations 
between MetS and glyphosate score, perhaps because 
MetS is not defined among younger individuals [30], and 
possibly also due to the complex interaction between 
metabolic syndrome, obesity and aging [5]. Stratified 
analysis suggested potential effect modification by age 
and race/ethnicity but not by sex, and the strongest expo-
sure–outcome associations were observed in older par-
ticipants (60 years and above). These findings align with 
the broader literature on aging and metabolic health, 
where older age groups are generally at greater risk for 
MetS due to various physiological and lifestyle factors [5, 
22, 41]. Note that our study omits the age group with the 
highest levels of documented exposure (aged ~ 10  years 
or less), with exposure routes through dietary sources 
such as sweetened ready-to-eat cereal or possibly envi-
ronmental exposure at school or on recreational grounds 
(see [44], Table 3).

Significant differences in effect sizes according to race 
and ethnicity, with notably greater effect sizes for asso-
ciations between glyphosate exposure categorized by 
quartile and the MetS score in Mexican-Americans, 
Other Hispanics, and Black participants, point to poten-
tial disparities in susceptibility or exposure to glyphosate. 

This finding is particularly important given the literature 
on racial and ethnic disparities in environmental expo-
sures and health outcomes. For instance, Nguyen et  al. 
[43] reported disparities in exposure to various environ-
mental pollutants, including pesticides and herbicides, 
among racial and ethnic minorities. The present study 
extends this work by specifically linking these dispari-
ties to differential associations with MetS, suggesting that 
social determinants of health and environmental justice 
issues are crucial considerations in environmental health 
research.

The observation that the dose‒response profiles for 
glyphosate exposure and MetS differ by sex, with a sig-
nificant and inverted U-shaped profile for females and 
a linear increase for males, contributes to the growing 
body of literature on sex-specific health impacts of envi-
ronmental exposures. This finding aligns with studies 
highlighting biological and lifestyle differences between 
sexes that modulate health risks, but it also underscores 
the need for further research to elucidate the mecha-
nisms underlying these differences, especially in the 
context of metabolic health and exposure to pollutants.

Unlike many previous studies that have relied on cat-
egorical definitions of MetS based on dichotomized risk 
features, we employ a continuous MetS score derived 
from EFA from metrics reliably and reproducibly 
obtained from a large general population. This approach 
captures nuanced variations in metabolic risk factors, 
offering a more detailed and sensitive descriptor of MetS 
risk. The score was subsequently used to explore the 
change in associations between MetS (represented by the 
score) and glyphosate by quartile increase in exposure. 
By stratifying the data on key variables such as age, race-
ethnicity, and sex, we explored potential effect modifica-
tion of the association by demographic features, and the 
results yielded insights into how the association between 
glyphosate and MetS varies across different demo-
graphic groups and by age. This approach allows for the 
identification of potentially vulnerable populations and 
underscores the complexity of the exposure–outcome 
relationship.

While our study offers significant insights, causal 
inference is precluded by the cross-sectional design of 
the NHANES. Additional limitations include that the 
urine glyphosate concentration was measured only 
once per participant per cycle and that because it does 
not bioaccumulate [50, 58], the measured concentra-
tion may not accurately reflect long-term exposure or 
account for variations in individual exposure over time. 
There may be residual confounding factors in our study, 
including unmeasured and correlated exposure to other 
toxins responsible for metabolic dysfunction. We vali-
dated the MetS score on only one metric, as no other 
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relevant biometric measurements were supplied by 
the NHANES for these cycles. Finally, we present an 
unweighted study.

Conclusions
We found that urinary glyphosate concentrations are 
significantly associated with a statistical score designed 
to capture MetS incidence; in particular, we noted the 
presence of inverted U-shaped dose‒response relation-
ships with the most pronounced estimates in the third 
exposure quartile. These findings suggest a complex 
nonlinear interaction between glyphosate exposure and 
MetS risk. Our study findings underscore the complex-
ity of the relationship between environmental exposures 
such as glyphosate and metabolic health, influenced by 
demographic factors such as age, race-ethnicity, and sex. 
While our results do not constitute direct evidence, they 
suggest a need for studies focused on dietary and other 
glyphosate exposure routes to establish causality, explore 
the mechanisms driving the observed associations, 
and address the vulnerabilities of specific demographic 
groups.
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