RESEARCH

Evaluation of mortality among Marines, Navy personnel, and civilian workers exposed to contaminated drinking water at USMC base Camp Lejeune: a cohort study

Frank J. Bove^{1*}, April Greek², Ruth Gatiba², Rona C. Boehm³ and Marcie M. Mohnsen³

Abstract

Background Drinking water at U.S. Marine Corps Base (MCB) Camp Lejeune, North Carolina was contaminated with trichloroethylene and other industrial solvents from 1953 to 1985.

Methods A cohort mortality study was conducted of Marines/Navy personnel who, between 1975 and 1985, began service and were stationed at Camp Lejeune (N=159,128) or MCB Camp Pendleton, California (N=168,406), and civilian workers employed at Camp Lejeune (N=7,332) or Camp Pendleton (N=6,677) between October 1972 and December 1985. Camp Pendleton's drinking water was not contaminated with industrial solvents. Mortality follow-up was between 1979 and 2018. Proportional hazards regression was used to calculate adjusted hazard ratios (aHRs) comparing mortality rates between Camp Lejeune and Camp Pendleton cohorts. The ratio of upper and lower 95% confidence interval (CI) limits, or CIR, was used to evaluate the precision of aHRs. The study focused on underlying causes of death with aHRs \geq 1.20 and CIRs \leq 3.

Results Deaths among Camp Lejeune and Camp Pendleton Marines/Navy personnel totaled 19,250 and 21,134, respectively. Deaths among Camp Lejeune and Camp Pendleton civilian workers totaled 3,055 and 3,280, respectively. Compared to Camp Pendleton Marines/Navy personnel, Camp Lejeune had aHRs \geq 1.20 with CIRs \leq 3 for cancers of the kidney (aHR = 1.21, 95% CI: 0.95, 1.54), esophagus (aHR = 1.24, 95% CI: 1.00, 1.54) and female breast (aHR = 1.20, 95% CI: 0.73, 1.98). Causes of death with aHRs \geq 1.20 and CIR > 3, included Parkinson disease, myelodysplastic syndrome and cancers of the testes, cervix and ovary. Compared to Camp Pendleton civilian workers, Camp Lejeune had aHRs \geq 1.20 with CIRs \leq 3 for chronic kidney disease (aHR = 1.88, 95% CI: 1.13, 3.11) and Parkinson disease (aHR = 1.21, 95% CI: 0.72, 2.04). Female breast cancer had an aHR of 1.19 (95% CI: 0.76, 1.88), and aHRs \geq 1.20 with CIRs > 3 were observed for kidney and pharyngeal cancers, melanoma, Hodgkin lymphoma, and chronic myeloid leukemia. Quantitative bias analyses indicated that confounding due to smoking and alcohol consumption would not appreciably impact the findings.

*Correspondence: Frank J. Bove bovefrank@outlook.com

Full list of author information is available at the end of the article

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Page 2 of 14

Conclusion Marines/Navy personnel and civilian workers likely exposed to contaminated drinking water at Camp Lejeune had increased hazard ratios for several causes of death compared to Camp Pendleton.

Keywords Camp Lejeune, Camp Pendleton, Marines/Navy personnel, Civilian workers, Mortality, Drinking water, Trichloroethylene, Tetrachloroethylene, Benzene, Vinyl chloride, Hazard ratio

Background

Industrial organic solvents were detected in finished drinking water samples between 1980 and 1985 from two of eight treatment plants serving United States Marine Corps (USMC) Base Camp Lejeune, North Carolina. Each treatment plant served a different area of the base. The Tarawa Terrace (TT) treatment plant began operating in 1952, served family housing, and was contaminated by an off-base dry cleaner. The maximum concentration of tetrachloroethylene (PCE) in the TT distribution system measured 215 micrograms per liter (μ g/L) [1].

The Hadnot Point (HP) treatment plant began operation in 1942, served family housing, most workplaces and barracks, field training areas (via mobile "water buffaloes") and eating establishments, and was contaminated by on-base sources – leaking underground storage tanks, industrial area spills, and waste disposal sites. Maximum concentrations of trichloroethylene (TCE) and PCE in the HP distribution system measured 1,400 μ g/L and 100 μ g/L, respectively. Also detected in the distribution system were benzene from fuel spills and leaks, and vinyl chloride from degradation of PCE and TCE [2].

No drinking water sampling for volatile organic compounds occurred before 1980. The Agency for Toxic Substances and Disease Registry (ATSDR) conducted historical reconstruction modeling to estimate monthly average contaminant levels in the TT and HP distribution systems and found that contamination started by the mid-1950s [1, 2]. Heavily contaminated supply wells were shut down by February 1985, although benzene was detected in the HP distribution system in late 1985. Contaminant concentrations were minimal after 1985. In each system, water from supply wells was mixed at the treatment plant prior to distribution; and contamination levels varied depending on the wells in use, their levels of contamination and pumpage rates [1, 2].

In the TT distribution system, estimated monthly average concentrations of PCE between January 1975 and February 1985 ranged from 0 to 158 μ g/L with a median of 85 μ g/L [1]. In the HP distribution system, estimated monthly average concentrations of TCE, PCE and vinyl chloride during this period ranged from 0 to 783 μ g/L, 0 to 39 μ g/L, and 0 to 67 μ g/L, respectively, with medians of 366 μ g/L, 15 μ g/L and 22 μ g/L, respectively [2].

A Marine in training is estimated to consume 6 L/ day of drinking water three times per week, and 3 L/day four times per week [3]. Marines/Navy personnel not in training and civilian workers are estimated to consume 3 L/day [3]. Current U.S. maximum contamination levels in drinking water are 5 μ g/L for TCE, PCE and benzene, and 2 μ g/L for vinyl chloride [4]. TCE, benzene and vinyl chloride are known human carcinogens and PCE is "probably carcinogenic to humans [5–7].

ATSDR previously conducted two cohort mortality studies comparing Marines/Navy personnel and civilian workers stationed or employed at Camp Lejeune from 1975 to 1985 and 1973 to 1985, respectively, with similar cohorts over the same periods stationed or employed at USMC Base Camp Pendleton, California [8, 9]. The follow-up period for both studies was 1979–2008. Both studies found increased risks from cancers of the kidney, rectum, lung, prostate, leukemias, and multiple myeloma. The Marines/Navy personnel had increased risks from cancers of the esophagus, liver, and cervix, Hodgkin lymphoma and multiple sclerosis [8]. The civilian workers had increased risks of oral cancers and Parkinson disease [9].

The purpose of the current study was to determine if being stationed or employed at Camp Lejeune between 1975 and 1985 (Marines/Navy personnel) or between October 1972 and December 1985 (civilian workers), increased the risk of specific causes of death between 1979 and 2018 compared to being stationed or employed at Camp Pendleton. Samples of Camp Pendleton's drinking water taken between 1989 and 2005 did not detect industrial organic solvents above their MCLs [10].

Methods

Study population

The Defense Manpower Data Center (DMDC) quarterly personnel data were obtained for Marines/Navy personnel and civilian workers stationed or employed at Camp Lejeune or Camp Pendleton any quarter between 1975 and 1985 and between October 1972 and December 1985, respectively. DMDC started data collection for civilian workers in October 1972. DMDC data for Marines/Navy personnel did not include military unit codes, necessary to determine base locations, until 1975.

The study included a cohort of 7,332 workers employed at Camp Lejeune and a comparison cohort of 6,677 workers employed at Camp Pendleton, who were known to be alive as of January 1, 1979. The DMDC information included base location of employment, social security number, name, birth date, sex, race, education and occupation code. Based on DMDC data, average employment duration at Camp Lejeune between October 1972 and December 1985 was 64 months.

The full cohort of Marines/Navy personnel included 217,988 at Camp Lejeune and 232,026 at Camp Pendleton, who were known to be alive as of January 1, 1979. DMDC data included social security number, name, birth date, sex, race, rank, education, date active duty started, and military unit code. Based on DMDC data, the average duration that Marines/Navy personnel were stationed at Camp Lejeune between 1975 and 1985 was about 18 months.

Base locations before 1975 could not be determined using DMDC data. Some of the Marines/Navy personnel who began active duty before 1975 could have been stationed at Camp Pendleton between 1975 and 1985, and considered unexposed in the study, but stationed at Camp Lejeune before 1975 and actually exposed. Therefore, a subgroup of the full cohort was identified consisting of Marines/Navy personnel who began active duty between 1975 and 1985. This subgroup consisted of 154,821 at Camp Lejeune and 163,484 at Camp Pendleton and was the focus of the analyses of the Marines/ Navy personnel.

Camp Pendleton Marines/Navy personnel and civilian workers were selected as reference cohorts because they were unexposed to drinking water contaminated with industrial solvents [10] and were similar to the Camp Lejeune cohorts on demographic and socioeconomic factors, pre-enlistment screening and fitness requirements, training activities, and types of military and civilian employee occupations. Therefore, biases due to the healthy veteran (or healthy soldier) effect [11, 12] or the healthy worker effect [13], or from unmeasured confounders, should be minimal.

Vital status ascertainment

To obtain vital status, personal identifiers from the DMDC data were linked to data from a locator firm and the Social Security Administration (SSA) Data for Epidemiological Researchers. SSA matched 99% of the records. Data on individuals who died or had unknown vital status were submitted to the National Death Index (NDI) to obtain International Classification of Diseases (ICD), Ninth and Tenth codes for underlying and contributing causes of death and date of death. About 1% had unknown vital status after the NDI linkage and were lost to follow-up, but contributed person-years until the last date they were known to be alive (Table 1).

Data analysis

Marines/Navy personnel and civilian employees were analyzed separately. Follow-up began on January 1, 1979, or the start of employment or military service at Camp Lejeune or Camp Pendleton, whichever was later, and continued until December 31, 2018, if the individual was known to be alive, or to date of death. The main analyses compared Camp Lejeune and Camp Pendleton civilian workers and the Marines/Navy subgroup on underlying causes of death. Secondary analyses evaluated: (1) the full cohort of Marines/Navy personnel, (2) contributing causes of death, and (3) duration stationed or employed at Camp Lejeune as a proxy for cumulative drinking water exposure.

Descriptive analyses included standardized mortality ratios (SMRs) and Poisson regression risk ratios (RRs). SMRs used age-, sex-, race- and calendar period-specific U.S. mortality rates for underlying causes of death using the life table analysis system [14]. Poisson regressions compared sex-, race-, and five-year age-specific underlying causes of death for Camp Lejeune versus Camp Pendleton. Once an individual was stationed or employed at Camp Lejeune, all subsequent person-years were assigned to Camp Lejeune.

Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox extended proportional hazards regression [15], with age as the time variable and base location as time-varying. Adjusted models included sex, race, education level, and rank (Marines/Navy personnel) or blue-collar work (civilian workers). Base location was not lagged because >75% of deaths occurred>10 years after contamination ended at Camp Lejeune. Schoenfeld residuals were used to check the proportional hazards assumption [15].

Because information on smoking and alcohol consumption was unavailable, negative control diseases [16] were used to estimate prevalence differences between Camp Lejeune and Camp Pendleton. The negative controls for smoking were chronic obstructive pulmonary disease (COPD) and cardiovascular disease mortality. The negative controls for alcohol consumption were alcoholism, alcoholic liver disease, and chronic liver disease mortality. Cancers of the oral cavity, larynx, lung, esophagus, colon, liver, bladder, and female breast were not negative controls for smoking or alcohol consumption because they have been linked to occupational exposures to TCE, PCE, vinyl chloride and/or benzene [17–27].

Quantitative bias analyses (QBA) using Excel spreadsheets were used to estimate possible impacts of confounding due to smoking and alcohol consumption and bias due to non-differential exposure misclassification [28]. Exposure misclassification bias was assumed nondifferential and independent because base locations were assigned prior to mortality data collection. The QBA parameters for confounding were the prevalences of the confounding factor in the Camp Lejeune and Camp Pendleton cohorts, and the risk ratio associating the confounder with the cause of death under evaluation. The QBA parameters for exposure misclassification

Base	Camp Lejeune N (%)		Camp Pendleton N (%) (ref)
Cohort	Marines/Navy	Civilian workers	Marines/Navy	Civilian workers
Total	159,128 (48.6)	7,332 (52.3%)	168,406 (51.4)	6,677 (47.7%)
Sex				
Male	151,026 (94.9)	3,708 (50.6%)	162,473 (96.5)	3,646 (54.6%)
Female	8,102 (5.1)	3,624 (49.4%)	5,933 (3.5)	3,031 (45.4%)
Race				
White	116,501 (73.2)	5,539 (75.5%)	131,011 (77.8)	5,199 (77.9%)
Black/African American	38,365 (24.1)	1,409 (19.2%)	28,657 (17.0)	498 (7.5%)
Other race	4,262 (2.7)	384 (5.2%)	8,738 (5.2)	980 (14.7%)
Rank				
E1 – E4	130,312 (81.9)	-	137,281 (81.5)	-
E5 – E9	23,049 (14.5)	-	23,434 (13.9)	-
WO or CO	5,767 (3.6)	-	7,691 (4.6)	-
Occupation				
Blue collar	-	2,819 (38.4%)	-	2,798 (41.9%)
White collar	-	4,513 (61.6%)	-	3,879 (58.1%)
Education				
High school graduate	133,140 (83.7)	1,038 (14.2%)	132,871 (78.9)	679 (10.2%)
< High school	19,951 (12.5)	5,206 (71.0%)	27,362 (16.2)	5,539 (83.0%)
College graduate	6,037 (3.8)	1,088 (14.8%)	8,173 (4.9)	459 (6.9%)
Age, start of follow-up				
Mean (years)	20.2	39.1	20.5	41.2
Median (years)	20.0	36.0	20.0	41.0
Age, end of follow-up*				
Mean (years)	56.4	71.3	56.6	72.4
Median (years)	57.0	70.0	58.0	72.0
% Age > 55 years	105,054 (66.0%)	6,966 (95.0%)	113,881 (67.6%)	6,363 (95.3%)
% Age > 65 years	2,702 (1.7%)	5,185 (70.7%)	3,367 (2.0%)	4,760 (71.3%)
% Age > 70 years	287 (0.2%)	3,574 (48.7%)	273 (0.2%)	3,586 (53.7%)
Deaths [¥]				
Number	19,250	3,055	21,134	3,280
% of cohort	12.1%	41.7%	12.5%	49.1%
Length of follow-up (years)				
Mean	36.2	31.5	36.1	31.0
Median	38.0	36.0	38.0	35.0
Total person-years	5,760,931	231,496	6,078,598	203,469
Total lost to follow-up	1,072 (0.7%)	111 (1.5%)	1,231 (0.7%)	84 (1.3%)
Quarters in the DMDC data $^{\epsilon}$				
Mean	7.7	18.9	7.2	17.3
Median	7.0	12.0	6.0	11.0
IQR	8 (3–11)	30 (3–33)	8 (3–11)	23 (4–27)

Table 1	Demographic information for the Marines/Navy	personnel subgroup a	and the civilian worke	ers at risk during the follo	w-up
period (1979–2018)				

E1 – E4: private to corporal; E5 – E9: sergeant to sergeant major; WO: warrant officer; CO: commissioned officer

^{*} Age at end of follow-up (12/31/2018 or date of death if earlier than 12/31/2018)

⁴ Deaths occurring 1/1/1979–12/31/2018

[€] Number of quarters stationed at either Camp Lejeune or Camp Pendleton during 1975–1985 for the Marines/Navy subgroup cohort and during 10/72–12/85 for civilian workers cohort

were the sensitivity of the exposure classification, i.e., the probability that the truly exposed were correctly classified as exposed (i.e., assigned to Camp Lejeune) and the specificity of the exposure classification, i.e., the probability that the truly unexposed were correctly classified as unexposed (i.e., assigned to Camp Pendleton). The QBA provided estimates of what the observed adjusted HR (aHR) would have been if the bias were absent. More detail on the methods and results of the QBA are included in the supplemental file.

Statistical significance testing was not used to interpret findings, following the recommendations of a wide range of researchers [29–33]. Instead, the interpretation of findings emphasized: (1) the estimate of the magnitude of the association, i.e., the aHR, (2) the precision of the estimate, using the ratio of the upper to lower limits of the 95% confidence interval (CIR) [34, 35], (3) supporting information from other studies, and (4) the results of the QBA. For rare causes of death (e.g., male breast cancer), interpretation considered findings from the full cohort of Marines/Navy personnel and from analyses of contributing causes.

In this study, $aHRs \ge 1.20$ with $CIRs \le 3$ were emphasized. The decision to emphasize $aHRs \ge 1.20$ was based on the results of published meta-analyses of studies of TCE exposed workers [17]. Meta-analyses of TCE exposure and kidney cancer, NHL and liver cancer obtained summary RRs between 1.23 and 1.32 [36–38]. An appropriate CIR level for precision has not been specified in the literature. We considered CIRs ≤ 3 to indicate reasonable precision of the aHRs. In this study, an aHR was likely to have a CIR ≤ 3 if both the exposed group and unexposed group had ≥ 25 cases of the cause of death. Although $aHRs \ge 1.20$ with CIRs ≤ 3 , may also be of importance.

Analyses used SAS 9.4 and STATA 16. This study was approved by the Centers for Disease Control and Prevention Institutional Review Board.

Results

Table 1 provides demographics for the Marines/Navy personnel subgroup and civilian workers. Demographics and all results for the full cohort of Marines/Navy personnel are in Tables S1-S4. The Camp Lejeune and Camp Pendleton Marines/Navy personnel had similar demographics and were mostly male, white, and ranged in rank from private to corporal. By the end of follow-up, 2% were aged>65 years and 12% had died. Civilian workers were mostly white with white collar jobs, and >45% were women. Higher percentages of Camp Lejeune workers were African American and graduated from college compared to Camp Pendleton. By the end of follow-up, >70% were aged>65 years and >40% had died.

SMRs for the Marines/Navy personnel subgroup and civilian workers were <1.00 for most causes of death (Tables 2 and 3), consistent with a healthy veteran effect [11, 12] and healthy worker effect [13]. Factors producing a healthy veteran effect include the initial recruitment physical screening, fitness standards during military service, and access to health care during and after service. The effect was likely strong in the Marines/Navy personnel subgroup because most were aged <65 years at the end of follow-up.

The Marines/Navy personnel subgroup analysis obtained Poisson regression $RRs \ge 1.20$ with $CIRs \le 3$ for cancers of the esophagus, kidney and female breast, and

RRs≥1.20 with CIRs>3 for cervical and testicular cancers and Parkinson disease (Table 2). The civilian workers analysis obtained Poisson regression RRs≥1.20 with CIRs≤3 for female breast cancer and chronic kidney disease, and RRs≥1.20 and CIRs>3 for cancers of the kidney, pharynx, and larynx, and melanoma, Hodgkin lymphoma, and anemias (Table 3).

Cox proportional hazards regression analysis of the Marines/Navy personnel subgroup and underlying causes of death obtained $aHRs \ge 1.20$ with $CIRs \le 3$ for cancers of the kidney, esophagus, and female breast (Table 4). Parkinson disease, myelodysplastic syndrome, and cancers of the testes, cervix, and ovary had $aHRs \ge 1.20$ with CIRs > 3. In the analyses of the full cohort of Marines/Navy personnel, additional underlying causes of death with $aHRs \ge 1.20$ and $CIRs \le 3$ included acute myeloid leukemia (AML), Hodgkin lymphoma, multiple sclerosis, and acute kidney disease (Table S3).

Results for contributing causes of death among the Marines/Navy personnel subgroup were similar to results for underlying causes (Table S5). Multiple sclerosis had an aHR \geq 1.20 and CIRs \leq 3. In the full cohort of Marines/Navy personnel, an aHR \geq 1.20 with CIR>3 was observed for male breast cancer as contributing cause (Table S4).

Cox proportional hazards regression analysis of civilian workers and underlying causes of death obtained aHRs≥1.20 with CIRs≤3 for chronic kidney disease and Parkinson disease (Table 5). Female breast cancer had an aHR of 1.19 with CIR≤3. Cancers of the kidney and pharynx, melanoma, Hodgkin lymphoma, chronic myeloid leukemia (CML), and anemias had aHRs≥1.20 with CIRs>3. Analysis of contributing causes of death obtained an aHR≥1.20 with CIR≤3 for female breast cancer, and aHRs≥1.20 with CIR≤3 for cancers of the pharynx and larynx, melanoma, Hodgkin lymphoma, and CML (Table S7).

Results of the duration analyses should be interpreted with caution because monthly contamination levels fluctuated considerably between 1972 and 1985. Duration stationed or employed at Camp Lejeune was categorized into tertiles of the quarterly data after removal of the Camp Pendleton reference group (Tables S6, S8). Monotonic trends with aHRs \geq 1.20 and CIRs>3 in each stratum were observed for myelodysplastic syndrome among the Marines/Navy personnel subgroup and kidney cancer among civilian workers.

For the Marines/Navy personnel subgroup, the negative control diseases for smoking had aHRs < 1.00 except for COPD as an underlying cause with an aHR of 1.08 (Table 4, Table S5). Using the HR of 1.08 for COPD, the prevalence difference in smoking between Camp Lejeune and Camp Pendleton would be 6% (Table S9). Assuming a 6% smoking prevalence difference, the HRs for cancers of the kidney, esophagus and lung would decrease by $\leq 3.3\%$, Table 2 Standardized mortality ratios (SMR), Poisson regression risk ratios, and 95% confidence intervals (CI) for the Camp Lejeune and Camp Pendleton Marines/Navy personnel subgroup: underlying cause of death

Cause of Death	Camp Lejeune (CL)	Camp Pendleton (CP)	Risk Ratio (95% CI)
	Observed SMR (95% CI)	Observed SMR (95% CI)	CL vs. CP
All Causes	19,250 0.90 (0.89, 0.91)	21,134 0.93 (0.92, 0.94)	0.99 (0.97, 1.01)
All Cancer Malignancies	3,689 0.92 (0.89, 0.95)	3,760 0.87 (0.84, 0.90)	1.07 (1.02, 1.12)
Oral Cavity and Pharynx	106 0.85 (0.70, 1.03)	124 0.92 (0.77, 1.10)	0.95 (0.73, 1.23)
Esophagus	171 1.01 (0.87, 1.18)	154 0.83 (0.70, 0.97)	1.25 (1.00, 1.55)
Stomach	89 0.78 (0.62, 0.95)	100 0.83 (0.68, 1.01)	0.93 (0.70, 1.24)
Colon	266 0.87 (0.77, 0.98)	264 0.81 (0.71, 0.91)	1.07 (0.91, 1.27)
Rectum	83 0.79 (0.63, 0.98)	94 0.83 (0.67, 1.02)	0.93 (0.69, 1.26)
Liver/Biliary System	268 0.84 (0.75, 0.95)	289 0.85 (0.76, 0.96)	1.01 (0.86, 1.20)
Pancreas	265 1.06 (0.94, 1.19)	250 0.92 (0.81, 1.04)	1.15 (0.97, 1.37)
Larynx	36 0.76 (0.53, 1.06)	39 0.77 (0.55, 1.05)	1.04 (0.66, 1.64)
Lung/Trachea/Bronchus	982 0.97 (0.91, 1.03)	915 0.83 (0.78, 0.89)	1.19 (1.08, 1.30)
Connective Tissue	53 1.03 (0.77, 1.34)	50 0.90 (0.67, 1.19)	1.17 (0.80, 1.73)
Melanoma	105 0.98 (0.80, 1.18)	109 0.89 (0.73, 1.07)	1.09 (0.84, 1.43)
Breast Cancer - Female	41 0.92 (0.66, 1.25)	25 0.72 (0.47, 1.07)	1.23 (0.75, 2.03)
Breast Cancer - Male	4 0.69 (0.19, 1.75)	11 1.76 (0.88, 3.15)	0.39 (0.12, 1.22)
Cervix	9 1.07 (0.49, 2.03)	5 0.79 (0.26, 1.85)	1.21 (0.39, 3.72)
Uterus	5 0.91 (0.30, 2.12)	7 1.59 (0.64, 3.28)	0.59 (0.19, 1.88)
Ovary	8 0.72 (0.31, 1.42)	6 0.67 (0.24, 1.45)	1.19 (0.41, 3.44)
Prostate	95 1.01 (0.81, 1.23)	108 1.06 (0.87, 1.28)	0.94 (0.71, 1.24)
Testis	18 0.72 (0.42, 1.15)	12 0.45 (0.23, 0.79)	1.72 (0.83, 3.58)
Kidney and Renal Pelvis	139 1.11 (0.93, 1.31)	126 0.91 (0.76, 1.09)	1.21 (0.95, 1.54)
Urinary Bladder	61 0.97 (0.74, 1.24)	66 0.94 (0.73, 1.20)	1.02 (0.72, 1.45)
Brain and CNS	178 0.91 (0.78, 1.06)	217 1.00 (0.87, 1.15)	0.90 (0.74, 1.10)
Thyroid	8 0.78 (0.34, 1.55)	12 1.07 (0.55, 1.88)	0.72 (0.30, 1.77)
Hematopoietic Cancers	354 0.83 (0.75, 0.92)	380 0.83 (0.74, 0.91)	1.00 (0.87, 1.16)
Hodgkin Lymphoma	30 0.93 (0.63, 1.32)	32 0.91 (0.62, 1.29)	1.00 (0.61, 1.65)
NHL	122 0.73 (0.60, 0.87)	151 0.83 (0.70, 0.97)	0.87 (0.68, 1.10)
Multiple Myeloma	62 0.99 (0.77, 1.26)	61 0.92 (0.70, 1.18)	1.08 (0.76, 1.54)
Leukemias	142 0.87 (0.73, 1.02)	136 0.77 (0.65, 0.91)	1.13 (0.89, 1.43)
Diabetes	400 0.71 (0.64, 0.78)	452 0.75 (0.69, 0.83)	0.94 (0.82, 1.08)
Alcoholism	242 0.93 (0.81, 1.05)	302 1.07 (0.95, 1.20)	0.88 (0.74, 1.04)
Multiple Sclerosis	29 0.78 (0.52, 1.12)	27 0.68 (0.45, 0.99)	1.12 (0.66, 1.89)
Parkinson Disease	15 1.47 (0.73, 2.21)	8 0.69 (0.21, 1.17)	2.00 (0.85, 4.73)
ALS	64 1.12 (0.85, 1.39)	67 1.05 (0.80, 1.30)	1.05 (0.75, 1.48)
Cardiovascular Disease	4,316 0.90 (0.87, 0.93)	4,650 0.91 (0.88, 0.94)	1.00 (0.96, 1.04)
COPD	312 0.96 (0.86, 1.07)	320 0.89 (0.79, 0.99)	1.10 (0.94, 1.28)
Chronic Liver Disease	614 0.79 (0.73, 0.86)	775 0.91 (0.84, 0.97)	0.88 (0.79, 0.97)
Chronic Kidney Disease	133 0.62 (0.52, 0.74)	139 0.64 (0.54, 0.75)	0.99 (0.78, 1.25)
Suicide	1,664 1.21 (1.16, 1.27)	2,002 1.32 (1.27, 1.38)	0.92 (0.86, 0.98)

CNS: central nervous system; NHL: non-Hodgkin lymphoma; ALS: amyotrophic lateral sclerosis; COPD: chronic obstructive pulmonary disease SMRs were calculated using the age-, sex-, race- and calendar period-specific U.S. mortality rates for underlying causes of death

Risk ratios were adjusted for sex, race, and five-year age groups

 \leq 7.3%, and \leq 9.3%, respectively (Tables S10-S12). Because smoking decreases the risk of Parkinson disease [39], the HR for Parkinson disease would increase by \leq 6.8% (Table S13).

For civilian workers, COPD as a contributing cause had an aHR of 1.05, with other negative control diseases having aHRs<1.00 (Table 5, Table S7). Using the HR of 1.05 for COPD, the prevalence difference in smoking between Camp Lejeune and Camp Pendleton workers would be 4% (Table S14). Assuming a 4% smoking prevalence difference, the HRs for cancers of the lung and larynx would decrease by \leq 7.1%, the HR for pharyngeal cancer would decrease by \leq 6.3%, and the HRs for kidney cancer and chronic kidney disease would decrease by \leq 2.8% (Tables S15-S20). For Parkinson disease, the HR would increase by \leq 4.1% (Table S21).

Table 3 Standardized mortality ratios (SMR), Poisson regression risk ratios, and 95% confidence intervals (CI) for	r Camp Lejeune and
Camp Pendleton civilian employees: underlying cause of death	

Cause of Death	CL	СР	Risk Ratio (95% CI)
	Observed SMR (95% CI)	Observed SMR (95% CI)	CL vs. CP
All causes	3,055 0.89 (0.85, 0.92)	3,280 0.90 (0.87, 0.94)	0.96 (0.91, 1.01)
All cancers	882 0.93 (0.87, 0.99)	890 0.93 (0.87, 0.99) 1.01 (0.92	
All malignant cancers	859 0.91 (0.85, 0.98)	874 0.91 (0.85, 0.98)	1.01 (0.91, 1.11)
Oral cavity and pharynx	10 0.62 (0.31, 1.10)	10 0.62 (0.31, 1.10)	1.06 (0.43, 2.61)
Pharynx	8 0.95 (0.41, 1.88)	4 0.48 (0.13, 1.24)	2.14 (0.61, 7.46)
Esophagus	13 0.51 (0.27, 0.88)	24 0.96 (0.61, 1.43)	0.63 (0.31, 1.27)
Stomach	21 0.85 (0.53, 1.30)	21 0.87 (0.54, 1.33)	1.00 (0.53, 1.90)
Colon	46 0.61 (0.45, 0.82)	55 0.70 (0.53, 0.92)	0.85 (0.56, 1.29)
Rectum	13 0.87 (0.46, 1.48)	14 0.92 (0.50, 1.54)	0.95 (0.43, 2.08)
Liver/Biliary system	20 0.62 (0.38, 0.96)	29 0.92 (0.62, 1.32)	0.73 (0.40, 1.32)
Pancreas	41 0.78 (0.56, 1.06)	63 1.20 (0.92, 1.53)	0.72 (0.48, 1.08)
Larynx	8 0.94 (0.41, 1.86)	5 0.59 (0.19, 1.38)	1.36 (0.42, 4.40)
Lung	310 1.08 (0.96, 1.20)	281 0.96 (0.85, 1.08)	1.15 (0.97, 1.36)
Kidney and renal pelvis	24 1.16 (0.74, 1.73)	15 0.70 (0.39, 1.16)	1.49 (0.76, 2.92)
Urinary bladder	18 0.85 (0.50, 1.34)	25 1.06 (0.69, 1.57)	0.65 (0.34, 1.24)
Melanoma	12 1.03 (0.53, 1.80)	5 0.41 (0.13, 0.97)	2.59 (0.89, 7.56)
Connective tissue	5 0.90 (0.29, 2.11)	6 1.10 (0.40, 2.40)	0.65 (0.19, 2.22)
Brain and CNS	17 0.87 (0.50, 1.39)	28 1.44 (0.96, 2.09)	0.66 (0.36, 1.23)
Thyroid	1	0	
Hematopoietic cancers	84 1.00 (0.80, 1.24)	90 1.02 (0.82, 1.25)	1.00 (0.73, 1.36)
Hodgkin lymphoma	3 1.47 (0.30, 4.29)	2 0.98 (0.12, 3.55)	1.81 (0.30, 11.0)
NHL	35 1.12 (0.78, 1.56)	38 1.13 (0.80, 1.55)	0.98 (0.61, 1.58)
Multiple myeloma	15 0.79 (0.44, 1.30)	13 0.68 (0.36, 1.16)	0.99 (0.45, 2.16)
Leukemias	31 0.98 (0.67, 1.39)	37 1.11 (0.78, 1.53)	1.00 (0.61, 1.64)
Breast cancer - Female	48 0.84 (0.62, 1.12)	33 0.63 (0.44, 0.89)	1.21 (0.77, 1.89)
Breast cancer - Male	0	0	
Cervix	1	3 0.55 (0.11, 1.60)	
Uterus	10 1.01 (0.49, 1.87)	9 1.00 (0.46, 1.90)	0.97 (0.39, 2.43)
Ovary	14 0.75 (0.41, 1.26)	22 1.28 (0.80, 1.94)	0.57 (0.29, 1.13)
Prostate	71 0.99 (0.78, 1.25)	59 0.80 (0.61, 1.04)	1.01 (0.69, 1.50)
Testis	0	0	
Diabetes	94 0.90 (0.72, 1.10)	103 0.98 (0.80, 1.19)	0.78 (0.58, 1.05)
Alcoholism	7 0.56 (0.23, 1.16)	10 0.87 (0.42, 1.61)	0.63 (0.23, 1.74)
Multiple sclerosis	3 0.63 (0.13, 1.85)	3 0.73 (0.15, 2.12)	0.70 (0.14, 3.52)
Parkinson disease	30 1.34 (0.86, 1.82)	31 1.19 (0.77, 1.60)	1.15 (0.68, 1.93)
ALS	5 0.57 (0.07, 1.07)	10 1.12 (0.43, 1.82)	0.44 (0.14, 1.32)
Anemias	7 1.20 (0.48, 2.47)	3 0.48 (0.10, 1.41)	1.61 (0.39, 6.61)
Heart/Circulatory disease	1105 0.88 (0.83, 0.93)	1271 0.93 (0.88, 0.98)	0.92 (0.85, 1.00)
COPD	171 0.99 (0.85, 1.15)	213 1.13 (0.99, 1.30)	0.91 (0.73, 1.11)
Chronic liver disease	36 0.70 (0.49, 0.97)	51 1.04 (0.77, 1.36)	0.71 (0.46, 1.10)
Chronic kidney disease	49 0.84 (0.62, 1.11)	26 0.43 (0.28, 0.63)	1.77 (1.07, 2.93)
Suicide	29 0.84 (0.56, 1.21)	45 1.36 (0.99, 1.82)	0.68 (0.42, 1.10)

CL: Camp Lejeune; CP: Camp Pendleton; SMR: Standardized mortality ratio; Cl: Confidence interval; CNS: Central nervous system cancers; NHL: Non-Hodgkin lymphoma; ALS: Amyotrophic Lateral Sclerosis; COPD: Chronic obstructive pulmonary disease

SMRs were calculated using the age-, sex-, race- and calendar period-specific U.S. mortality rates for underlying causes of death Risk ratios were adjusted for sex, race, and five-year age groups

To estimate the prevalence difference in alcohol consumption between the Camp Lejeune and Camp Pendleton Marines/Navy personnel subgroup, the chronic liver disease HR of 0.93 was used. The prevalence difference would range between 6% and 10% (Table S22). Assuming a prevalence difference of 8%, the HRs for cancers of the esophagus, larynx and female breast would increase by \leq 8.9%, \leq 7.0%, and \leq 3.3%, respectively (Tables S23-S25).

To estimate the prevalence difference in alcohol consumption between Camp Lejeune and Camp Pendleton

Table 4 Hazard ratios (HR) and 95% confidence intervals (CI) for the Marines/Navy personnel subgroup analysis of base location at Camp Lejeune (CL) vs. Camp Pendleton (CP); underlying cause of death

Outcome	Total	Camp Lejeune #	Unadjusted HR (95% CI)	Adjusted HR (95% CI)	Camp Pendleton #
All causes	40,384	19,250	0.98(0.96, 1.00)	0.99(0.97, 1.01)	21,134
All cancer malignancies	7,449	3,689	1.06(1.01, 1.11)	1.06(1.02, 1.11)	3,760
Oral cancers	230	106	0.92(0.71, 1.19)	0.95(0.73, 1.24)	124
Pharyngeal cancer	121	56	0.93(0.65, 1.33)	0.94(0.66, 1.35)	65
Esophageal cancer	325	171	1.20(0.97, 1.49)	1.24 (1.00, 1.54)	154
Stomach cancers	189	89	0.96(0.72, 1.28)	0.92(0.69, 1.23)	100
Colorectal cancers	707	349	1.05(0.91, 1.22)	1.03(0.88, 1.19)	358
Colon cancer	530	266	1.09(0.92, 1.29)	1.05(0.89, 1.25)	264
Rectal cancer	177	83	0.95(0.71, 1.27)	0.94(0.70, 1.27)	94
Liver cancer	557	268	1.00(0.85, 1.19)	1.06(0.89, 1.25)	289
Pancreatic cancer	515	265	1.14(0.96, 1.36)	1.14(0.96, 1.36)	250
Laryngeal cancer	75	36	1.00(0.64, 1.57)	1.01(0.64, 1.58)	39
Lung cancer	1,897	982	1.16(1.06, 1.27)	1.18(1.07, 1.29)	915
Bone cancers	40	16	0.71(0.38, 1.34)	0.74(0.39, 1.39)	24
Soft tissue cancers	103	53	1.14(0.77, 1.67)	1.12(0.76, 1.65)	50
Melanoma	214	105	1.03(0.79, 1.35)	1.07(0.82, 1.40)	109
Female Breast cancer	66	41	1.27(0.77, 2.08)	1.20 (0.73, 1.98)	25
Male Breast cancer	15	4	0.39(0.13, 1.24)	0.36 (0.12, 1.14)	11
Cervical cancer	14	9	1.19(0.39, 3.65)	1.25 (0.40, 3.85)	5
Uterine cancer	12	5	0.62(0.20, 1.97)	0.62 (0.20, 1.98)	7
Ovarian cancer	14	8	1.12(0.39, 3.24)	1.23 (0.42, 3.59)	6
Prostate cancer	203	95	0.97(0.74, 1.28)	0.93 (0.71, 1.23)	108
Testicular cancer	30	18	1.62(0.78, 3.36)	1.76 (0.85, 3.67)	12
Bladder cancer	127	61	1.00(0.71, 1.42)	1.02(0.72, 1.45)	66
Kidney cancer	265	139	1.19(0.93, 1.51)	1.21(0.95, 1.54)	126
Brain and CNS cancers	395	178	0.88(0.72, 1.07)	0.89(0.73, 1.09)	217
Thyroid cancer	20	8	0.71(0.29, 1.74)	0.71(0.29, 1.74)	12
Hematopoietic cancers	734	354	1.00(0.86, 1.16)	0.99(0.86, 1.14)	380
Hodgkin lymphoma	62	30	1.00(0.61, 1.64)	0.98(0.59, 1.61)	32
Non-Hodgkin lymphoma	273	122	0.87(0.68, 1.10)	0.87(0.68, 1.10)	151
Multiple myeloma	123	62	1.10(0.77, 1.56)	1.07(0.75, 1.53)	61
Leukemias	278	142	1.12(0.89, 1.42)	1.10(0.87, 1.40)	136
ALL	45	20	0.85(0.47, 1.53)	0.85(0.47, 1.53)	25
CLL	15	7	0.94(0.34, 2.59)	0.89(0.32, 2.48)	8
AML	122	62	1.12(0.78, 1.59)	1.11(0.78, 1.59)	60
CML	28	11	0.69(0.32, 1.47)	0.65(0.30, 1.40)	17
MDS	17	11	1.96(0.73, 5.30)	2.26(0.83, 6.17)	6
Lymphoid cancers	63	27	0.82(0.50, 1.35)	0.80(0.49, 1.33)	36
Myeloid cancers	157	79	1.12(0.82, 1.53)	1.10(0.80, 1.50)	78
Diabetes	852	400	0.96(0.84, 1.10)	0.96(0.83, 1.09)	452
Anemias	25	12	1.00(0.46, 2.19)	0.89(0.41, 1.97)	13
Cardiovascular disease	8,966	4,316	1.00(0.96, 1.04)	0.99(0.95, 1.03)	4,650
Heart disease	7,331	3,512	0.99(0.95, 1.04)	0.99(0.94, 1.03)	3,819
Stroke	861	432	1.08(0.95, 1.24)	1.05(0.92, 1.20)	429
Circulatory diseases	773	371	0.99(0.86, 1.14)	0.95(0.82, 1.09)	402
COPD	632	312	1.06(0.91, 1.24)	1.08(0.93, 1.27)	320
Chronic Liver disease	1,389	614	0.85(0.77, 0.95)	0.93(0.83, 1.03)	775
Cirrhosis	1,560	693	0.86(0.78, 0.95)	0.93(0.84, 1.03)	867
Alcoholic Liver disease	901	381	0.79(0.69, 0.90)	0.86(0.76, 0.99)	520
Nonalcoholic Liver disease	488	233	0.98(0.82, 1.17)	1.06(0.89, 1.27)	255
Acute Kidney disease	42	18	0.81(0.44, 1.50)	0.81(0.44, 1.50)	24
Chronic Kidney disease	272	133	1.03(0.82, 1.31)	0.96(0.75, 1.22)	139

Outcome	Total	Camp Lejeune #	Unadjusted HR (95% Cl)	Adjusted HR (95% CI)	Camp Pendleton #
Parkinson disease	23	15	2.09(0.89, 4.94)	2.05(0.86, 4.87)	8
ALS	131	64	1.03(0.73, 1.45)	1.04(0.73, 1.46)	67
Multiple sclerosis	56	29	1.18(0.70, 1.99)	1.18(0.70, 2.00)	27
Alcoholism	544	242	0.86(0.72, 1.02)	0.90(0.76, 1.07)	302
Suicide	3,666	1,664	0.88(0.83, 0.94)	0.93(0.87, 0.99)	2,002

Table 4 (continued)

CL=159,128 Males=151,026 Females=8,102; CP=168,406 Males=162,473 Females=5,933; Total=327,534 Males=313,499 Females=14,035; COPD: chronic obstructive pulmonary disease; ALS: amyotrophic lateral sclerosis; MDS: myelodysplastic syndrome; CML: chronic myeloid leukemia; AML: acute myeloid leukemia; CLL: chronic lymphocytic leukemia; ALL: acute lymphocytic leukema; CNS: central nervous system

HRs adjusted for sex, race, rank and education level; age was the time variable

civilian workers, the chronic liver disease HR of 0.74 was used. The prevalence difference would range between 15% and 25% (Table S26). Assuming a prevalence difference of 15%, the HRs for cancers of the oral cavity, larynx, pharynx, and female breast would increase by \leq 25.9%, \leq 17.6%, \leq 26%, and \leq 6.7%, respectively (Tables S27-S30).

For the Marines/Navy personnel subgroup, non-differential exposure misclassification bias would increase the HRs for Parkinson disease and cancers of the kidney, esophagus, and lung by $\leq 17.1\%$, $\leq 5\%$, $\leq 6.5\%$, and $\leq 4.2\%$, respectively (Table S31). For civilian workers, this bias would increase the HRs for cancers of the lung and female breast by < 3.5%, and increase the HRs for kidney cancer, chronic kidney disease and Parkinson disease by $\leq 12.5\%$, $\leq 13.3\%$, and $\leq 5\%$, respectively. The HR for female breast cancer as a contributing cause would increase by $\leq 6\%$ (Table S32).

Discussion

This cohort mortality study of Marines/Navy personnel and civilian workers at Camp Lejeune and Camp Pendleton included 40 years of follow-up, from 1979 to 2018. Person-years of follow-up totaled over 11 million for the Marines/Navy personnel subgroup and over 400,000 for the civilian workers.

Kidney cancer had $HRs \ge 1.20$ with $CIR \le 3$ for the Marines/Navy personnel subgroup and CIR > 3 for civilian workers. $HRs \ge 1.20$ were also observed for kidney cancer in the previous mortality studies of Marines/Navy personnel and civilian workers [8, 9]. TCE exposure is a known cause of kidney cancer [5].

Female breast cancer had HRs \geq 1.20 with CIR \leq 3 for the Marines/Navy personnel subgroup and as a contributing cause among civilian workers. A meta-analysis of occupational studies and breast cancer obtained pooled odds ratios for benzene and TCE of 1.12 (95% CI: 0.96, 1.31) and 1.19 (95% CI: 0.92, 1.53), respectively [25]. Occupational exposures to PCE and benzene were associated with breast cancer among pre-menopausal [26] and post-menopausal women [27]. In one study, PCE exposed workers had higher mammographic densities [40]. PCE-contaminated drinking water in Cape Cod, MA was associated with increased risk for breast cancer [41].

Male breast cancer as a contributing cause had a $HR \ge 1.20$ with CIR>3 in the analysis of the full cohort of Marines/Navy personnel. A case-control study of male breast cancer incidence found an increased risk among Camp Lejeune Marines compared to Marines from other bases [42]. Occupational TCE exposure has been associated with male breast cancer in three studies [43–45].

 $HRs \ge 1.20$ were found for myelodysplastic syndrome (CIR>3) and AML (CIR ≤ 3) among the Marines/Navy personnel subgroup and the full cohort, respectively. The previous mortality study of Marines/Navy personnel did not evaluate these cancers [8]. Benzene exposure has been associated with myelodysplastic syndrome [46] and is a known cause of AML [7].

The Marines/Navy personnel subgroup had HRs \geq 1.20 and a CIR \leq 3 for esophageal cancer and CIRs>3 for cervical, ovarian and testicular cancers. Hodgkin lymphoma had HRs \geq 1.20 and a CIR \leq 3 in the full cohort of Marines/Navy personnel and a CIR>3 civilian workers. The previous Camp Lejeune mortality study of Marines/Navy personnel found HRs \geq 1.20 for esophageal and cervical cancers and Hodgkin lymphoma but could not evaluate ovarian and testicular cancers [8].

Cancers of the pharynx, larynx (contributing cause), melanoma and CML had HRs \geq 1.20 and CIRs>3 among civilian workers. In the previous mortality study of Camp Lejeune civilian workers, an HR \geq 1.20 was observed for oral cavity cancers, which included pharyngeal cancer [9]. Occupational exposures to PCE and/or TCE among men and women were associated with cancers of the larynx and pharynx [23, 24]. One occupational study found an association between TCE and melanoma (OR=3.2, 95% CI: 1.0, 9.9) [47]. Associations between occupational benzene exposure and CML were found in a meta-analysis [48] and among benzene workers in China [49].

Parkinson disease had HRs≥1.20 with CIR≤3 among civilian workers and CIR>3 for the Marines/Navy personnel subgroup. The previous Camp Lejeune mortality studies found an increase in Parkinson disease among civilian workers but could not be evaluated among

Table 5 Comparison of Camp Lejeune (CL) and Camp Pendleton (CP) civilian workers: underlying cause of death

HR (95% C) HR (95% C) HR (95% C) HR (95% C) All causes 1.772 882 0.90(03), 1.09) 1.00(03), 1.11) 890 All causes 1.773 882 0.90(03), 1.09) 1.00(03), 1.11) 874 Oral cancers 20 10 1.00(0.42, 2.41) 1.83(0.41, 2.58) 10 Phatynx 12 8 2.02(0.61, 6.71) 2.21(0.63, 7.72) 4 Stomach 42 2 0.90(0.53, 1.72) 0.92(0.48, 1.76) 2.1 Stomach 126 5.8 0.96(0.51, 1.20) 0.95(0.53, 1.28) 5.5 Colonctal cancers 126 5.8 0.96(0.61, 1.20) 0.95(0.43, 2.09) 14 Rectory modification Fectorigmodi junction Fectorigmodi junction Fectorigmodi junction 15 6 0.66(0.24, 1.92) 0.87(0.31, 2.48) 9 Primary liver 15 6 0.66(0.24, 1.92) 0.87(0.31, 1.39) 2.81 Use pain Ad DK 41 0.44(0.43, 0.95) 0.71(0.41, 0.5) 0.71(0.41, 0.5) 6.3	Outcome	Total	Camp Lejeune #	Unadjusted	Adjusted	Camp Pendleton #
All cances 6.335 3.055 0.96 (0.91, 1.01) 0.96 (0.91, 1.11) 80 All malignancies 1,723 852 0.990.00, 1.08) 1.00(0.91, 1.11) 874 Oral cancers 20 10 1.00(0.42, 2.41) 1.03(0.41, 2.58) 10 Phaynx 12 8 2.020(61, 6.71) 2.21(0.63, 7.78) 4 Exophagus 37 13 0.54(0.28, 1.07) 0.63(0.31, 1.28) 21 Somach 42 21 0.980(53, 7.16) 0.85(0.56, 7.12) 21 Coloret cancers 101 42 0.980(53, 7.12) 0.86(0.31, 2.27) 9 Exetum and 7 13 0.930(43, 1.97) 0.95(0.43, 0.90) 14 Rectorsignid junction 17 8 0.870(0.42, 2.7) 0.84(0.31, 2.27) 9 Ever and bia ductrs 38 16 0.750(0.31, 1.84) 0.80(0.41, 1.57) 22 Pancess 104 1.100054, 1.23) 0.84(0.31, 2.48) 9 1 Pancess 14 1.50026, 0.46) <t< th=""><th></th><th></th><th></th><th>HR (95% CI)</th><th>HR (95% CI)</th><th></th></t<>				HR (95% CI)	HR (95% CI)	
All cancers 1,72 882 0.990,91,109 1.000,91,1.10 870 All mailgrancines 1,733 859 0.800,80,0.80 1.000,81,1.10 874 Chal cancers 20 0 0.900,84,2.40,10 1.030,84,2.40,10 240,063,7.78,10 4 Stomach 22 1.3 0.540,028,1.79 0.920,048,1.70 21 6.8 Colonctal cancers 1.26 5.8 0.860,051,7.12,0 0.850,051,2.4 6.8 Colon 101 4.6 0.850,057,1.26 0.850,054,1.28 5.7 Rectosignoid junction 7 8 0.870,034,2.27 9 9 Ibree rolinky gall badder 49 20 0.710,40,1.25 0.710,47,1.63 3.29 9 Phrmary liver 15 6 0.860,24,1.49 0.800,41,1.57 2.2 1.100,27,3.33 5 Ling 15 6 0.860,24,1.49 0.800,41,1.57 2.2 1.6 3.2 1.6 3.2 3.2 1.6 3.2 3.2 3.2	All causes	6,335	3,055	0.96 (0.91, 1.01)	0.96(0.91, 1.01)	3,280
All malgnancles 1,73 859 0.98(0.90, 0.80) 1.00(0.91, 1.00) 874 Pharynx 10 100 1.00(0.42, 2.41) 1.00(0.41, 2.50) 10 Esophagus 37 13 0.54(0.28, 1.07) 0.53(0.31, 1.28) 24 Stomach 42 21 0.98(0.51, 1.73) 0.92(0.48, 1.76) 21 Colorectal cancers 104 46 0.85(0.57, 1.26) 0.85(0.55, 1.26) 55 Colorectal cancers 101 46 0.85(0.57, 1.26) 0.85(0.54, 1.29) 55 Rectorigmoid junction - - 0.93(0.43, 1.97) 0.95(0.43, 2.09) 14 Neetum and 17 8 0.87(0.34, 2.27) 0.84(0.31, 2.27) 9 Uner, blingry gall belder 19 20 0.71(0.47, 0.3) 0.77(0.43, 1.34) 0.83(0.41, 1.57) 2 Primary liver 15 6 0.66(0.24, 1.92) 0.87(0.31, 2.49) 9 Primary liver 13 8 1.52(0.94, 64) 1.11(0.94, 2.38) 1.11(0.94, 2.48) 15 L	All cancers	1,772	882	0.99(0.91, 1.09)	1.00(0.91, 1.11)	890
Oral Lancers 20 10 1.000.42, 2.41 1.030.41, 2.25 10 Pharynx 12 8 2.0200.61, 6.71 2.210.63, 7.78 4 Esophagus 37 13 0.540.028, 1.071 0.630.031, 1.28 24 Colonectal Cancers 126 58 0.680(0.51, 1.23) 0.850.05, 1.24 68 Colon 101 46 0.850.05, 7, 1.26 0.850.05, 1.24 68 Colon 101 46 0.850.05, 7, 1.26 0.850.05, 1.24 68 Bectum and 27 13 0.930.43, 1.97 0.950.43, 2.09 14 Unersplangyall bladder 49 20 0.710.44, 1.05 0.770.43, 1.39 29 Liver and ble ducts 15 6 0.860.24, 1.92 0.870.031, 2.48 9 Primary liver 15 6 0.860.24, 1.92 0.870.031, 2.48 9 Primary liver 130 1.300.91, 1.30 0.820.031, 1.30 28 Ling 14 1 0.660.032, 1.33 0.800.031, 1.30 <t< td=""><td>All malignancies</td><td>1,733</td><td>859</td><td>0.98(0.90, 1.08)</td><td>1.00(0.91, 1.10)</td><td>874</td></t<>	All malignancies	1,733	859	0.98(0.90, 1.08)	1.00(0.91, 1.10)	874
Pharynx 12 8 20200.01, 6.71 2.210.63, 7.89 4 Stomach 37 13 0.540, 20, 107 0.540, 31, 128) 24 Stomach 42 21 0.960, 65, 1.79 0.920, 48, 1.76) 21 Caloractal cancers 101 46 0.860, 65, 1.28, 05, 128) 55 Rectorigmoid junction 7 13 0.930, 43, 1.97 0.950, 43, 209 14 Rectorigmoid junction 7 8 0.870, 34, 1.97 0.840, 31, 227 9 Liver, Milary, gall bladder 49 20 0.710, 40, 1.25 0.770, 43, 1.93 0.92 Pirmary liver 15 6 0.660, 24, 1.92 0.870, 31, 248 9 Pancreas 14 1 0.640, 43, 0.95 0.710, 44, 1.05 25 Lingry bladder 13 8 1.520, 0.40, 47 1.130, 0.3, 348 5 Lingry bladder 43 18 0.520, 0.47 1.130, 0.3, 1.33 28 Connective tissue 17 12 2.420, 0.25, 689 3.0	Oral cancers	20	10	1.00(0.42, 2.41)	1.03(0.41, 2.58)	10
Exophagus 37 13 0.54(0.28, 1.07) 0.53(0.31, 1.28) 24 Coloractal cancers 126 58 0.86(0.61, 1.23) 0.86(0.59, 1.24) 68 Color 101 46 0.85(0.57, 1.26) 0.85(0.65, 1.28) 55 Rectum and 27 13 0.93(0.43, 1.97) 0.93(0.43, 2.20) 9 Liver mand bile ducts 38 16 0.87(0.34, 1.23) 0.87(0.31, 2.48) 9 Primary liver 15 6 0.68(0.41, 0.22) 0.87(0.31, 2.48) 9 Pancess 104 41 0.64(0.43, 0.95) 0.71(0.47, 1.16) 63 Ling 51 6 0.68(0.24, 1.92) 0.87(0.31, 2.48) 9 Pancess 104 41 0.64(0.43, 0.95) 0.71(0.47, 1.16) 63 Ling 310 1.10(0.94, 1.30) 1.13(0.96, 1.34) 281 1.13(0.96, 1.34) 281 Using add CNS 55 0.66(0.22, 0.98) 0.71(0.41, 1.36) 0.50(0.31, 1.13) 282 Using add CNS 45	Pharynx	12	8	2.02(0.61, 6.71)	2.21(0.63, 7.78)	4
Stomach 42 21 0.98(035, 1.79) 0.92(048, 1.76) 21 Colorectal cancers 126 58 0.98(06, 11, 23) 0.85(0.56, 1.28) 55 Rectom and Rectosignoid junction 17 8 0.87(034, 227) 0.84(0.35, 0.29) 9 Liver, billary, gall bladder 17 8 0.87(034, 227) 0.84(0.31, 39) 29 Liver, and lidary 15 6 0.75(0.40, 1.25) 0.77(0.43, 1.27) 9 Pances 164 0.75(0.35), 1.43) 0.80(0.41, 1.57) 22 Primary liver 15 6 0.68(0.24, 1.02) 0.87(0.41, 1.27) 22 Lingy 13 8 15.05(0.82, 0.30) 1.100(0.41, 1.30) 1.30, 0.31, 0.33 5 Lingy 13 8 15.05(0.82, 0.30) 0.71(0.47, 1.06) 6.3 Lingy 13 8 1.02(0.43, 1.43) 0.65(0.34, 1.26) 5 Connective tissue 13 8 0.76(0.43, 1.43) 0.5 5 Brain arC NS 17 14 <t< td=""><td>Esophagus</td><td>37</td><td>13</td><td>0.54(0.28, 1.07)</td><td>0.63(0.31, 1.28)</td><td>24</td></t<>	Esophagus	37	13	0.54(0.28, 1.07)	0.63(0.31, 1.28)	24
Colorectil cancers 126 58 0.860(05,1,23) 0.86(0,5),1,24) 68 Colon 10 46 0.85(0,57,1,26) 0.85(0,55,1,28) 55 Rectum and Pectum only 77 13 0.93(0,43,1,97) 0.90(0,43,1,227) 0.84(0,31,2,27) 9 Liver, billary, gall bladder 49 20 0.71(0,40,1,25) 0.77(0,43,1,39) 29 Liver, and bile ducts 38 16 0.69(0,24,1,22) 0.87(0,31,2,48) 9 Pancreas 104 41 0.64(0,043, 0.95) 0.71(0,47,1,06) 63 Lung 591 310 1.10(0,94,1,30) 1.310,096,1,34) 281 Urinary bladder 43 18 0.78(0,43,1,43) 0.65(0,34,1,26) 25 Kidney 59 24 1.56(0,82,2,98) 1.44(0,73,1,284) 15 Brain and CNS 45 17 0.50(32,1,07) 0.61(0,31,1,13) 28 Connective Issue 11 5 0.81(0,25,2,65) 0.60(0,17,2,14) 6 Hematopolici Cancers 1	Stomach	42	21	0.98(0.53, 1.79)	0.92(0.48, 1.76)	21
Colon 101 46 0.85(05,1,26) 0.85(0,5,1,26) 55 Rectum andy 27 13 0.93(0,43,1,97) 0.95(0,45,1,29) 14 Rectum andy 17 8 0.87(0,34,2,27) 0.84(0,31,27) 9 Liver bialry gall bladder 49 0 0.77(0,43,1,39) 0.90(0,41,157) 22 Primary liver 15 6 0.86(0,24,192) 0.87(0,31,248) 9 Pancreas 104 41 0.64(0,43, 0.95) 0.71(0,47,106) 63 Lingy 13 8 1.52(0,50,467) 1.19(0,37,3.83) 5 Lingy 39 14 1.56(0.82,298) 1.44(0,73,284) 15 Brain and CNS 43 18 0.87(0,71,128) 0.65(0,31,1.3) 28 Connective tissue 11 5 0.87(0,71,128) 0.66(0,17,2.1/4) 6 Melanoma 17 12 2.47(0,85,689) 3.04(0,2,2.4) 11 Myeloid cancers 17 6 0.57(0,1,1.53) 0.97(0,1,1.53)	Colorectal cancers	126	58	0.86(0.61, 1.23)	0.86(0.59, 1.24)	68
Rectury and Rectury (junction) 27 13 0.93(0.43, 1.97) 0.95(0.43, 2.09) 14 Rectury only 17 8 0.87(0.34, 2.27) 0.84(0.31, 2.27) 9 Liver, billary, gall bladder 49 20 0.71(0.40, 1.25) 0.77(0.43, 1.39) 29 Liver, and bill ducts 38 16 0.56(0.34, 2.09) 0.71(0.41, 1.57) 22 Pancreas 104 41 0.64(0.43, 0.95) 0.71(0.47, 1.06) 63 Ling 591 310 1.10(0.94, 1.30) 1.13(0.96, 1.34) 281 Unary bladder 43 18 0.78(0.32, 1.43) 0.65(0.32, 1.20) 25 Kidney 59 24 1.56(0.82, 2.98) 1.44(0.73, 2.84) 15 Bein and CNS 45 17 0.56(0.32, 1.07) 0.61(0.33, 1.13) 28 Connective tissue 11 5 0.81(0.25, 2.65) 0.60(0.17, 2.14) 6 Melanoma 17 6 0.57(0.21, 1.53) 0.84(0.30, 2.34) 11 Melanoma 5 3 <td>Colon</td> <td>101</td> <td>46</td> <td>0.85(0.57, 1.26)</td> <td>0.85(0.56, 1.28)</td> <td>55</td>	Colon	101	46	0.85(0.57, 1.26)	0.85(0.56, 1.28)	55
Rectum only 17 8 0.87(034,227) 0.47(031,122) 9 Liver, billary, gall bladder 38 16 0.77(040,125) 0.77(03,139) 29 Liver, and bile ducts 38 16 0.57(03,1,143) 0.80(04,1,157) 22 Primary liver 15 6 0.68(02,4,192) 0.87(03,1,248) 9 Pancreas 104 41 0.64(04,0,055) 0.71(04,1105) 63 Lung 591 310 1.10(094,130) 1.13(096,134) 281 Unary bladder 43 18 0.78(03,1,143) 0.61(033,1,13) 28 Kichey 39 24 1.56(08,2,296) 0.61(0,17,2,14) 6 Brain and CNS 45 17 0.58(03,2,107) 0.61(033,1,13) 28 Connective tissue 17 6 0.90(0,7,1,28) 3.01(0,5,7,05) 5 Hematopoletic cancers 174 84 0.95(0,7,1,28) 1.00(0,7,1,36) 9.02(1,3,3,17) Veglead cancers 4 0.90(0,4,1,66) 0.98(05,1,	Rectum and Rectosigmoid junction	27	13	0.93(0.43, 1.97)	0.95(0.43, 2.09)	14
Liver, bilary, gall bladder 94 20 0.71(0.40, 1.25) 0.77(0.43, 1.39) 29 Liver and bile ducts 38 16 0.75(0.39, 1.43) 0.80(0.41, 1.57) 22 Pinary liver 15 6 0.68(0.24, 1.25) 0.87(0.31, 2.48) 9 Pancreas 104 41 0.64(0.43, 0.95) 0.71(0.47, 1.06) 63 Larynx 13 8 1.52(0.50, 4.67) 1.19(0.96, 1.34) 281 Unary bladder 43 18 0.78(0.43, 1.43) 0.65(0.34, 1.26) 25 Kidney 39 24 1.50(0.82, 2.98) 1.44(0.73, 2.84) 15 Brain and CNS 17 0.58(0.32, 1.07) 0.61(0.31, 1.13) 28 Connective tissue 11 5 0.81(0.25, 2.65) 0.61(0.17, 2.14) 6 Melanoma 7 12 2.42(0.85, 6.89) 3.03(1.05, 8.76) 5 Hematopoletic cancers 17 6 0.57(0.21, 1.53) 0.94(0.30, 2.44) 11 Myeloid cancers 17 6 0.97(0.61,	Rectum only	17	8	0.87(0.34, 2.27)	0.84(0.31, 2.27)	9
Liver and bile ducts 38 16 0.75(0.39, 1.43) 0.80(0.41, 1.57) 22 Primary liver 15 6 0.68(0.24, 1.92) 0.87(0.31, 2.48) 9 Pancreas 104 41 0.64(0.43, 0.95) 0.71(0.47, 1.66) 63 Lung 5 1.19(0.37, 3.83) 5 5 Unary bladder 43 1.81 0.78(0.43, 1.43) 0.65(0.34, 1.26) 25 Kichey 39 24 1.55(0.82, 2.98) 1.44(0.73, 2.84) 15 Brain and CNS 45 17 0.58(0.32, 1.07) 0.61(0.33, 1.13) 28 Connective tissue 11 5 0.81(0.25, 2.65) 0.60(0.17, 2.14) 6 Hematopolicic cancers 174 84 0.95(0.70, 1.28) 1.00(0.73, 1.36) 90 Lymphoid cancers 174 84 0.95(0.21, 1.53) 0.84(0.3, 0.30) 3.03 1.65 2.7 Non-Hodgkin lymphoma 5 3 1.44(0.25, 8.86) 1.55(0.27, 9.6) 2 Non-Hodgkin lymphoma 13	Liver, biliary, gall bladder	49	20	0.71(0.40, 1.25)	0.77(0.43, 1.39)	29
Primary liver 15 6 0.68(0.24, 1.92) 0.87(0.31, 2.48) 9 Panceas 104 41 0.64(0.43, 0.95) 0.71(0.47, 1.06) 63 Larynx 130 1.52(05, 0.47) 1.19(0.37, 3.83) 5 Lung 591 310 1.10(0.94, 1.30) 1.130, 96, 1.34) 281 Urinary bladder 43 18 0.78(0.43, 1.43) 0.65(0.34, 1.26) 25 Kidney 39 24 1.56(0.82, 2.98) 1.44(0.73, 2.84) 15 Bain and CNS 45 17 0.58(0.32, 1.07) 0.61(0.33, 1.13) 28 Connective tissue 11 5 0.81(0.25, 2.65) 0.60(0.17, 2.14) 6 Hematopolicit cancers 17 12 2.42(0.85, 6.89) 3.03(1.05, 8.76) 5 Lymphoid cancers 17 6 0.57(0.21, 1.53) 0.84(0.30, 2.34) 11 Moldigh inprhoma 5 3 0.46(0.25, 8.66) 1.65(0.27, 9.96) 2 Non-Hodgkin hymphoma 5 3 0.97(0.61, 1.53)	Liver and bile ducts	38	16	0.75(0.39, 1.43)	0.80(0.41, 1.57)	22
Pancreas 104 41 0.64(0.43, 0.95) 0.71(0.47, 1.06) 63 Larynx 13 8 1.52(0.50, 4.67) 1.19(0.37, 383) 5 Lung 591 310 1.10(0.94, 1.30) 1.13(0.96, 1.34) 281 Kidney 39 24 0.78(0.43, 1.43) 0.65(0.34, 1.26) 25 Brain and CNS 45 17 0.58(0.32, 1.07) 0.61(0.33, 1.13) 28 Connective tissue 17 12 2.42(0.85, 6.89) 3.03(1.05, 8.76) 5 Melanoma 17 12 2.42(0.85, 6.89) 3.03(1.05, 8.76) 5 Melanoma 17 6 0.57(0.21, 1.53) 0.84(0.30, 2.34) 11 Myeloid cancers 40 9 0.89(0.48, 1.66) 0.98(0.51, 1.88) 21 Multiple myeloma 5 3 1.11(0.53, 2.33) 0.92(0.47, 2.24) 13 Leukernias 68 13 0.86(0.22, 2.09) 0.85(0.27, 2.63) 8 Multiple myeloma 13 13 0.93(0.46, 1.88)	Primary liver	15	6	0.68(0.24, 1.92)	0.87(0.31, 2.48)	9
Larynx 13 8 1.52(0.50, 4.67) 1.19(0.37, 3.83) 5 Lung 591 310 1.10(0.94, 1.30) 1.13(0.96, 1.34) 281 Urinary bladder 43 18 0.78(0.43, 1.43) 0.65(0.34, 1.26) 25 Kichey 39 24 1.56(0.82, 2.98) 1.44(0.73, 2.84) 15 Brain and CNS 45 17 0.58(0.32, 1.07) 0.61(0.33, 1.13) 28 Connective tissue 11 5 0.81(0.25, 2.65) 0.60(0.17, 2.14) 6 Melanoma 17 12 2.42(0.85, 6.89) 3.03(1.05, 8.76) 5 Hematopolicit cancers 174 84 0.95(0.07, 0.128) 1.0007, 1.36) 0.97 Lymphoid cancers 40 19 0.89(0.48, 1.66) 0.98(0.51, 1.88) 21 NortHodgkin lymphoma 5 3 0.970(6.1, 1.53) 0.95(0.59, 1.54) 38 Multiple myeloma 28 11 0.85(0.53, 1.37) 1.000.61, 1.64) 37 CLL 13 5 0.970(6.4,	Pancreas	104	41	0.64(0.43, 0.95)	0.71(0.47, 1.06)	63
Lung 591 310 1.10(0.94, 1.30) 1.13(0.96, 1.34) 281 Urinary bladder 43 18 0.78(0.43, 1.43) 0.65(0.34, 1.26) 25 Kidney 39 24 1.56(0.82, 2.98) 1.44(0.73, 2.84) 15 Bain and CNS 45 17 0.58(0.32, 1.07) 0.61(0.33, 1.13) 28 Connective tissue 11 5 0.81(0.25, 2.65) 0.60(0.17, 2.14) 6 Melanoma 17 12 2.42(0.85, 6.89) 3.03(1.05, 8.76) 5 Hematopoietic cancers 174 84 0.95(0.71, 1.28) 0.94(0.30, 2.34) 11 Myeloid cancers 40 19 0.89(0.48, 1.66) 0.98(0.51, 1.88) 21 Hodgkin lymphoma 5 3 1.48(0.25, 8.86) 1.65(0.27, 9.96) 2 Non-Hodgkin lymphoma 73 5 0.99(0.48, 1.66) 0.98(0.51, 1.83) 36 Leukemias 18 1.11(0.53, 2.33) 1.02 (0.47, 2.24) 13 14 Leukemias 18 1.11(0.52, 3.54) <td>Larynx</td> <td>13</td> <td>8</td> <td>1.52(0.50, 4.67)</td> <td>1.19(0.37, 3.83)</td> <td>5</td>	Larynx	13	8	1.52(0.50, 4.67)	1.19(0.37, 3.83)	5
Utinary bladder 43 18 0.78(0.43, 1.43) 0.65(0.34, 1.26) 25 Kidney 39 24 1.56(0.82, 2.98) 1.44(0.73, 2.84) 15 Brain and CNS 45 17 0.58(0.32, 1.07) 0.61(0.33, 1.13) 28 Connective tissue 17 12 2.42(0.85, 6.89) 303(1.05, 8.76) 5 Hematopoletic cancers 174 84 0.95(0.70, 1.28) 1.00(0.73, 1.36) 90 Lymphoid cancers 17 6 0.57(0.21, 1.53) 0.84(0.30, 2.34) 11 Myeloid cancers 17 6 0.57(0.21, 1.53) 0.98(0.51, 1.88) 21 Non-Hodgkin lymphoma 5 3 1.46(0.25, 8.86) 1.65(0.27, 0.96) 2 Non-Hodgkin lymphoma 73 35 0.97(0.61, 1.53) 0.95(0.51, 1.88) 37 Leukemias 68 31 0.85(0.22, 2.09) 0.85(0.27, 2.63) 8 Multipe myeloma 13 5 0.66(0.22, 0.59, 1.54) 3 3 CLL 13 15 <t< td=""><td>Lung</td><td>591</td><td>310</td><td>1.10(0.94, 1.30)</td><td>1.13(0.96, 1.34)</td><td>281</td></t<>	Lung	591	310	1.10(0.94, 1.30)	1.13(0.96, 1.34)	281
Kidney 39 24 1.56(0.82, 2.98) 1.44(0.73, 2.84) 15 Brain and CNS 45 17 0.58(0.32, 1.07) 0.61(0.33, 1.13) 28 Connective tissue 11 5 0.81(0.25, 2.65) 0.60(0.17, 2.14) 6 Melanoma 17 12 2.42(0.85, 6.89) 303(1.05, 8.76) 90 Lymphoid cancers 174 84 0.95(0.70, 1.28) 1.00(0.73, 1.36) 90 Lymphoid cancers 17 6 0.57(0.21, 1.53) 0.84(0.30, 2.34) 11 Myeloid cancers 40 19 0.89(0.48, 1.66) 0.98(0.51, 1.88) 21 Hodgkin lymphoma 73 35 0.97(0.61, 1.53) 0.95(0.59, 1.54) 38 Multiple myeloma 28 15 1.11(0.53, 2.33) 1.02(0.47, 2.24) 13 Leukemias 68 31 0.85(0.52, 1.37) 1.00(0.61, 1.64) 37 CLL 13 5 0.68(0.22, 2.09) 0.85(0.27, 2.63) 8 Multiple myeloma 18 4 0.90(Urinary bladder	43	18	0.78(0.43, 1.43)	0.65(0.34, 1.26)	25
Brain and CNS 45 17 0.58(0.32, 1.07) 0.61(0.33, 1.13) 28 Connective tissue 11 5 0.81(0.25, 2.65) 0.60(0.17, 2.14) 6 Melanoma 17 12 2.42(0.85, 6.89) 3.03(1.05, 8.76) 5 Hematopoletic cancers 174 84 0.95(0.70, 1.28) 1.00(0.73, 1.36) 90 Lymphoid cancers 17 6 0.57(0.21, 1.53) 0.84(0.30, 2.34) 11 Myeloid cancers 40 19 0.89(0.48, 1.66) 0.98(0.51, 1.88) 21 Hodgkin lymphoma 5 3 1.48(0.25, 8.86) 1.65(0.27, 9.96) 2 Non-Hodgkin lymphoma 73 35 0.97(0.61, 1.53) 0.90(0.59, 1.54) 38 Multiple myeloma 28 15 1.11(0.53, 2.33) 1.02(0.47, 2.02) 16 CLL 13 5 0.88(0.22, 2.09) 0.85(0.27, 2.63) 8 Multiple myeloma 13 14 0.99(0.25, 3.96) 1.26(0.29, 5.48) 33 CLL 81 48	Kidney	39	24	1.56(0.82, 2.98)	1.44(0.73, 2.84)	15
Connective tissue 11 5 0.81(0.25, 265) 0.60(0.17, 2.14) 6 Melanoma 17 12 2.42(0.85, 6.89) 3.03(1.05, 8.76) 5 Hematopoletic cancers 174 84 0.95(0.70, 1.28) 1.00(0.73, 1.36) 90 Lymphoid cancers 17 6 0.57(0.21, 1.28) 0.84(0.30, 2.34) 11 Myeloid cancers 19 0.89(0.48, 1.66) 0.98(0.51, 1.88) 21 Hodgkin lymphoma 5 3 1.48(0.25, 8.86) 1.65(0.27, 9.96) 2 Non-Hodgkin lymphoma 73 35 0.97(0.61, 1.53) 0.95(0.59, 1.54) 38 Multiple myeloma 28 15 1.11(0.53, 2.33) 1.02 (0.47, 2.24) 13 Leukemias 68 31 0.85(0.22, 2.09) 0.85(0.27, 2.63) 8 ML 13 5 0.68(0.22, 2.09) 0.85(0.27, 2.63) 8 CLL 13 48 1.24 (0.79, 1.93) 1.19 (0.76, 1.88) 33 Uterus 19 10 1.00 (0.41, 2.48)	Brain and CNS	45	17	0.58(0.32, 1.07)	0.61(0.33, 1.13)	28
Melanoma 17 12 2.42(0.85, 6.89) 3.03(1.05, 8.76) 5 Hematopoletic cancers 174 84 0.95(0.70, 1.28) 1.00(0.73, 1.36) 90 Lymphoid cancers 17 6 0.57(0.21, 1.53) 0.84(0.30, 2.34) 11 Myeloid cancers 40 19 0.89(0.48, 1.66) 0.96(0.51, 1.88) 21 Hodgkin lymphoma 73 35 0.97(0.61, 1.53) 0.95(0.59, 1.54) 38 Multiple myeloma 28 15 1.11(0.53, 2.33) 1.02(0.47, 2.24) 13 Leukemias 68 31 0.85(0.53, 1.37) 1.00(0.61, 1.64) 37 CLL 13 5 0.68(0.22, 0.90) 0.85(0.27, 2.63) 8 AML 13 15 0.93(0.46, 1.88) 0.97(0.47, 2.02) 16 CML 8 4 0.99(0.25, 3.96) 1.26(0.29, 5.48) 4 Verus 19 10 1.00(0.41, 2.48) 0.99(0.39, 2.49) 9 Ovary 36 14 0.58(0.29, 1.13) 0.6	Connective tissue	11	5	0.81(0.25, 2.65)	0.60(0.17, 2.14)	6
Hematopoletic cancers 174 84 0.95(0,70,1.28) 1.00(0,73,1.36) 90 Lymphoid cancers 17 6 0.57(0,21,1.53) 0.84(0.30,2.34) 11 Myeloid cancers 40 19 0.89(0,48,1.66) 0.98(0,51,1.88) 21 Hodgkin lymphoma 5 3 1.48(0,25,8.86) 1.65(0,27,9.96) 2 Non-Hodgkin lymphoma 73 35 0.97(0,61,1.53) 0.95(0,59,1.54) 38 Multiple myeloma 28 15 1.11(0,53,2.33) 1.02(0,47,2.24) 13 Leukemias 68 31 0.85(0,53,1.37) 1.00(0,61,1.64) 37 CLL 13 5 0.68(0,22,2.09) 0.85(0,27,2.63) 8 ML 31 15 0.93(0,46,1.88) 0.97(0,47,2.02) 16 CML 8 4 0.99(0,25,3.96) 1.26(0,29,5.48) 4 Verus 19 10 1.00 (0.41,2.48) 0.99(0,39,2.49) 9 Oxary 36 14 0.92(0,91,1.30) 0.60(0,30,1.19)<	Melanoma	17	12	2.42(0.85, 6.89)	3.03(1.05, 8.76)	5
Lymphold cancers 17 6 0.57(0.21, 1.53) 0.84(0.30, 2.34) 11 Myeloid cancers 40 19 0.89(0.48, 1.66) 0.98(0.51, 1.88) 21 Hodgkin lymphoma 5 3 1.48(0.25, 8.86) 1.65(0.27, 9.96) 2 Non-Hodgkin lymphoma 73 35 0.97(0.61, 1.53) 0.95(0.59, 1.54) 38 Multiple myeloma 28 15 1.11(0.53, 2.33) 1.02 (0.47, 2.24) 13 Leukemias 68 31 0.85(0.53, 1.37) 1.00(0.61, 1.64) 37 CLL 13 5 0.68(0.22, 2.09) 0.85(0.27, 2.63) 8 AML 31 15 0.93(0.46, 1.88) 0.97(0.47, 2.02) 16 CML 8 4 0.99(0.25, 3.96) 1.26(0.29, 5.48) 4 Verus 19 10 1.00 (0.41, 2.48) 0.99 (0.39, 2.49) 9 Ovary 36 14 0.58 (0.29, 1.13) 0.60 (0.30, 1.19) 22 Prostate 130 71 1.32 (0.93, 1.86)	Hematopoietic cancers	174	84	0.95(0.70, 1.28)	1.00(0.73, 1.36)	90
Myeloid cancers 40 19 0.89(0.41, 1.66) 0.98(0.51, 1.81) 21 Hodgkin lymphoma 5 3 1.48(0.25, 8.86) 1.65(0.27, 9.96) 2 Non-Hodgkin lymphoma 73 35 0.97(0.61, 1.53) 0.95(0.59, 1.54) 38 Multiple myeloma 28 15 1.11(0.53, 2.33) 1.02 (0.47, 2.24) 13 Leukemias 68 31 0.85(0.53, 1.37) 1.00(0.61, 1.64) 37 CLL 13 5 0.68(0.22, 2.09) 0.85(0.27, 2.63) 8 AML 31 15 0.93(0.46, 1.88) 0.97(0.47, 2.02) 16 CML 8 4 0.99(0.25, 3.96) 1.26(0.29, 5.48) 4 Female Breast 81 48 1.24 (0.79, 1.93) 1.19 (0.76, 1.88) 33 Uterus 19 10 1.00 (0.41, 2.48) 0.99 (0.39, 2.49) 9 Ovary 36 14 0.58 (0.29, 1.13) 0.60 (0.30, 1.19) 22 Prostate 130 71 1.32 (0.93, 1.86) <td< td=""><td>Lymphoid cancers</td><td>17</td><td>6</td><td>0.57(0.21, 1.53)</td><td>0.84(0.30, 2.34)</td><td>11</td></td<>	Lymphoid cancers	17	6	0.57(0.21, 1.53)	0.84(0.30, 2.34)	11
Hodgkin lymphoma531.48(0.25, 8.86)1.65(0.27, 9.96)2Non-Hodgkin lymphoma73350.97(0.61, 1.53)0.95(0.59, 1.54)38Multiple myeloma28151.11(0.53, 2.33)1.02 (0.47, 2.24)13Leukemias68310.85(0.53, 1.37)1.00(0.61, 1.64)37CLL1350.68(0.22, 2.09)0.85(0.27, 2.63)8AML31150.93(0.46, 1.88)0.97(0.47, 2.02)16CML840.99(0.25, 3.96)1.26(0.29, 5.48)4Female Breast81481.24 (0.79, 1.93)1.19 (0.76, 1.88)33Uterus19101.05 (0.04, 1.248)0.99 (0.39, 2.49)9Ovary36140.58 (0.29, 1.13)0.60 (0.30, 1.19)22Prostate130711.32 (0.93, 1.86)1.03 (0.71, 1.51)59Diabetes197940.94(0.71, 1.24)0.81 (0.60, 1.10)103Cardiovascular disease2,3771,1050.91 (0.84, 0.99)0.91 (0.83, 0.99)1,272Anemias1072.38 (0.61, 9.24)1.91 (0.48, 7.65)3Chronic liver disease87360.64 (0.42, 0.98)0.74 (0.48, 1.15)51Alcoholic liver disease36191.04 (0.54, 2.01)1.11 (0.57, 2.17)17Alcoholic liver disease36191.04 (0.54, 2.01)1.11 (0.57, 2.17)17Alcoholic liver disease75492.04 (1.27, 3.29)1.88	Myeloid cancers	40	19	0.89(0.48, 1.66)	0.98(0.51, 1.88)	21
Non-Hodgkin lymphoma 73 35 0.97(0.61, 1.53) 0.97(0.5, 9, 1.54) 38 Multiple myeloma 28 15 1.11(0.53, 2.33) 1.02 (0.47, 2.24) 13 Leukemias 68 31 0.85(0.53, 1.37) 1.00(0.61, 1.64) 37 CLL 13 5 0.68(0.22, 2.09) 0.85(0.27, 2.63) 8 AML 31 15 0.93(0.46, 1.88) 0.97(0.47, 2.02) 16 CML 8 4 0.99(0.25, 3.96) 1.26(0.29, 5.48) 4 Female Breast 81 48 1.24 (0.79, 1.93) 1.19 (0.76, 1.88) 33 Uterus 19 10 1.00 (0.41, 2.48) 0.99 (0.39, 2.49) 9 Ovary 36 14 0.58 (0.29, 1.13) 0.60 (0.30, 1.19) 22 Prostate 130 71 1.32 (0.93, 1.86) 1.03 (0.71, 1.51) 59 Diabetes 197 94 0.94(0.71, 1.24) 0.81 (0.60, 1.10) 103 Cardiovascular disease 10 7 2.38 (0.61, 9.24)	Hodgkin lymphoma	5	3	1.48(0.25, 8.86)	1.65(0.27, 9.96)	2
Multiple myeloma28151.11(0.53, 2.33)1.02 (0.47, 2.24)13Leukemias68310.85(0.53, 1.37)1.00(0.61, 1.64)37CLL1350.68(0.22, 2.09)0.85(0.27, 2.63)8AML31150.93(0.46, 1.88)0.97(0.47, 2.02)16CML840.99(0.25, 3.96)1.26(0.29, 5.48)4Female Breast81481.24 (0.79, 1.93)1.19 (0.76, 1.88)33Uterus19101.00 (0.41, 2.48)0.99 (0.39, 2.49)9Ovary36140.58 (0.29, 1.13)0.60 (0.30, 1.19)22Prostate130711.32 (0.93, 1.86)1.03 (0.71, 1.51)59Diabetes197940.94(0.71, 1.24)0.81 (0.60, 1.10)103Cardiovascular disease2,3771,1050.91 (0.84, 0.99)0.91 (0.83, 0.99)1,272Anemias1072.38 (0.61, 9.24)1.91 (0.48, 7.65)3Chronic liver disease87360.64 (0.42, 0.98)0.74 (0.48, 1.15)51Alcoholic liver disease86191.04 (0.54, 2.01)1.11 (0.57, 2.17)17Alcoholism1770.63 (0.24, 1.65)0.67 (0.24, 1.83)10Chronic kidney disease75492.04 (1.27, 3.29)1.88 (1.13, 3.11)26COPD3841710.86 (0.70, 1.04)0.91 (0.46, 4.16)0.91 (0.46, 4.16)2.13	Non-Hodgkin lymphoma	73	35	0.97(0.61, 1.53)	0.95(0.59, 1.54)	38
Leukemias 68 31 0.85(0.53, 1.37) 1.00(0.61, 1.64) 37 CLL 13 5 0.68(0.22, 2.09) 0.85(0.27, 2.63) 8 AML 31 15 0.93(0.46, 1.88) 0.97(0.47, 2.02) 16 CML 8 4 0.99(0.25, 3.96) 1.26(0.29, 5.48) 4 Female Breast 81 48 1.24 (0.79, 1.93) 1.19 (0.76, 1.88) 33 Uterus 19 10 1.00 (0.41, 2.48) 0.99 (0.39, 2.49) 9 Ovary 36 14 0.58 (0.29, 1.13) 0.60 (0.30, 1.19) 22 Prostate 130 71 1.32 (0.93, 1.86) 1.03 (0.71, 1.51) 59 Diabetes 197 94 0.94(0.71, 1.24) 0.81(0.60, 1.10) 103 Chronic liver disease 2,377 1,105 0.91(0.84, 0.99) 0.91(0.83, 0.99) 1,272 Anemias 10 7 2.38(0.61, 9.24) 1.91(0.48, 7.65) 3 Nonalcoholic liver disease 87 36 0.64(0.42, 0.98)	Multiple myeloma	28	15	1.11(0.53, 2.33)	1.02 (0.47, 2.24)	13
CLL1350.68(0.22, 0.9)0.85(0.27, 2.63)8AML31150.93(0.46, 1.88)0.97(0.47, 2.02)16CML840.99(0.25, 3.96)1.26(0.29, 5.48)4Female Breast81481.24 (0.79, 1.93)1.19 (0.76, 1.88)33Uterus19101.00 (0.41, 2.48)0.99 (0.39, 2.49)9Ovary36140.58 (0.29, 1.13)0.60 (0.30, 1.19)22Prostate130711.32 (0.93, 1.86)1.03 (0.71, 1.51)59Diabetes197940.94(0.71, 1.24)0.81 (0.60, 1.10)103Cardiovascular disease2,3771,1050.91 (0.84, 0.99)0.91 (0.83, 0.99)1,272Anemias1072.38(0.61, 9.24)1.91 (0.48, 7.65)3Chronic liver disease87360.64 (0.42, 0.98)0.74 (0.48, 1.15)51Alcoholic liver disease86191.04 (0.54, 2.01)1.11 (0.57, 2.17)17Alcoholism1770.63 (0.24, 1.65)0.67 (0.24, 1.83)10Chronic kidney disease75492.04 (1.27, 3.29)1.88 (1.13, 3.11)26COPD3841710.86 (0.70, 1.05)0.91 (0.74, 1.21)21	Leukemias	68	31	0.85(0.53, 1.37)	1.00(0.61, 1.64)	37
AML31150.93(0.46, 1.83)0.97(0.47, 2.02)16CML840.99(0.25, 3.96)1.26(0.29, 5.48)4Female Breast81481.24 (0.79, 1.93)1.19 (0.76, 1.88)33Uterus19101.00 (0.41, 2.48)0.99 (0.39, 2.49)9Ovary36140.58 (0.29, 1.13)0.60 (0.30, 1.19)22Prostate130711.32 (0.93, 1.86)1.03 (0.71, 1.51)59Diabetes197940.94(0.71, 1.24)0.81(0.60, 1.10)103Cardiovascular disease2,3771,1050.91(0.84, 0.99)0.91(0.83, 0.99)1,272Anemias1072.38(0.61, 9.24)1.91(0.48, 7.65)3Chronic liver disease87360.64(0.42, 0.98)0.74(0.48, 1.15)51Alcoholic liver disease36191.04(0.54, 2.01)1.11(0.57, 2.17)17Alcoholism1770.63(0.24, 1.65)0.67(0.24, 1.83)10Chronic kidney disease75492.04(1.27, 3.29)1.88(1.13, 3.11)26COPD3841710.80(0.70, 1.040)0.91(0.42, 0.490)0.91(0.41, 0.42, 0.490)213	CLL	13	5	0.68(0.22, 2.09)	0.85(0.27, 2.63)	8
CML 8 4 0.99(0.25, 3.96) 1.26(0.29, 5.48) 4 Female Breast 81 48 1.24 (0.79, 1.93) 1.19 (0.76, 1.88) 33 Uterus 19 10 1.00 (0.41, 2.48) 0.99 (0.39, 2.49) 9 Ovary 36 14 0.58 (0.29, 1.13) 0.60 (0.30, 1.19) 22 Prostate 130 71 1.32 (0.93, 1.86) 1.03 (0.71, 1.51) 59 Diabetes 197 94 0.94(0.71, 1.24) 0.81 (0.60, 1.10) 103 Cardiovascular disease 2,377 1,105 0.91 (0.84, 0.99) 0.91 (0.83, 0.99) 1,272 Anemias 10 7 2.38(0.61, 9.24) 1.91 (0.48, 7.65) 3 Chronic liver disease 87 36 0.64 (0.42, 0.98) 0.74 (0.48, 1.15) 51 Alcoholic liver disease 49 16 0.43 (0.24, 0.78) 0.54 (0.29, 1.00) 33 Nonalcoholic liver disease 36 19 1.04 (0.54, 2.01) 1.11 (0.57, 2.17) 17 Alcoholism 17	AML	31	15	0.93(0.46, 1.88)	0.97(0.47, 2.02)	16
Female Breast 81 48 1.24 (0.79, 1.93) 1.19 (0.76, 1.88) 33 Uterus 19 10 1.00 (0.41, 2.48) 0.99 (0.39, 2.49) 9 Ovary 36 14 0.58 (0.29, 1.13) 0.60 (0.30, 1.19) 22 Prostate 130 71 1.32 (0.93, 1.86) 1.03 (0.71, 1.51) 59 Diabetes 197 94 0.94(0.71, 1.24) 0.81 (0.60, 1.10) 103 Cardiovascular disease 2,377 1,105 0.91 (0.84, 0.99) 0.91 (0.83, 0.99) 1,272 Anemias 10 7 2.38 (0.61, 9.24) 1.91 (0.48, 7.65) 3 Chronic liver disease 87 36 0.64 (0.42, 0.98) 0.74 (0.48, 1.15) 51 Alcoholic liver disease 49 16 0.43 (0.24, 0.78) 0.54 (0.29, 1.00) 33 Nonalcoholic liver disease 36 19 1.04 (0.54, 2.01) 1.11 (0.57, 2.17) 17 Alcoholism 17 7 0.63 (0.24, 1.65) 0.67 (0.24, 1.83) 10 CoPD 384	CMI	8	4	0.99(0.25, 3.96)	1.26(0.29, 5.48)	4
Uterus19101.00 (0.41, 2.48)0.99 (0.39, 2.49)9Ovary36140.58 (0.29, 1.13)0.60 (0.30, 1.19)22Prostate130711.32 (0.93, 1.86)1.03 (0.71, 1.51)59Diabetes197940.94(0.71, 1.24)0.81 (0.60, 1.10)103Cardiovascular disease2,3771,1050.91 (0.84, 0.99)0.91 (0.83, 0.99)1,272Anemias1072.38 (0.61, 9.24)1.91 (0.48, 7.65)3Chronic liver disease87360.64 (0.42, 0.98)0.74 (0.48, 1.15)51Alcoholic liver disease49160.43 (0.24, 0.78)0.54 (0.29, 1.00)33Nonalcoholic liver disease36191.04 (0.54, 2.01)1.11 (0.57, 2.17)17Alcoholism1770.63 (0.24, 1.65)0.67 (0.24, 1.83)10Chronic kidney disease75492.04 (1.27, 3.29)1.88 (1.13, 3.11)26COPD3841710.86 (0.70, 1.05)0.91 (0.74, 1.12)213	Female Breast	81	48	1.24 (0.79, 1.93)	1.19 (0.76, 1.88)	33
Ovary 36 14 0.58 (0.29, 1.13) 0.60 (0.30, 1.19) 22 Prostate 130 71 1.32 (0.93, 1.86) 1.03 (0.71, 1.51) 59 Diabetes 197 94 0.94(0.71, 1.24) 0.81(0.60, 1.10) 103 Cardiovascular disease 2,377 1,105 0.91(0.84, 0.99) 0.91(0.83, 0.99) 1,272 Anemias 10 7 2.38(0.61, 9.24) 1.91(0.48, 7.65) 3 Chronic liver disease 87 36 0.64(0.42, 0.98) 0.74(0.48, 1.15) 51 Alcoholic liver disease 49 16 0.43(0.24, 0.78) 0.54(0.29, 1.00) 33 Nonalcoholic liver disease 36 19 1.04(0.54, 2.01) 1.11(0.57, 2.17) 17 Alcoholism 17 7 0.63(0.24, 1.65) 0.67(0.24, 1.83) 10 Chronic kidney disease 75 49 2.04(1.27, 3.29) 1.88(1.13, 3.11) 26 COPD 384 171 0.86(0.70, 1.05) 0.91(0.74, 1.12) 213 <td>Uterus</td> <td>19</td> <td>10</td> <td>1.00 (0.41, 2.48)</td> <td>0.99 (0.39, 2.49)</td> <td>9</td>	Uterus	19	10	1.00 (0.41, 2.48)	0.99 (0.39, 2.49)	9
Prostate 130 71 1.32 (0.93, 1.86) 1.03 (0.71, 1.51) 59 Diabetes 197 94 0.94(0.71, 1.24) 0.81 (0.60, 1.10) 103 Cardiovascular disease 2,377 1,105 0.91 (0.84, 0.99) 0.91 (0.83, 0.99) 1,272 Anemias 10 7 2.38 (0.61, 9.24) 1.91 (0.48, 7.65) 3 Chronic liver disease 87 36 0.64 (0.42, 0.98) 0.74 (0.48, 1.15) 51 Alcoholic liver disease 49 16 0.43 (0.24, 0.78) 0.54 (0.29, 1.00) 33 Nonalcoholic liver disease 36 19 1.04 (0.54, 2.01) 1.11 (0.57, 2.17) 17 Alcoholism 17 7 0.63 (0.24, 1.65) 0.67 (0.24, 1.83) 10 Chronic kidney disease 75 49 2.04 (1.27, 3.29) 1.88 (1.13, 3.11) 26 COPD 384 171 0.86 (0.70, 1.05) 0.91 (0.74, 1.12) 213	Ovary	36	14	0.58 (0.29, 1.13)	0.60 (0.30, 1.19)	22
Diabetes 197 94 0.94(0.71, 1.24) 0.81(0.60, 1.10) 103 Cardiovascular disease 2,377 1,105 0.91(0.84, 0.99) 0.91(0.83, 0.99) 1,272 Anemias 10 7 2.38(0.61, 9.24) 1.91(0.48, 7.65) 3 Chronic liver disease 87 36 0.64(0.42, 0.98) 0.74(0.48, 1.15) 51 Alcoholic liver disease 49 16 0.43(0.24, 0.78) 0.54(0.29, 1.00) 33 Nonalcoholic liver disease 36 19 1.04(0.54, 2.01) 1.11(0.57, 2.17) 17 Alcoholism 17 7 0.63(0.24, 1.65) 0.67(0.24, 1.83) 10 Chronic kidney disease 75 49 2.04(1.27, 3.29) 1.88(1.13, 3.11) 26 COPD 384 171 0.80(0.70, 1.05) 0.91(0.74, 1.12) 213	Prostate	130	71	1.32 (0.93, 1.86)	1.03 (0.71, 1.51)	
Cardiovascular disease 2,377 1,105 0.91(0.84, 0.99) 0.91(0.83, 0.99) 1,272 Anemias 10 7 2.38(0.61, 9.24) 1.91(0.48, 7.65) 3 Chronic liver disease 87 36 0.64(0.42, 0.98) 0.74(0.48, 1.15) 51 Alcoholic liver disease 49 16 0.43(0.24, 0.78) 0.54(0.29, 1.00) 33 Nonalcoholic liver disease 36 19 1.04(0.54, 2.01) 1.11(0.57, 2.17) 17 Alcoholism 17 7 0.63(0.24, 1.65) 0.67(0.24, 1.83) 10 Chronic kidney disease 75 49 2.04(1.27, 3.29) 1.88(1.13, 3.11) 26 COPD 384 171 0.86(0.70, 1.05) 0.91(0.74, 1.12) 213	Diabetes	197	94	0.94(0.71, 1.24)	0.81(0.60, 1.10)	103
Anemias 10 7 2.38(0.61, 9.24) 1.91(0.48, 7.65) 3 Chronic liver disease 87 36 0.64(0.42, 0.98) 0.74(0.48, 1.15) 51 Alcoholic liver disease 49 16 0.43(0.24, 0.78) 0.54(0.29, 1.00) 33 Nonalcoholic liver disease 36 19 1.04(0.54, 2.01) 1.11(0.57, 2.17) 17 Alcoholism 17 7 0.63(0.24, 1.65) 0.67(0.24, 1.83) 10 Chronic kidney disease 75 49 2.04(1.27, 3.29) 1.88(1.13, 3.11) 26 COPD 384 171 0.86(0.70, 1.05) 0.91(0.74, 1.12) 213	Cardiovascular disease	2 377	1 105	0.91(0.84, 0.99)	0.91(0.83, 0.99)	1 272
Chronic liver disease 87 36 0.64(0.42, 0.98) 0.74(0.48, 1.15) 51 Alcoholic liver disease 49 16 0.43(0.24, 0.78) 0.54(0.29, 1.00) 33 Nonalcoholic liver disease 36 19 1.04(0.54, 2.01) 1.11(0.57, 2.17) 17 Alcoholism 17 7 0.63(0.24, 1.65) 0.67(0.24, 1.83) 10 Chronic kidney disease 75 49 2.04(1.27, 3.29) 1.88(1.13, 3.11) 26 COPD 384 171 0.86(0.70, 1.05) 0.91(0.74, 1.12) 213	Anemias	10	7	2 38(0.61 9.24)	1 91(0 48 7 65)	3
Alcoholic liver disease 49 16 0.43(0.24, 0.78) 0.54(0.29, 1.00) 33 Nonalcoholic liver disease 36 19 1.04(0.54, 2.01) 1.11(0.57, 2.17) 17 Alcoholism 17 7 0.63(0.24, 1.65) 0.67(0.24, 1.83) 10 Chronic kidney disease 75 49 2.04(1.27, 3.29) 1.88(1.13, 3.11) 26 COPD 384 171 0.86(0.70, 1.05) 0.91(0.74, 1.12) 213	Chronic liver disease	87	, 36	0.64(0.42, 0.98)	0.74(0.48, 1.15)	51
Nonalcoholic liver disease 36 19 1.04(0.54, 2.01) 1.11(0.57, 2.17) 17 Alcoholism 17 7 0.63(0.24, 1.65) 0.67(0.24, 1.83) 10 Chronic kidney disease 75 49 2.04(1.27, 3.29) 1.88(1.13, 3.11) 26 COPD 384 171 0.86(0.70, 1.05) 0.91(0.74, 1.12) 213	Alcoholic liver disease	49	16	0.43(0.24, 0.78)	0.54(0.29, 1.00)	33
Alcoholism 17 7 0.63(0.24, 1.65) 0.67(0.24, 1.83) 10 Chronic kidney disease 75 49 2.04(1.27, 3.29) 1.88(1.13, 3.11) 26 COPD 384 171 0.86(0.70, 1.05) 0.91(0.74, 1.12) 213	Nonalcoholic liver disease	36	19	1.04(0.54, 2.01)	1 11(0 57 2 17)	17
Chronic kidney disease 75 49 2.04(1.27, 3.29) 1.88(1.13, 3.11) 26 COPD 384 171 0.86(0.70, 1.05) 0.91(0.74, 1.12) 213	Alcoholism	17	7	0.63(0.24, 1.65)	0.67(0.24, 1.83)	10
COPD 384 171 0.86(0.70, 1.05) 0.91(0.74, 1.12) 213 Multiple selence in 6 2 0.07(0.10, 4.20) 0.93(0.16, 4.25) 2	Chronic kidney disease	75	, 49	2 () <u>4(1</u> 27 2 20)	1 88(1 12 2 11)	26
Construction Soft Finite Output Out		7 J 384	171	2.0 + (1.27, 3.29) 0.86(0.70, 1.05)	0.91(0.74 1.12)	20
	Multiple sclerosis	6	2	0.00(0.70, 1.00)	0.21(0.74, 1.12)	2
Amyotrophic Lateral Sclerosis 15 5 0.50/0.17, 1.47) 0.44/0.15, 1.34) 10	Amyotrophic Latoral Sclorosic	15	5	0.57(0.19,4.00)	0.05(0.10, 4.25) 0.11(0.15, 1.24)	10

Table 5 (continued)

Outcome	Total	Camp Lejeune #	Unadjusted	Adjusted	Camp Pendleton #
			HR (95% CI)	HR (95% CI)	
Parkinson disease	61	30	1.09(0.66, 1.80)	1.21(0.72, 2.04)	31
Suicide	74	29	0.59(0.37, 0.94)	0.72(0.45, 1.16)	45

HR: hazard ratio; CI: confidence interval; CNS: Central nervous system cancers; CLL: Chronic lymphcytic leukemia; AML: Acute myeloid leukemia; CML: Chronic myeloid leukemia; COPD: Chronic obstructive pulmonary disease

Totals: Camp Lejeune = 7,332 Females = 3,624 Males = 3,708; Camp Pendleton = 6,677 Females = 3,031 Males = 3,646

Causes of death that were not evaluated because the number of cases were <2 for CL and/or CP: Testicular cancer; Male breast cancer; Thyroid cancer; Acute lymphocytic leukemia

HRs adjusted for sex, race, blue collar work (y/n) and education level; age was the time variable

Blue collar work included manual jobs such as maintenance workers, mechanics, construction workers, laundry and dry-cleaning workers, pest control workers, and water treatment plant workers

Marines/Navy personnel [8, 9]. In a recent study, Camp Lejeune Marines/Navy personnel had a 70% increased risk of Parkinson disease diagnoses compared to Camp Pendleton [50]. In animal studies, TCE exposure reproduces key pathological features of Parkinson disease [50, 51].

Multiple sclerosis had HRs \geq 1.20 with CIRs \leq 3 for the full cohort of Marines/Navy personnel and as a contributing cause among civilian workers. Multiple sclerosis had an HR \geq 1.20 in the previous mortality study of Marines/Navy personnel [8]. Occupational organic solvent exposure was associated with multiple sclerosis, but specific solvents were not studied [52].

 $HRs \ge 1.20$ with CIRs ≤ 3 were observed for chronic kidney disease among civilian workers and acute kidney disease in the full cohort of Marines/Navy personnel. Epidemiological and animal studies support causal associations between TCE and PCE exposures and chronic kidney disease [17].

A study weakness was lack of data on risk factors such as smoking, alcohol consumption, and occupational history before and after active-duty service or employment at Camp Lejeune or Camp Pendleton. However, confounding due to failure to adjust for unmeasured risk factors was likely minor because of the demographic and socio-economic similarity of the Camp Lejeune and Camp Pendleton cohorts.

Prevalence of smoking and "heavy alcohol" consumption among Marines in 1980 was 53.4% and 28.6%, respectively [53], and was encouraged at both bases by the military culture, the stress of service, targeted advertising by the tobacco and alcoholic beverage industry, and the lower cost and tax-free availability of these products on base compared to civilian stores off-base [53, 54]. Quantitative bias analysis of smoking indicated that prevalence differences between Camp Lejeune and Camp Pendleton would range between 4% and 6%. For the strongly smoking-related cancers of the lung and larynx, adjusting for smoking would decrease their HRs by <10%. For alcohol consumption, the negative control diseases likely overstated the prevalence differences between the two bases. For alcohol-related causes of death, adjustment for alcohol consumption would increase their HRs. Moreover, for causes of death both smoking-related and alcohol-related, the impacts of adjusting for alcohol consumption and smoking would cancel each other.

Another study weakness was use of base location as a proxy for drinking water exposure. Quantitative bias analyses suggested the impact of this source of nondifferential exposure misclassification would be minor in most instances. Disease misclassification bias due to cause of death errors on the death certificate would likely be non-differential and would tend to bias the HRs for the dichotomous comparisons between Camp Lejeune and Camp Pendleton toward a value of 1.00. Other study weaknesses included: (1) almost all of the Marines/Navy personnel subgroup was aged <65 years by the end of follow-up, reducing numbers of deaths for each cause; and (2) poor precision of HRs for some causes of death in the civilian workers analyses because of the small sample size and resulting small numbers of cases.

Study strengths included: (1) the large sample size of Marines/Navy personnel; (2) forty years of follow-up; (3) a comparison military base with similar demographic and socio-economic and cultural characteristics as Camp Lejeune; (4) a small percentage lost to follow-up; and (5) a majority of civilian workers aged>65 years by the end of follow-up.

Conclusion

The Marines/Navy personnel subgroup analysis obtained aHRs \geq 1.20 with CIRs \leq 3 for mortality due to cancers of the kidney, esophagus and female breast, and multiple sclerosis (contributing cause). Causes of death with aHRs \geq 1.20 and CIRs>3 included Parkinson disease, myelodysplastic syndrome and cancers of the testes, cervix and ovary. In the analyses of the full cohort, additional causes of death with aHRs \geq 1.20 and CIRs \leq 3 included Hodgkin lymphoma, AML, all myeloid cancers (contributing cause), and acute kidney disease. Male

breast cancer (contributing cause) had an aHR \geq 1.20 with CIR>3 in the full cohort. Because most of the Marines/ Navy personnel were aged <65 years by the end of followup, additional years of follow-up are necessary to fully evaluate mortality.

The civilian workers analysis obtained aHRs \geq 1.20 with CIRs \leq 3 for chronic kidney and Parkinson disease mortality. Female breast cancer as underlying and contributing cause had aHRs of 1.19 and 1.33, respectively, with CIRs \leq 3. AHRs \geq 1.20 with CIRs>3 included cancers of the kidney, pharynx and larynx (as a contributing cause), melanoma, CML, Hodgkin lymphoma and anemias.

Contaminated drinking water exposures at Camp Lejeune affected up to one million people, including Marines/Navy personnel, their families, and civilian workers. The results of this study are relevant to everyone exposed to the contaminated drinking water at Camp Lejeune and add to the literature on the health effects of these chemicals. Because most of the Marines/Navy personnel subgroup were under the age of 65 at the end of follow-up, continued follow-up is indicated.

Abbreviations

aHR	Adjusted hazard ratio
ALS	Amvotrophic lateral sclerosis
AML	Acute myeloid leukemia
ATSDR	Agency for Toxic Substances and Disease Registry
CDC	Centers for Disease Control and Prevention
CI	95% confidence interval
CIR	Confidence interval ratio
CL	Camp Lejeune
CLL	Chronic lymphocytic leukemia
CML	Chronic myeloid leukemia
CNS	Central nervous system cancers
COPD	Chronic obstructive pulmonary disease
CP	Camp Pendleton
DMDC	Defense Manpower Data Center
HP	Hadnot Point treatment plant
HR	Hazard ratio
ICD	International Classification of Diseases
LTAS	Life table analysis system
MCL	US Environmental Protection Agency maximum contaminant leve
	in drinking water
NDI	National Death Index
MDS	Myelodysplastic syndrome
MS	Multiple sclerosis
NHL	Non-Hodgkin lymphoma
µg/L	Micrograms per liter
PCE	Tetrachloroethylene (also known as perchloroethylene)
QBA	Quantitative bias analyses
RR	Risk ratio
SMR	Standardized mortality ratio
SSA	Social Security Administration
TCE	Trichloroethylene
TT	Tarawa Terrace treatment plant
USMC	United States Marine Corps

Supplementary Information

The online version contains supplementary material available at https://doi. org/10.1186/s12940-024-01099-7.

Supplementary Material 1

Acknowledgements

Richard Pinder of the University of Southern California, Los Angeles consulted on the NDI matching. Betsy Kohler and Recinda Sherman of the North American Association of Central Cancer Registries (NAACCR) provided support for data collection and data management. Aaron Bernstein, director of NCEH and ATSDR provided editing assistance. Finally, FJB would like to acknowledge the strong and essential support for the study by the Camp Lejeune Community Assistance Panel members.

Author contributions

FJB designed the study, monitored the data collection process, managed, analyzed and interpreted the data, and prepared the manuscript. AG, RG, RCB and MMM coordinated the data collection, including preparing the data for matching with TransUnion, Lexis-Nexis, SSA, and NDI, conducting manual review of the matching results and providing data management support. All authors reviewed the manuscript.

Data availability

No datasets were generated or analysed during the current study.

Declarations

ATSDR/CDC disclaimer

The findings and conclusions in this manuscript are those of the author and do not necessarily represent the official position of the Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry.

Competing interests

The authors declare no competing interests.

Author details

¹Office of Community Health and Hazard Assessment, Health Studies Section, Agency for Toxic Substances and Disease Registry (ATSDR)/CDC, 6558 Parkside Way, Chamblee, GA 30084, USA ²Health Research and Analytics Division, Battelle Memorial Institute, Charlottesville, VA, USA ³Battelle Memorial Institute, Columbus, OH, USA

Received: 9 May 2024 / Accepted: 19 June 2024 Published online: 03 July 2024

References

- Maslia ML, Sautner JB, Faye RE, Suárez-Soto RJ, Aral MM, Grayman WM, Jang W, Wang J, Bove FJ, Ruckart PZ, Valenzuela C, Green JW Jr, Krueger AL. Analyses of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water at Tarawa Terrace and Vicinity, U.S. Marine Corps Base Camp Lejeune, North Carolina: Historical Reconstruction and Present-Day Conditions—Executive Summary. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2007. http://www.atsdr.cdc.gov/sites/lejeune/tarawaterrace. html.
- Maslia ML, Suárez-Soto RJ, Sautner JB, Anderson BA, Jones LE, Faye RE, Aral MM, Guan J, Jang W, Telci IT, Grayman WM, Bove FJ, Ruckart PZ, Moore SM. Analyses and Historical Reconstruction of Groundwater Flow, Contaminant Fate and Transport, and distribution of drinking Water within the Service areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina—Chapter A: Summary and findings. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2013. http://www.atsdr.cdc.gov/sites/lejeune/hadnotpoint. html.
- Agency for Toxic Substances and Disease Registry (ATSDR). Public Health Assessment: Camp Lejeune Drinking Water, U.S. Marine Corps Base Camp Lejeune, North Carolina. January 20. 2017. https://www.atsdr.cdc.gov/HAC/ pha/MarineCorpsBaseCampLejeune/Camp_Lejeune_Drinking_Water_ PHA(final)_%201-20-2017_508.pdf.
- 4. https://www.epa.gov/ground-water-and-drinking-water/ national-primary-drinking-water-regulations#Organic.
- IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. Trichloroethylene, Tetrachloroethylene, and some other Chlorinated agents. Volume 106. France: Lyon; 2014.

- IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 1,3-Butadiene, Ethylene oxide and vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide). Volume 97. France: Lyon; 2008.
- IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. Chemical agents and related occupations. Volume 100F. France: A Review of Human Carcinogens. Lyon; 2012.
- Bove FJ, Ruckart PZ, Maslia M, Larson TC. Evaluation of mortality among marines and navy personnel exposed to contaminated drinking water at USMC Base Camp Lejeune: a retrospective cohort study. Environ Health. 2014;13:10.
- Bove FJ, Ruckart PZ, Maslia M, Larson TC. Mortality study of civilian employees exposed to contaminated drinking water at USMC Base Camp Lejeune: a retrospective cohort study. Environ Health. 2014;13:68.
- Agency for Toxic Substances and Disease Registry (ATSDR). Public Health Assessment for Marine Corps Base (MCB) Camp Pendleton, San Diego County, California. September 2, 2008. Atlanta: U.S. Department of Health and Human Services.
- Mclaughlin R, Nielsen L, Waller M. An evaluation of the Effect of Military Service on Mortality: quantifying the healthy soldier effect. AEP. 2008;18:928–36.
- 12. Waller M, McGuire ACL. Changes over time in the healthy soldier effect. Pop Health Metrics. 2011;9:7.
- Kirkeleit J, Riise T, Bjorge T, Christiani DC. The healthy worker effect in cancer incidence studies. Am J Epidemiol. 2013;177:1218–24.
- Schubauer-Berigan MK, Hein MJ, Raudabaugh WM, Ruder AM, Silver SR, Spaeth S, Steenland K, Petersen MR, Waters KM. Update of the NIOSH life table analysis system: a person-years analysis program for the Windows computing environment. Am J Ind Med. 2011;54:915–24.
- Allison PD. Survival Analysis Using SAS: A practical guide. 2nd edition. Cary, NC: SAS Institute, Inc; 2010.
- Lipsitch M, Tchetgen Tchetgen E, Cohen T. Negative controls: a tool for detecting confounding and bias in observational studies. Epidemiol. 2010;21:383–8.
- Agency for Toxic Substances and Disease Registry (ATSDR): Assessment of the Evidence for the Drinking Water Contaminants at Camp Lejeune and Specific Cancers and Other Diseases. January 12. 2017. https://www.atsdr.cdc.gov/ sites/lejeune/docs/atsdr_summary_of_the_evidence_for_causality_tce_pce-508.pdf.
- Calvert GM, Ruder AM, Petersen MR. Mortality and end-stage renal disease incidence among dry cleaning workers. Occup Environ Med. 2011;68:709–16.
- Vizcaya D, Christensen KY, Lavoue J, Siemiatycki J. Risk of lung cancer associated with six types of chlorinated solvents: results from two case-control studies in Montreal, Canada. Occup Environ Med. 2013;70:81–5.
- Mattei F, Guida F, Matrat M, Cenee S, Cyr D, Sanchez M, et al. Exposure to chlorinated solvents and lung cancer: results of the ICARE study. Occup Environ Med. 2014;71:681–9.
- Babigumira R, Veierød MB, Hosgood HD, Samuelsen SO, Bråtveit M, Kirkeleit J, et al. Benzene exposure and risk of lung cancer in the Norwegian Offshore Petroleum Worker cohort: a prospective case-cohort study. Occup Environ Med. 2024;81:9–16.
- Wan W, Peters S, Portengen L, Olsson A, Schüz J, Ahrens W, et al. Occupational benzene exposure and lung cancer risk: a pooled analysis of 14 case-control studies. Am J Respir Crit Care Med. 2024;209:185–96.
- Carton M, Barul C, Menvielle G, Cyr D, Sanchez M, Pilorget C, et al. Occupational exposure to solvents and risk of head and neck cancer in women: a population-based case-control study in France. BMJ Open. 2017;7:e012833.
- Barul C, Fayosse A, Carton M, Pilorget C, Woronoff AS, Stucker I, et al. Occupational exposure to chlorinated solvents and risk of head and neck cancer in men: a population-based case-control study in France. Environ Health. 2017;16:77.
- Xiao W, Huang J, Wang J, Chen Y, Hu N, Cao S. Occupational exposure to organic solvents and breast cancer risk: a systematic review and meta-analysis. Environ Sci Pollut Res. 2022;29:1605–18.
- Glass DC, Heyworth J, Thomson AK, Peters S, Saunders C, Fritschi L. Occupational exposure to solvents and risk of breast cancer. Am J Ind Med. 2015;58:915–22.
- Westra S, Goldberg MS, Labrèche F, Baumgartner J, Ho V. The association between the incidence of postmenopausal breast cancer and occupational exposure to selected organic solvents, Montreal, Canada, 2008–2011. Am J Ind Med. 2023;66:911–27.
- 28. Fox MP, MacLehose RF, Lash TL. NY, Applying Quantitative Bias Analysis to Epidemiologic Data, Second Edition Springer (2021).

- Wasserstein RL, Lazar NA. The ASA's Statement on p-Values: context, process, and purpose. Am Stat. 2016;70:129–33.
- Wasserstein RL, Schirm AL, Lazar NA. Moving to a world beyond p < 0.05. Am Stat. 2019;73:1–19.
- Lash TL, VanderWeele TJ, Haneuse S, Rothman KJ. Modern Epidemiology. 4th edition. Philadelphia, PA: Walters Kluwer/ Lippincott Williams & Wilkins; 2021.
- 32. Amrhein V, Greenland S, McShane B. Retire statistical significance. Nature. 2019;567:305–7.
- Lash TL. The harm done to reproducibility by the culture of null hypothesis significance testing. Am J Epidemiol. 2017;186:627–35.
- Poole C. Low P values or narrow confidence intervals: which are more. Durable? Epidemiol. 2001;12:291–4.
- Naimi Al, Whitcomb BW. Can Confidence Intervals Be Interpreted? Am J Epidemiol. 2020;189:631–3.
- Scott CS, Jinot J. Trichloroethylene and Cancer: systematic and quantitative review of epidemiologic evidence for identifying hazards. Int J Environ Res Public Health. 2011;8:42384272.
- 37. Karami, et al. Occupational trichloroethylene exposure and kidney cancer risk: a meta-analysis. Occup Environ Med. 2012;69:858–67.
- Karami S, et al. Occupational trichloroethylene exposure and risk of lymphatic and hematopoietic cancers: a meta-analysis. Occup Environ Med. 2013;70:591–9.
- Mappin-Kasirer B, Pan H, Lewington S, Kizza J, Gray R, Clarke R, Peto R. Tobacco smoking and the risk of Parkinson disease: a 65-year follow-up of 30,000 male British doctors. Neurology. 2020;94:e2132–8.
- Lope V, García-Pérez J, Pérez-Gómez B, Pedraza-Flechas AM, Alguacil J, González-Galarzo MC, et al. Occupational exposures and mammographic density in Spanish women. Occup Environ Med. 2018;75:124–31.
- 41. Gallagher LG, Vieira VM, Ozonoff D, Webster TF, Aschengrau A. Risk of breast cancer following exposure to tetrachloroethylene-contaminated drinking water in Cape Cod, Massachusetts: reanalysis of a case-control study using a modified exposure assessment. Environ Health. 2011;10:47.
- 42. Ruckart PZ, Bove FJ, Shanley E III, Maslia M. Evaluation of contaminated drinking water and male breast cancer at Marine Corps Base Camp Lejeune, North Carolina: a case control study. Environ Health. 2015;14:74.
- Hansen J, Sallmen M, Selden AI, Anttila A, Pukkala E, Andersson K, et al. Risk of Cancer among workers exposed to trichloroethylene: analysis of three nordic Cohort studies. J Natl Cancer Inst. 2013;105:869–77.
- Laouali N, Pilorget C, Cyr D, Neri M, Kaerlev L, Sabroe S, et al. Occupational exposure to organic solvents and risk of male breast cancer: a European multicenter case-control study. Scand J Work Environ Health. 2018;44:312–22.
- Talibov M, Hansen J, Heikkinen S, Martinsen JI, Sparen P, Tryggvadottir L, et al. Occupational exposures and male breast cancer: a nested case-control study in the nordic countries. Breast. 2019;48:65–72.
- Schnatter AR, Glass DC, Tang G, Irons RD, Rushton L. Myelodysplastic syndrome and benzene exposure among petroleum workers: an international pooled analysis. JNCI. 2012;104:1724–37.
- Christensen KY, Vizcaya D, Richardson H, Lavoué J, Aronson K, Siemiatycki J. Risk of selected cancers due to occupational exposure to chlorinated solvents in a case-control study in Montreal. J Occup Environ Med. 2013;55:198–208.
- Vlaanderen J, Lan Q, Kromhout H, Rothman N, Vermeulen R. Occupational benzene exposure and the risk of chronic myeloid leukemia: a meta-analysis of cohort studies incorporating study quality dimensions. Am J Ind Med. 2012;55:779–85.
- Linet MS, Gilbert ES, Vermeulen R, Dores GM, Yin SN, Portengen L, et al. Benzene exposure response and risk of myeloid neoplasms in Chinese workers: a Multicenter case–cohort study. J Natl Cancer Inst (JNCI). 2019;111:465–74.
- Goldman SM, Weaver FM, Stroupe KT, Cao L, Gonzalez B, Colletta K, et al. Risk of Parkinson disease among service members at Marine Corps Base Camp Lejeune. JAMA Neurol. 2023;80(7):673–81.
- Dorsey ER, Zafar M, Lettenberger SE, Pawlik ME, Kinel D, Frissen M, et al. Trichloroethylene: an invisible cause of Parkinson's disease? J Parkinsons Dis. 2023;13:203–18.
- 52. Gerhardsson L, Hou L, Pettersson K. Work-related exposure to organic solvents and the risk for multiple sclerosis a systematic review. Int Arch Occup Environ Health. 2021;94:221–9.
- 53. Bray RM, Hourani LL. Substance use trends among active duty military personnel: findings from the United States Department of Defense Health related behavior surveys, 1980–2005. Addiction. 2007;102:1092–101.

 Truth Initiative. Tobacco use in the military: Fact sheet. June 2018. Accessed on 3/27/2023. https://truthinitiative.org/sites/default/files/media/ files/2022/05/Truth_Military_FactSheet_051722.pdf.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.