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Abstract
Background Brominated Flame Retardants (BFRs) have attracted widespread concern due to their environmental 
persistence and potential toxicity. This study aims to examine the association between BFRs exposure and 
hypertension.

Methods We used data from the National Health and Nutrition Examination Survey (NHANES) spanning 2005 
to 2016 for the cross-sectional analysis. To evaluate the individual and combined impacts of BFRs exposure on 
hypertension, we utilized multivariate models, including generalized additive models, weighted quantile sum (WQS) 
regression, and Bayesian kernel machine regression (BKMR) models.

Results 9882 individuals (48% male) aged ≥ 20 were included in the final analysis, of whom 4114 had hypertension. 
After controlling for potential covariates, higher serum concentrations of PBDE100 (OR: 1.26; 95% CI: 1.01, 1.57) 
and PBDE153 (OR: 1.50; 95% CI: 1.18, 1.88) were significantly associated with hypertension. A nonlinear relationship 
between PBDE28 and hypertension was observed (P = 0.03). Moreover, BFRs mixture were positively associated with 
the prevalence of hypertension in both the WQS (β:1.09; 95% CI: 1.02, 1.17; P = 0.02) and BKMR models.

Conclusion Our study suggested that BFRs exposure is positively associated with hypertension in the general 
population. To confirm this association and elucidate the mechanisms, further research is required.

Keywords Brominated flame retardants, Hypertension, NHANES, Weighted quantile sum regression, Bayesian kernel 
machine regression
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Introduction
Brominated Flame Retardants (BFRs) are chemical com-
pounds widely used in various products such as plastics, 
furniture, textiles, construction materials, and electrical 
and electronic devices to adhere to fire safety standards 
[1–3]. Due to the persistence, accumulation and envi-
ronmental ubiquity, BFRs can be detected in wildlife 
around the world and in humans [4–6], even in newborns 
[7], which has raised considerable attention. Polybro-
minated diphenyl ethers (PBDEs) and polybrominated 
biphenyls (PBBs), as subgroups of BFRs, are considered 
more hazardous than other types [8]. PBDEs are classi-
fied into three principal varieties: penta-BDE, octa-BDE, 
and deca-BDE. Penta- and Octa-BDE were removed from 
the broad market in the United States in 2004, while the 
production and importation of deca-BDE ceased in 2013 
[9]. The Stockholm Convention, an international treaty 
managed by the United Nations Environment Program, 
has categorized certain BFRs (such as PBDEs and PBBs) 
as persistent organic pollutants (POPs), leading to their 
restricted use and gradual phase-out [10]. Despite these 
restrictions, BFRs can still be consistently detected in 
consumer durables, foods and indoor dust. Prior research 
has revealed that BFRs can cause a range of harmful 
effects, including endocrine disruption, neurotoxicity, 
liver, and kidney damage, as well as negative impacts on 
reproduction and development, posing risks to the envi-
ronment and human well-being [11–16]. Nevertheless, 
the cardiovascular implications of exposure to BFRs have 
not been thoroughly studied.

Hypertension, a prevalent cardiovascular disease 
(CVD) worldwide, impacts approximately 1.28  bil-
lion adults aged 30 to 79. In the United States, the age-
adjusted prevalence of hypertension was 45.1% as of 
2021 [17]. Elevated blood pressure is consistently asso-
ciated with the development and progression of coro-
nary artery disease, chronic renal disease, and stroke 
[18, 19]. Furthermore, hypertension frequently coexists 
with dyslipidemia, glucose intolerance, and type 2 dia-
betes, hence increasing the risk of CVD [20]. In addition 
to hereditary factors, hypertension is mainly affected 
by lifestyles, physical inactivity, psychological stress, 
and exposure to specific environmental contaminants 
[21–23]. There is increasing worry about environmental 
toxins, including heavy metals, air pollution, and POPs. 
Everett found that greater serum levels of polychlori-
nated biphenyl (PCB) 138 and PCB126 were associated 
with an elevated risk of hypertension, based on data from 
the National Health and Nutrition Examination Survey 
(NHANES) [24]. Valera discovered a direct correlation 
between PCB138 and hypertension risk among the Inuit 
population highly exposed to PCB138 [25]. While PBDEs 
and PCBs have comparable chemical structures and 

functional mechanisms, few studies have investigated the 
effect of BFRs exposure on hypertension in the general 
population.

Our study aims to delve the effect of BFRs exposure 
on hypertension by using the NHANES database. Addi-
tionally, we explore whether specific population subsets 
exhibit a more pronounced association between BFRs 
exposure and hypertension.

Methods
Study population
The data was obtained from NHANES, a nationwide 
cross-sectional survey conducted by the National Center 
for Health Statistics (NCHS) and the Centers for Disease 
Control and Prevention (CDC), to evaluate the health 
and nutritional conditions of the general U.S. popula-
tion. The comprehensive survey design, methodologies, 
and data are available on the NHANES website (https://
wwwn.cdc.gov/Nchs/Nhanes/2015-2016/BFRPOL_I.
htm). The NHANES study protocol received approval 
from the NCHS research ethics review board, and par-
ticipants gave written informed consent at enrollment. 
A total of 12,333 individuals from six consecutive cycles 
(NHANES 2005–2016), who underwent a series of serum 
BFRs measurements, were initially included. 45 subjects 
with missing data on blood pressure and 2406 subjects 
aged < 20 years were excluded. Finally, 9882 individuals 
were enrolled in the analyses (Fig. 1).

Exposure variables
To avoid additional variability and potential bias intro-
duced by lipid adjustment, we used serum BFR concen-
trations to reflect individual exposure levels [26, 27]. 
The quantification of PBB-153 and 11 PBDEs in serum 
was performed using automated liquid-liquid extraction 
and dilution gas chromatography high-resolution mass 
spectrometry. Table S1 illustrates the rates of detec-
tion and distribution of BFRs. To ensure the reliability 
of our study, we chose PBB153 and eight PBDEs with a 
detection rate over 65% as exposure factors. The eight 
PBDEs include 2,4,4´-Tribromodiphenyl ether (PBDE28), 
2,2´,4,4´-Tetrabromodiphenyl ether (PBDE47), 
2,2´,3,4,4´-Tetrabromodiphenyl ether (PBDE85), 
2,2´,4,4´,5-Pentabromodiphenyl ether (PBDE99), 
2,2´,4,4´,6-Pentabromodiphenyl ether (PBDE100), 
2,2´,4,4´,5,5´-Hexabromodiphenyl ether (PBDE153), 
2,2´,4,4´,5,6´-Hexabromodiphenyl ether (PBDE154), 
Decabromodiphenyl ether (PBDE209). Concentrations 
of serum BFRs below the lower limit of detection (LOD) 
were determined with the LOD value divided by the 
square root of 2.

https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/BFRPOL_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/BFRPOL_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/BFRPOL_I.htm
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Outcome definition
In this study, the occurrence of hypertension is the pri-
mary outcome. During the personal interview address-
ing various health concerns, a standardized medical 
questionnaire was employed. Participants were queried, 
‘Has a doctor or any medical professional ever informed 
you a diagnosis of high blood pressure or hypertension?’ 
Those who affirmed were categorized as hypertensive, 
while negative responses indicated an absence of hyper-
tension. During each interview, the participants were 
also asked to report the medications that they have taken 
in the past 30 days. The blood pressures (BP) measure-
ments of participants were taken by trained physicians 
in the mobile examination center (MEC). After five min-
utes of quiet sitting, participants take three consecutive 
BP readings to obtain the maximum inflation level (MIL). 
A fourth try is allowed in cases where the measurement 
is interrupted or incomplete. The average of the three or 
four BP recordings was calculated as systolic blood pres-
sure (SBP) and diastolic blood pressure (DBP) for each 
participant. Hypertension was defined based on partici-
pants meeting at least one of the following criteria: (1) 
self-reported diagnosis of hypertension; (2) self-reported 

antihypertensive medication use; (3) SBP ≥ 140 mmHg 
and/or DBP ≥ 90 mmHg.

Covariates
Based on previous literature [28–32], we incorporated a 
number of potentially confounding variables, including 
age, gender, race, education level, the family income to 
poverty ratio (PIR), serum cotinine, alcohol consump-
tion, sleep disorders, depression, physical activity, dietary 
sodium intake, dietary potassium intake, body mass 
index (BMI), eGFR, history of diabetes and NHANES 
cycles (Figure S1). Demographic data, lifestyle informa-
tion, disease history and physical measurements as well 
as laboratory tests were collected and administered by 
trained staffs according to standardized questionnaires 
and MEC. Demographic characteristics, including age 
(years) (20 ≤ Age < 65, Age ≥ 65), gender (male, female), 
race (Non-Hispanic White, Non-Hispanic Black, Mexi-
can American, Other Race), education level (below high 
school, high school, above high school) and PIR (< 1, 1–3, 
> 3). PIR was calculated by dividing the yearly household 
income by the poverty threshold for the family size in 
the state of residence for that year, according to federal 
criteria. In this study, PIR was recoded as a dichotomous 

Fig. 1 Flow chart of study participants. NHANES, National Health and Nutrition Examination Survey; BFRs, brominated flame retardants.
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variable. Lifestyle included serum cotinine (≤ 1  µg/L, 
> 1 µg/L), alcohol consumption (< 12 drinks, ≥ 12 drinks), 
sleep disorders (yes or no), depression (yes or no), physi-
cal activity (activity or inactivity), dietary sodium intake 
(milligrams) and dietary potassium intake (milligrams). 
Serum cotinine levels indicate both active and passive 
smoking and was categorized into two groups (≤ 1 µg/L, 
> 1 µg/L) to distinguish between smokers and non-smok-
ers [33]. Alcohol consumption was assessed by the ques-
tion: “In any one year, have you had at least 12 drinks of 
any type of alcoholic beverage?” (yes/no). Sleeping dis-
orders was evaluated with the question: “Have you ever 
informed a doctor or other health professional that you 
have difficulty sleeping?” (yes/no). Depression was tested 
using the Patient Health Questionnaire (PHQ-9), with 
total scores ranging from 0 to 27 points. A cutoff score 
of 10 was used to identify clinically relevant depression. 
Physical activity and inactivity were defined as less than 
four hours of moderate to high physical activities per 
week, according to the WHO Global Physical Activity 
Questionnaire [34]. Dietary sodium and potassium intake 
was extracted from 24-h dietary recall interviews in the 
NHANES database. BMI was calculated as weight (kg) /
height (m2). We categorized participants into three BMI 
groups: normal (< 25  kg/m2), overweight (25–29.9  kg/
m2), and obese (≥ 30  kg/m2). The estimated glomerular 
filtration rate (eGFR) was determined for each partici-
pant based on the Chronic Kidney Disease Epidemiology 
Collaboration (CKD-EPI) equation. Diabetes was defined 
as fasting plasma glucose (FPG) levels ≥ 7.0 mmol/L or/
and glycosylated hemoglobin levels > 6.5%, self-reported 
diagnosis of diabetes or use of oral lowing glucose medi-
cations or insulin.

Statistical analysis
Baseline characteristics were compared between partici-
pants with and without hypertension using the t and χ2 
test for continuous and categorical variables, respectively. 
Mean (standard deviation) or median with interquartile 
range (IQR) are used to display continuous values, while 
percentages are used for categorical variables. PBDEs and 
PBB-153 levels were log10 transformed to normalize the 
distribution. We applied the MEC weights according to 
NCHS guidance to account for the complex, multistage 
sampling design of the NHANES [35]. Weighted models 
were used in the multiple regression analyses.

We performed multivariate logistic regression analy-
sis to assess the association between individual BFR and 
hypertension. Three models were applied, Model 1 was a 
crude model, Model 2 was controlled for age, race, and 
gender, and Model 3 was further controlled for education 
level, PIR, serum cotinine, alcohol consumption, sleep 
disorders, depression, physical activity, dietary sodium 
intake, dietary potassium intake, BMI, eGFR, history of 

diabetes and NHANES cycles based on Model 2. A gen-
eralized additive model investigated the nonlinear associ-
ation between exposure to BFRs and hypertension. Wald 
χ2 tests were used to test for nonlinearity in the associa-
tions. Stratified analyses were performed by age, gender, 
education level, PIR, serum cotinine, alcohol consump-
tion, sleep disorders, physical activity, BMI and history of 
diabetes. Interaction tests were also carried out to assess 
the individualized effects of BFRs on hypertension across 
different subgroups in the multivariate logistic regression 
model.

To investigate the effect of exposure to BFRs mixture 
on hypertension, we used the quantile weighted quan-
tile sum (WQS) regression and Bayesian kernel machine 
regression (BKMR) analysis. Using a weighted index, in 
which the relative importance of each predictor variable 
establishes its total impact, the WQS regression assesses 
the combined impact of all predictor factors on the 
result. An estimation set comprising 40% of the training 
data and a validation set comprising 60% of the data were 
generated randomly. Bootstrap resampling, with 1000 
iterations, facilitated the estimation of model parameters 
[36]. The BKMR provides succinct and versatile estima-
tions of the multivariate exposure-response function [37, 
38]. The integrative effect of the mixed BFRs on hyper-
tension was determined by estimating the different risk 
of hypertension, when all 9 BFRs were maintained at the 
10th to 90th percentiles (in increments of 10th percentile 
points) as compared to their 50th percentile. Moreover, 
we calculated the posterior inclusion probability (PIP) for 
each BRF in mixtures to determine the BRF that contrib-
uted most to the prevalence of hypertension. Following 
full covariate adjustment, this model underwent 10,000 
iterations using Markov Chain Monte Carlo.

The statistical analyses were conducted using R soft-
ware (version 3.6.0). A two-sided P value < 0.05 was con-
sidered statistically significant.

Results
Baseline characteristics
There were 4,114 cases of hypertension among the 9,882 
participants in the study. The categories of hypertension 
diagnosis were listed in Table S2. Compared to those 
without hypertension, participants with hypertension 
were older, had a higher proportion of males, non-His-
panics, less educated, and prevalence of diabetes. PIR, 
sleep disorders, depression, physical activity, dietary 
sodium and potassium intake also differed between the 
two groups (P < 0.01). In addition, participants with 
hypertension have higher BMI and lower eGFR levels 
(Table 1). Participants with hypertension showed higher 
BFRs concentrations than those without hypertension 
(Table S3).
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Variable Overall
(n = 9882)

Non-hypertension (n = 5768) Hypertension (n = 4114) P value

Age, years 49.30 (17.87) 41.9 (15.88) 59.66 (15.15) < 0.01**
< 65, n (%) 7558 (76.48) 5152 (89.32) 2436 (58.78)
≥ 65,n (%) 2324 (23.51) 616 (10.68) 1708 (41.52)
Gender, n (%) 0.02*
Female 5120 (51.81) 3048 (52.84) 2072 (50.36)
Male 4762 (48.19) 2720 (47.16) 2042 (49.64)
Race, n (%) < 0.01**
Non-Hispanic White 4219 (42.69) 2422 (41.99) 1797 (43.68)
Non-Hispanic Black 2048 (20.72) 996 (17.27) 1052 (25.57)
Mexican American 1602 (16.21) 1048 (18.17) 554 (13.47)
Other Race 2013 (20.37) 1302 (22.57) 711 (17.28)
Education level, n (%) < 0.01**
Below high school 2588 (26.19) 1340 (23.23) 1248 (30.34)
High school 5080 (51.41) 1246 (21.60) 968 (23.53)
Above high school 2214 (22.40) 3182 (55.17) 1898 (46.14)
PIR, n (%) < 0.01**
< 1 2138 (21.64) 1239 (21.48) 899 (21.85)
1 ~ 3 3564 (36.07) 2355 (40.83) 1825 (44.36)
> 3 4180 (42.30) 2174 (37.69) 1390 (33.79)
Serum cotinine, µg/L 54.75 (124.29) 55.31 (121.85) 53.98 (127.64) 0.38
≤ 1 µg/L, n (%) 7040 (71.24) 2926 (50.73) 2338 (56.83)
> 1 µg/L, n (%) 2842 (28.76) 2842 (49.27) 1776 (43.17)
Alcohol consumption, n (%) 0.09
< 12 drinks 4218 (42.68) 2420 (41.96) 1798 (43.70)
≥ 12 drinks 5664 (57.32) 3348 (58.04) 2316 (56.30)
Sleep disorders, n (%) < 0.01**
Yes 2478 (25.08) 1156 (20.04) 1322 (32.13)
No 7404 (74.92) 4612 (79.96) 2792 (67.87)
Depression, n (%) < 0.01**
Yes 801 (8.11) 394 (6.83) 407 (9.89)
No 9081 (91.89) 5374 (93.17) 3707 (90.11)
Physical activity, n (%) < 0.01**
Activity 7356 (74.44) 4573 (79.28) 2783 (67.65)
Inactivity 2526 (25.56) 1195 (20.72) 1331 (32.35)
Dietary sodium, mg 1675.47 (670.24) 1720.99 (685.13) 1611.65 (643.47) < 0.01**
Dietary potassium, mg 1303.27 (483.32) 1322.09 (487.03) 1276.88 (476.87) < 0.01**
BMI, Kg/m2 29.09 (6.71) 27.94 (6.22) 30.69 (7.04) < 0.01**
< 25 Kg/m2, n (%) 2835 (28.69) 2017 (34.97) 818 (19.88)
25-29.9 Kg/m2, n (%) 3721 (37.65) 2011 (34.86) 1981 (48.15)
≥ 30 Kg/m2, n (%) 3326 (33.66) 1740 (30.17) 1315 (31.96)
eGFR, mL/min 44.46 (48.79) 46.85 (51.46) 41.12 (44.56) < 0.01**
Systolic blood pressure, mmHg 123.85 (18.55) 115.33 (10.98) 135.69 (20.20) < 0.01**
Diastolic blood pressure, mmHg 69.82 (12.99) 68.39 (10.71) 71.82 (15.43) < 0.01**
Diabetes, n (%) < 0.01**
Yes 1467 (14.85) 383 (6.64) 1084 (26.35)
No 8415 (85.15) 5385 (93.36) 3030 (73.65)
NHANES cycles, n (%) 0.02*
2005–2006 1348 (13.64) 834 (14.46) 514 (12.49)
2007–2008 1744 (17.65) 1016 (17.61) 728 (17.70)
2009–2010 1869 (18.91) 1101 (19.09) 768 (18.67)
2011–2012 1552 (15.71) 920 (15.95) 632 (15.36)

Table 1 Characteristics of the study population
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Associations between individual BFRs and hypertension
The multivariable logistic regression analysis revealed 
that all BFRs except PBDE209 were significantly posi-
tively associated with hypertension in model 1. After 
adjusting for demographic characteristics and all covari-
ates, PBDE100 and PBDE153 were still significantly 
associated with hypertension, exhibiting 26% and 50% 
increase in odds (95% CI: 1.01, 1.57; P = 0.04; 95% CI: 1.18 
1.88; P < 0.01; Table 2), respectively.

The generalized additive models revealed a non-linear 
relationship between PBDE28 and hypertension (P for 
nonlinear = 0.03). Non-linear relationships were not sig-
nificantly observed for the remaining eight BFRs (P for 
non-linearity > 0.05) (Fig. 2).

Stratified associations between BFRs and hypertension
As presented in Table  3, Interaction analyses demon-
strated that PBB153 had obvious interaction with age 
and PBDE28 interacted with BMI. PBB153 was signifi-
cantly associated with hypertension in participants with 
age < 65 (OR: 2.38; 95% CI: 2.05, 2.76; P < 0.001; P for 
interaction < 0.001), while PBDE28 (OR: 1.54; 95% CI: 
1.04, 2.27; P = 0.03; P for interaction = 0.05) showed sig-
nificantly association for hypertension in participants 
with BMI < 30. However, no significant differences were 
observed between subgroups stratified by gender, edu-
cation level, PIR, serum cotinine, alcohol consumption, 
sleep disorders, physical activity and history of diabetes 
(Table S4).

Association between all BFRs and hypertension in WQS 
model
The multiple exposure effects of BFRs on hypertension 
were investigated using the WQS model. After account-
ing for all potential covariates, the WQS model identified 
a positive association between exposure to BFRs mixture 
and the prevalence of hypertension (β: 1.09; 95% CI: 1.02, 
1.17; P = 0.02) (Fig. 3A; Table 4). Figure 3B presented that 
PBDE209 contributed the most to the WQS index, fol-
lowed by PBDE100, PBDE153, PBDE28 and PBB153 were 
relatively important for hypertension due to their higher 
calculated weights. The WQS regression in the negative 
direction showed no significant association of the BFRs 
mixture with hypertension (β: 1.09; 95% CI: 0.99, 1.19; 
P = 0.07) (Table 4).

WQS, weighted quantile sum; lg, log-transformed.

Association between all BFRs and hypertension in BKMR 
model
In the BKMR model, Fig. S2 summarizes the results of 
the univariate exposure–response functions with other 
concentrations fixed at the median. A significant positive 
trend was observed between PBDE100 and hyperten-
sion. As shown in Fig. 4A, a significant overall association 
between exposure to BFRs mixture and increased risk of 
hypertension was observed when the mixture was at the 
55th percentile or above, compared to their 50th percen-
tile. Among BFRs mixtures, the highest PIPs for hyper-
tension were estimated for PBBDE100 (PIP = 0.78) and 

Table 2 Multivariable logistic regression analysis of log-transformed serum BFRs with hypertension
Variable Model 1 Model 2 Model 3

OR 95%CI P value OR 95%CI P value OR 95%CI P value
lgPBDE28 3.04 2.46–3.75 < 0.01** 1.22 0.92–1.61 0.16 1.24 0.92, 1.69 0.16
lgPBDE47 1.88 1.55–2.29 < 0.01** 1.14 0.91–1.43 0.26 1.13 0.89, 1.43 0.30
lgPBDE85 1.67 1.41–1.97 < 0.01** 1.18 0.97–1.42 0.09 1.14 0.93, 1.39 0.20
lgPBDE99 1.58 1.33–1.88 < 0.01** 1.06 0.87–1.30 0.54 1.03 0.84, 1.26 0.76
lgPBDE100 1.78 1.48–2.15 < 0.01** 1.25 1.02–1.55 0.04* 1.26 1.01–1.57 0.04*
lgPBDE153 1.45 1.18–1.79 < 0.01** 1.47 1.17–1.85 <0.01** 1.50 1.18–1.88 <0.01**
lgPBDE154 1.67 1.40–2.01 < 0.01** 1.13 0.92–1.39 0.23 1.13 0.91, 1.42 0.27
lgPBDE209 1.16 0.88–1.53 0.30 1.11 0.81–1.50 0.51 1.04 0.76, 1.43 0.78
lgPBB153 3.27 2.84–3.77 < 0.01** 1.10 0.93–1.31 0.25 1.03 0.87–1.23 0.71
Model 1: crude model

Model 2: adjusted for age, gender, race

Model 3: adjusted for age, gender, race, education level, PIR, serum cotinine, alcohol consumption, sleep disorders, depression, physical activity, dietary sodium 
intake, dietary potassium intake, BMI, eGFR, history of diabetes and NHANES cycles

lg, log-transformed; OR, odd ratio; CI, confidence interval. *p < 0.05, **p < 0.01

Variable Overall
(n = 9882)

Non-hypertension (n = 5768) Hypertension (n = 4114) P value

2013–2014 1740 (17.61) 983 (17.04) 757 (18.40)
2015–2016 1629 (16.48) 914 (15.85) 715 (17.38)
PIR, the family income to poverty ratio; BMI, body mass index; eGFR, estimated Glomerular Filtration Rate; NHANES, National Health and Nutrition Examination 
Survey. *p < 0.05, **p < 0.01

Table 1 (continued) 
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PBDE154 (PIP = 0.40) (Fig.  4B). Meanwhile, the interac-
tion between BFRs were not significant (Fig. S3).

Discussion
In this study, various statistical approaches were 
employed to thoroughly evaluate the effects of both indi-
vidual and mixed BFRs exposures on hypertension. Our 
research demonstrated that PBDE100 and PBDE153 were 
independently associated with the prevalence of hyper-
tension after accounting for potential covariates. A non-
linear relationship between PBDE28 and hypertension 
was observed. Positive overall trends between BFRs mix-
ture and hypertension were found in both the WQS and 
BKMR models.

Epidemiological studies on the relationship between 
BFRs exposure and hypertension are extremely spo-
radic. Smarr et al. reported an elevated odds of gesta-
tional hypertension associated with PBDE66, though 
this finding was not statistically significant [39]. Eslami 
et al. showed a significant correlation between total 
PBDEs and pre-eclampsia in first-time moms [40]. How-
ever, these studies focused on pregnant populations and 
did not investigate the correlation between PBDEs and 
hypertension in the general population. In contrast, our 
study indicated a positive association between BFRs 
and hypertension in general adults. Che et al. examined 
the association between BFRs and metabolic syndrome, 
including its components, using community-based data. 

Fig. 2 Cubic splines for the associations of log-transformed serum BFRs with Hypertension. The horizontal dashed line represents the OR = 1.00. The red 
lines indicate multivariate-adjusted OR and the purple shaded area represents the 95%CI. All models were adjusted for age, gender, race, education level, 
PIR, serum cotinine, alcohol consumption, sleep disorders, depression, physical activity, dietary sodium intake, dietary potassium intake, BMI, eGFR, history 
of diabetes and NHANES cycles. lg, log-transformed; OR, odd ratio; CI, confidence interval
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Their research found no significant association between 
exposure to BFRs and hypertension [41]. The sample size 
of the study (4641 adults) was substantial for epidemio-
logical research, but many cases were excluded for not 
meeting the inclusion criteria during the study period. 
Our study had a larger sample size, potentially increasing 
the statistical power and the ability to detect associations. 

The definition and determination of hypertension are 
consistent across both studies, as are the PBDEs and 
PBBs involved. However, variations in study periods may 
lead to differences in detection frequencies and levels of 
specific congeners. Additionally, our study included more 
covariates, whereas their study included fewer and differ-
ent covariates, which may lead to residual confounding. 

Table 3 Association between log-transformed serum BFRs and hypertension in subgroups stratified by age and BMI
Age Age < 65 Age ≥ 65 P-int

OR CI P value OR CI P value
lgPBDE28 2.40 1.73–3.32 <0.01** 1.31 0.75–2.28 0.34 0.53
lgPBDE47 1.35 1.02–1.8 0.04* 1.29 0.81–2.06 0.28 0.51
lgPBDE85 1.30 1.02–1.65 0.04* 1.21 0.79–1.84 0.38 0.80
lgPBDE99 1.17 0.92–1.48 0.21 1.15 0.78–1.69 0.49 0.46
lgPBDE100 1.41 1.07–1.86 0.02* 1.37 0.89–2.09 0.15 0.67
lgPBDE153 1.44 1.06–1.94 0.02* 1.83 1.23–2.72 <0.01** 0.96
lgPBDE154 1.31 1.00-1.71 0.06 1.18 0.78–1.79 0.43 0.64
lgPBDE209 1.19 0.84–1.69 0.33 1.12 0.65–1.93 0.69 0.86
lgPBB153 2.38 2.05–2.76 <0.01** 1.06 0.72–1.55 0.77 < 0.01**
BMI BMI < 30 BMI ≥ 30 P-int

OR CI P value OR CI P value
lgPBDE28 1.54 1.04–2.27 0.03* 0.87 0.59–1.3 0.50 0.05*
lgPBDE47 1.33 0.98–1.80 0.07 0.89 0.63–1.24 0.48 0.08
lgPBDE85 1.28 0.97–1.69 0.08 0.95 0.7–1.29 0.74 0.15
lgPBDE99 1.17 0.89–1.54 0.26 0.86 0.64–1.15 0.30 0.11
lgPBDE100 1.36 1.02–1.82 0.04* 1.11 0.81–1.53 0.51 0.36
lgPBDE153 1.33 1.01–1.75 0.04* 1.89 1.37–2.61 <0.01** 0.07
lgPBDE154 1.28 0.95–1.72 0.10 0.94 0.68–1.32 0.74 0.18
lgPBDE209 1.16 0.77–1.76 0.47 0.98 0.59–1.60 0.92 0.75
lgPBB153 1.18 0.94–1.47 0.16 0.91 0.68–1.22 0.53 0.06
BMI, body mass index; lg, log-transformed; OR, odd ratio; CI, confidence interval

*p < 0.05, **p < 0.01

Fig. 3 Association between BFRs exposure and hypertension by WQS model. (A) The combined effects of mixed exposure to BFRs. (B) The weights of 
each BFR for hypertension in positive direction. The dashed red line represents the cutoff value (by default equal to the inverse of the number of elements 
in the mixture). The model was adjusted for age, gender, race, education level, PIR, serum cotinine, alcohol consumption, sleep disorders, depression, 
physical activity, dietary sodium intake, dietary potassium intake, BMI, eGFR, history of diabetes and NHANES cycles. WQS, weighted quantile sum; lg, 
log-transformed
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Differences in population characteristics, covariate selec-
tion, and study periods may all contribute to the differing 
results. Our study included adults from six consecutive 
cycles from the NHANES database to evaluate the asso-
ciation between exposure to BFRs and hypertension. In 
the individual BFR analysis, PBDE100 and PBDE153 were 
significantly associated with hypertension. Meanwhile, 
we employed the WQS regression and BKMR models, 
two statistical tools, to examine the complexity of BFRs 
mixture exposure, avoiding the biases of traditional 
methods, which may simulate single chemical without 
considering the potential collinearity among similar com-
pounds. To mitigate the effect of extreme concentrations 
and to evaluate the total risk of chemical exposure, WQS 
regression quantile-sorts continuous variables using 
bootstrap sample weights. In our study, the results from 
the WQS analysis indicate a significant positive asso-
ciation between mixed BFRs exposure and hypertension. 
Simultaneously, both the univariate exposure-response 
analysis and the combined exposure analysis using the 
BKMR model suggest that certain individual BFRs and 
mixed BFRs may exhibit a positive relationship with 
hypertension. In the WQS analysis, PBDE209 contrib-
utes the most to the WQS index, followed by PBDE100 

and PBDE153, which have relatively greater impacts on 
hypertension. Meanwhile, in the BKMR model, PBDE100 
has the highest PIPs. In the multivariable regression 
analysis, several PBDEs and PBB153 are significantly 
associated with hypertension in the crude model. Even 
after adjusting for all variables, PBDE100 and PBDE153 
remain show significant association with hypertension. 
Across multiple statistical strategies applied in this study, 
PBDE100 consistently demonstrates a significant asso-
ciation with hypertension in both individual and mixed 
BFRs exposures.

Although the potential mechanisms by which BFRs 
exposure affects blood pressure are unclear, several 
hypotheses could be considered. First, evidence indi-
cates that human exposure to certain POPs can disrupt 
lipid homeostasis, trigger diabetes, promote obesity, and 
related diseases [42–44], all of which are common con-
ditions in hypertensive patients [45, 46]. Current biologi-
cal evidence suggests that PBDEs may contribute to the 
development of gestational diabetes mellitus (GDM), 
with PBDE-154 being correlated with an increased risk of 
GDM [47]. GDM and type 2 diabetes are clinical mani-
festations of the same entity, both attributed to insulin 
resistance, which is a known precipitant of cardiovascu-
lar diseases including hypertension [48, 49]. Therefore, 
the link between POPs and hypertension may be due to 
the increases in dyslipidemia, diabetes, and/or obesity 
caused by POPs. Simultaneously, previous research has 
demonstrated that octa- and deca-BDEs can cause degen-
erative alterations and kidney histopathology in rats [50]. 
Perinatal exposure to PBDE mixtures (DE-71) in rats 
disrupts blood pressure homeostasis in later adulthood, 
which may partly result from toxic effects on the kidneys 
and renal pathology, leading to excessive sodium reten-
tion and hypertension [51]. Additionally, previous studies 

Table 4 Association between exposure to BFRs mixture and 
hypertension by WQS model
Model β 95%CI P value
WQS
Positive 1.09 1.02–1.17 0.02**
Negative 1.09 0.99–1.19 0.07
Model was adjusted for age, gender, race, education level, PIR, serum cotinine, 
alcohol consumption, sleep disorders, depression, physical activity, dietary 
sodium intake, dietary potassium intake, BMI, eGFR, history of diabetes and 
NHANES cycles

WQS, weighted quantile sum; CI, confidence interval. *p < 0.05

Fig. 4 Association between combined BFRs exposure and hypertension analyzed by BKMR model. (A) Overall effects of BFRs mixture on hypertension at 
all concentrations ranged from the first quantile (10%) to the third quantile (90%) relative to the median (50%) level. (B) Posterior inclusion probabilities 
(PIPs) of each BFR for hypertension. Adjusted for age, gender, race, education level, PIR, serum cotinine, alcohol consumption, sleep disorders, depression, 
physical activity, dietary sodium intake, dietary potassium intake, BMI, eGFR, history of diabetes and NHANES cycles
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discovered that HepG2 cells, wild-type N2 worms, and 
adipocytes are susceptible to oxidative stress induced by 
PBDE-47 at different concentrations [15, 52]. The pres-
ence of reactive oxygen species, a hallmark of oxidative 
stress, was demonstrated in human umbilical vein endo-
thelial cells exposed to PBDE-209 [53]. Another study 
based on NHANES data from 2007 to 2016 analyzed 
the relationship between BFR levels and oxidative stress 
markers in American adults, revealed a positive asso-
ciation of BFRs exposure with oxidative stress markers. 
According to clinical and experimental findings, hyper-
tension is linked to inflammation and immune cell acti-
vation, which are mostly caused by oxidative stress [54]. 
Overall, we speculate that, BFRs, as a unique exogenous 
chemical, could influence blood pressure levels by affect-
ing endocrine hormones, renal function, oxidative stress, 
and metabolic pathways. Prospective cohort studies and 
in vitro/vivo experimental research are needed to con-
firm and examine the precise relationship and underlying 
mechanisms between BFRs exposure and hypertension.

Our study possesses certain advantages: It is the first to 
examine the relationship between BFRs and hypertension 
in a nationally representative sample of US adults. This 
study employed generalized additive regression, WQS 
regression, and BKMR models to comprehensively inves-
tigate the impacts of exposure to individual and overall 
BFRs on hypertension. Nevertheless, this study has cer-
tain constraints. Firstly, the observational study meth-
odology makes it impossible to establish any causal links 
based on this data. Secondly, there is currently no con-
sensus on the optimal method for measuring lipophilic 
chemicals in serum. This study used serum BFR concen-
trations to indicate exposure levels, which may not fully 
represent individual exposure and could lead to measure-
ment errors. Thirdly, despite frequently using covariates 
in regression models, it is important to acknowledge the 
potential influence of unmeasured confounding effects. 
Fourthly, the pathogenic properties and mechanisms of 
BFRs in animals and humans are unclear. Besides, since 
our study participants were American adults, the applica-
bility of our findings to other populations remains uncer-
tain. Future longitudinal studies are needed to establish a 
causal relationship between exposure to BFRs and hyper-
tension and verify the findings in more extensive popula-
tions. Moreover, experimental exploration of the specific 
biological mechanisms of BFRs represents an important 
direction for future studies.

Conclusion
In summary, our investigation showed a significant posi-
tive association between BFRs exposure and hyperten-
sion in the general adults. This would help enhance 
public awareness about preventing exposure to BFRs. 

Further research would be required to confirm our find-
ings and elucidate the potential mechanisms.
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