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Abstract

Background: Estimation of power to assess associations of interest can be challenging for time-series studies of the
acute health effects of air pollution because there are two dimensions of sample size (time-series length and daily
outcome counts), and because these studies often use generalized linear models to control for complex patterns
of covariation between pollutants and time trends, meteorology and possibly other pollutants. In general, statistical
software packages for power estimation rely on simplifying assumptions that may not adequately capture this
complexity. Here we examine the impact of various factors affecting power using simulations, with comparison
of power estimates obtained from simulations with those obtained using statistical software.

Methods: Power was estimated for various analyses within a time-series study of air pollution and emergency
department visits using simulations for specified scenarios. Mean daily emergency department visit counts,
model parameter value estimates and daily values for air pollution and meteorological variables from actual data
(8/1/98 to 7/31/99 in Atlanta) were used to generate simulated daily outcome counts with specified temporal
associations with air pollutants and randomly generated error based on a Poisson distribution. Power was
estimated by conducting analyses of the association between simulated daily outcome counts and air pollution
in 2000 data sets for each scenario. Power estimates from simulations and statistical software (G*Power and PASS)
were compared.

Results: In the simulation results, increasing time-series length and average daily outcome counts both increased
power to a similar extent. Our results also illustrate the low power that can result from using outcomes with low
daily counts or short time series, and the reduction in power that can accompany use of multipollutant models.
Power estimates obtained using standard statistical software were very similar to those from the simulations when
properly implemented; implementation, however, was not straightforward.

Conclusions: These analyses demonstrate the similar impact on power of increasing time-series length versus
increasing daily outcome counts, which has not previously been reported. Implementation of power software for
these studies is discussed and guidance is provided.
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Background
In a given study, the power of a particular analysis is the
probability of identifying a statistically significant associ-
ation if a non-random association truly exists. Given a
specified type 1 error probability, power depends on sev-
eral factors including study design, the distribution of
the outcome and type of analytical model, sample size,
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the strength of the effect of interest, the distribution of
the exposure, and covariation between exposure and its
covariates [1,2]. When planning a study, researchers
need to ensure that the study can be expected to have
adequate power for the questions of interest.
Ensuring sufficient power can be a challenge in time-

series studies of the acute health effects of air pollution.
The complex relationships between pollutants and the
many other factors (e.g., temporal trends and meteor-
ology) impacting the acute health outcomes of interest
in these studies lead to the need for complex modeling
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for control of confounding and assessment of interactions
[3]. In these models, there is often a high degree of co-
variation among pollutants, and between pollutants and
other model variables [4,5], which typically diminishes
effect estimate precision and decreases power to identify
air pollutant effects [6]. In addition, air pollution health
effects over short time intervals are often small; lower
effect sizes also decrease power. A characteristic of these
studies that distinguishes them from many other types
of studies with regard to power is that there are two
dimensions of sample size (time-series length and the
magnitude of the daily outcome counts) which both im-
pact power, but not necessarily in the same way. For an
extreme illustration, compare a 5000-day time series
with a mean of 2 events per day to a 2-day time series
with a mean of 5000 events per day. Both studies have a
total of 10,000 events but they are allocated over a dif-
ferent length of time. While most studies have less ex-
treme study design options than these, the relative
impact of the two aspects of sample size on study power
is not necessarily apparent and has implications for
study design decisions.
Estimating power when designing time-series studies

of the acute health effects of air pollution can also be
particularly challenging. While methods for sample size
calculation for studies using multivariate generalized
linear models have been developed [2,7,8] and statistical
software packages are available for estimating power for
such studies (ex. G*Power [1,9] (which is publicly avail-
able at no cost), and PASS [10,11]), these calculations
generally rely on simplifying assumptions that may not
be valid in a given study, and require specification of
parameters that may be difficult to estimate based on
available information.
Here we use simulations to estimate power for specific

analyses within an air pollution time-series study using
observed data from Atlanta, Georgia, and illustrate the
impact of various study design factors on study power.
Of particular interest was comparing the relative impact
of the two dimensions of sample size on power for
Table 1 Overall average pollutant levels for pollutants consid

Pollutant Mean Standard
Deviation

25th

Percentile
Med

PM2.5 (μg/m3), 24-h average 19.42 9.35 12.50 17.5

Total water- soluble PM2.5 metals
(μg/m3), 24-h average

0.03 0.03 0.01 0.0

Elemental carbon (EC) (μg/m3), 24-h
average

2.26 1.74 1.26 1.8

Carbon monoxide (CO) (ppmV), daily
1-h maximum

1.47 1.30 0.60 0.9

*Skewness was calculated using SAS version 9.2 with the formula: “ n
n�1ð Þ n�2ð Þ

Pn
i¼1w

ith value of the variable, �xw is the sample average, s is the sample standard deviatio
analyses in these studies. We also compare the power
estimates obtained using simulations with those obtained
using statistical software, using the simulations as the
gold standard.
Methods
General approach
Power was estimated for a time-series study of acute air
pollution health effects. Data on daily emergency depart-
ment (ED) visit counts from 18 hospitals and daily
values for air pollution and meteorological variables for
the 8/1/98 to 7/31/99 time period in Atlanta [12] were
used to generate simulated data sets with specified tem-
poral associations between daily outcome counts and air
pollutants. Power calculations were conducted for sce-
narios chosen to represent a range of pollutant-outcome
combinations of interest, various magnitudes of effect,
and various time-series lengths and mean daily outcome
counts.
Observed data
The pollutants considered in the scenarios included a
commonly examined air pollutant (24-h average fine
particulate matter, PM2.5), a less commonly considered
pollutant with sporadic spikes in levels (24-h average
total water-soluble PM2.5 metals), and pollutants that are
correlated over time [carbon monoxide (CO, daily 1-h
maximum) and elemental carbon (EC, 24-h average)].
The distributions of daily measurements of these pollu-
tants in the observed Atlanta data are described in
Table 1. The ED visit outcomes for which data were
simulated were cardiovascular outcomes of common
interest in time-series studies of air pollution health
effects, and included a cardiovascular disease grouping
(CVD, ICD-9 codes 402,410-414,427,428,433-437,440,
443,444,451-453), dysrhythmia (ICD-9 code 427), and
cardiac arrest (CA, ICD-9 code 427.5). The average daily
counts for these outcomes in the observed data were
42.9 for CVD, 10.7 for dysrhythmia, and 3.1 for CA.
ered in power simulations, Atlanta, 8/1/98-7/31/99

ian 75th

Percentile
Maximum Skewness* Number of days missing for

moving average of lags 0-2

4 24.76 53.24 1.00 31

2 0.04 0.20 2.07 58

8 2.60 15.61 2.83 22

8 1.81 9.42 2.27 44

3=2
i ðxi��xw

sw
Þ3where n is the number of non-missing values for a variable, xi is the

n, and wi=1 for all i=1,. . .,n“ [25].
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Scenarios
In Scenario Set 1, we examined the relative impact on
power of increasing or decreasing the number of ED
visits per day (e.g., to reflect the impact of altering the
number of hospitals providing ED visit data for the
study, or conducting the study in a location with a larger
or smaller population) and increasing the length of the
time series. For this scenario set, we simulated daily
counts for the CVD, dysrhythmia, and CA outcomes in
relation to PM2.5, with the risk ratio (RR) being based on
analysis of the observed data (CVD: RR= 1.024 per
10 μg/m3, dysrhythmia: RR = 1.026 per 10 μg/m3, CA:
RR= 1.104 per 10 μg/m3). Calculated predicted daily
counts were multiplied by 0.5, 1, 2, 3, 4, or 5 (to repre-
sent various degrees of reduction or expansion of the
number of hospitals or the population in the study);
and time-series lengths of 1, 2, 3 and 4 years were
considered.
In Scenario Set 2, we examined the impact on power

of varying the true underlying RR. For this scenario set,
we simulated daily counts for the CVD and dysrhythmia
outcomes in relation to total water-soluble PM2.5 metals.
Total water-soluble PM2.5 metals serves as an example
of a pollutant for which there is little prior information
about the expected RR. We selected RR estimates of
1.03, 1.05 and 1.07 (per standard deviation increase in
water soluble metals- 0.03 μg/m3) for this scenario set
(reflecting preliminary results for the association be-
tween total water-soluble PM2.5 metals and dysrhythmia,
and uncertainty about the true RR). The time-series
length was one year. Calculated predicted daily counts
were doubled to more closely reflect the mean daily
counts after a planned expansion of the number of hos-
pitals providing ED data for the Atlanta study.
In Scenario Set 3, we compared the power for analyses

that did or did not control for covarying pollutants. For
this scenario set we simulated data for the CVD and dys-
rhythmia outcomes in relation to both CO and EC. Both
of these pollutants were found to be associated with
these outcomes in single-pollutant models in prior ana-
lyses [12] and in current analyses of our observed data
when using a data set with the same days with missing
values for EC and CO (CVD-CO: RR per 1 ppmV=1.039,
p = 0.0007; CVD-EC: RR per 2 μg/m3 = 1.052, p = 0.0088;
dysrhythmia-CO: RR per 1 ppmV=1.067, p = 0.0037;
dysrhythmia-EC: RR per 2 μg/m3 = 1.106, p = 0.0097).
Since CO and EC are correlated (Spearman correlation
coefficient = 0.6), it was of interest to assess possible con-
founding of each pollutant’s effect by the other pollutant
in two-pollutant models. In two-pollutant models using
the observed data, the risk ratios for CVD were 1.032
per 1 ppmV for CO (p = 0.0207) and 1.022 per 2 μg/m3

for EC (p = 0.3432), and the risk ratios for dysrhythmia
were 1.049 per 1 ppmV for CO (p = 0.0774) and 1.058
per 2 μg/m3 for EC (p = 0.2265). We compared power
estimates for each pollutant for analyses using single pol-
lutant and two-pollutant models, using the risk ratios
from the single and two-pollutant models for the
observed data. Calculated predicted daily counts were
again doubled, and time-series lengths of 1, 2, 3, and
4 years were considered.

Epidemiologic models
The power analyses were designed for Poisson general-
ized linear models that allowed for overdispersion and
controlled for temperature [cubic spline, with knots at
the 25th and 75th percentiles (12.22°C and 23.89°C), for
the moving average (lags 0–2) of the daily average
temperature], dew point [cubic spline, with knots at the
25th and 75th percentiles (4.33°C and 18.28°C), for the
moving average (lags 0–2) of daily average dew point],
day of week and periods of hospital participation (indica-
tor variables), and underlying time trends (cubic spline
for time with seasonal knots for four seasons). After
accounting for time trends, it was determined that it was
not necessary to account for autocorrelation in the out-
come data. Pollutants were included in the models as
the moving average of lags 0–2, and risk ratios were cal-
culated per approximate standard deviation increase in
pollutant levels.

Power calculations using simulations
Simulated daily outcome counts were generated for
each scenario with average daily counts corresponding
to those in the one year of observed data; with the spe-
cified temporal associations with air pollutants; and with
associations with variables relating to time and meteor-
ology (and other pollutants in two-pollutant models)
that reflected the associations in the one year of ob-
served data. First, predicted mean daily outcome counts
(expected counts) were calculated for each day, using
models as specified above, as a function of daily
observed values for the variables in the model and the
estimated or a priori parameter value for each variable.
The parameter values for pollutants were either speci-
fied a priori (in Scenario Set 2) or estimated from the
observed data using models as specified above (in Sce-
nario Sets 1 and 3). Parameter values for other variables
in the model (time and meteorology variables) were
estimated from the observed data using models as spe-
cified above, except that models for generation of par-
ameter estimates for Scenario Set 2 (which had a priori
specification of pollutant risk ratios) did not include the
pollution variable. The calculated daily expected counts
were scaled to have the same mean as in our observed
data for Atlanta during 8/1/98-7/31/99. For some sce-
narios, these expected counts were multiplied by factors
of 0.5, 1, 2, 3, 4, or 5 to reflect the potential impact of
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increasing or decreasing the number of hospitals report-
ing ED data for the study or the population size. For
scenarios estimating the effect of using time series more
than 1 year in length, the observed daily values for all
variables in the model (including variables for time
trends), and the expected daily outcome counts were
repeated for subsequent years. Once data sets with ap-
propriately scaled expected daily outcome counts and
the appropriate time-series length had been generated,
2000 data sets were created for each scenario. Simulated
daily outcome counts in these data sets were generated
based on a Poisson distribution with the daily mean
being the scaled daily expected outcome counts. Ana-
lytic models, as specified above, were then run on each
of the 2000 simulated data sets for each scenario. Power
was calculated as the percentage of the data sets for
each scenario that showed a statistically significant asso-
ciation between the pollutant and the simulated daily
outcome counts, using a significance level of 0.05. All
simulations and analyses of simulated data were con-
ducted using SAS version 9.2 (SAS Institute, Inc., Cary,
North Carolina, USA).

Power calculations using statistical software
Power was also estimated for each scenario using the
algorithms for estimation of power for multivariate
Poisson generalized linear models in G*Power [1,9] and
PASS [10,11] software. For G*Power, estimates using the
enumeration procedure of Lyles, et al. [7] are reported.
The algorithms in these software packages require speci-
fication of the base rate (“Exp(β0)”), the risk ratio, the
proportion of the variance of the pollution variable
explained by other variables in the model (“R-squared
other X”), the distribution of the predictor variable (“dis-
tribution of X1”), the sample size, the mean exposure
period, alpha, and the number of tails [1,9,11].
Both software packages ask the user to supply the

“base rate” (Exp(β0)). The G*Power instructions explain
Exp(β0) as “the mean event rate assumed under H0.” [9]
The PASS instructions explain Exp(β0) as, “the response
rate that occurs when all covariates are equal to zero.”
[11] Interpretation of these instructions is not straight-
forward. Since the intercept (β0) depends on the coding
of the variables in the model, it is not clear what to enter
for Exp(β0). It is theoretically possible to estimate the
expected daily rate under the null hypothesis of no effect
of air pollution based on the observed risk ratio,
observed mean daily counts, and pollutant levels. How-
ever, in our data, this estimation procedure yielded
counts differing little from the observed mean daily
counts because risk ratios are close to the null (data not
shown). We considered two other methods for calculat-
ing Exp(β0), including exponentiation of the intercept
from the models and use of the observed mean daily
count. Each method produced different power estimates.
Ultimately, we chose the observed mean daily count as
our best estimate of Exp(β0), because it led to power
estimates that were closest to those from the simula-
tions. The risk ratio was as specified in each scenario.
“R-squared other X” was obtained from linear regres-

sion models that regressed the air pollution variable on
the other variables in the analytic model. Due to the lim-
ited number of options available for the distribution of
X1, a normal distribution was assumed for all pollutants,
with the mean and variance estimated from the observed
data. The sample size was the number of days in the
time series in each scenario (accounting for the number
of days with missing pollutant values in the actual data
set for comparability with simulations), and the mean
exposure period was 1 day. All calculations were two-
tailed with alpha = 0.05.

Results
The power estimates from the simulations for the vari-
ous scenarios are shown in Table 2 and Figures 1, 2 and
3. In scenario set 1, increasing the time-series length and
increasing the average number of visits per day both
increased power, with both having a similar impact on
power (Figure 1). For example for the CVD outcome,
compared with the scenario with a time-series length of
1 year and the original, unamplified mean daily visits
(mean daily count = 42.9, power = 0.29), the scenario that
tripled the time-series length but kept the original mean
daily counts increased power to 0.70, and the scenario
that tripled the mean daily counts but kept the time-
series length at 1 year increased power to 0.70 as well.
In scenario set 1, power was estimated to be very low
(e.g. <0.31 for dysrhythmia) when using outcomes with
very low daily counts (such as dysrhythmia with a mean
of 5.4-10.7 visits per day, or cardiac arrest with a mean
of 1.6-3.1 visits per day), even when using time series as
long as 4 years for dysrhythmia. Power was somewhat
better with low counts for cardiac arrest than for dys-
rhythmia at similar mean daily counts due to the high
risk ratio for the cardiac arrest-PM2.5 association in our
data set.
In scenario set 2, as expected, for each outcome,

power increased as the specified risk ratio increased
(Figure 2). The power also differed by outcome, largely
due to differences in mean daily counts.
In scenario set 3, power for both EC and CO was sub-

stantially lower in the two-pollutant models than in the
single pollutant models (Figure 3), with the power con-
sistently greater for CO than for EC. The difference in
power between the pollutants in the two-pollutant
models decreased with increasing time-series length.
Power estimates obtained using G*Power software are

also shown in Table 2. Results obtained using PASS



Table 2 Power estimates for time-series models of air pollution under various scenarios

Outcome Pollutant(s) in model Specified Risk Ratio Series
Length

Mean daily
visits

Power from
simulations

G*Power
Estimates†

Scenario Set 1 CVD PM2.5 1.024 per 10 μg/m3 1 year 21.5 0.17 0.16

42.9 0.29 0.28

85.8 0.53 0.49

128.7 0.70 0.66

171.6 0.81 0.78

214.5 0.88 0.86

2 years 21.5 0.28 0.28

42.9 0.50 0.49

85.8 0.82 0.78

128.7 0.94 0.92

171.6 0.98 0.97

214.5 0.99 0.99

3 years 21.5 0.41 0.39

42.9 0.70 0.66

85.8 0.93 0.92

128.7 0.99 0.98

171.6 1.00 1.00

214.5 1.00 1.00

4 years 21.5 0.52 0.50

42.9 0.81 0.79

85.8 0.98 0.97

128.7 1.00 1.00

171.6 1.00 1.00

214.5 1.00 1.00

Dysrhythmia PM2.5 1.026 per 10 μg/m3 1 year 5.4 0.07 0.08

10.7 0.11 0.11

21.4 0.19 0.18

32.1 0.25 0.25

42.8 0.31 0.31

53.5 0.38 0.38

2 years 5.4 0.11 0.12

10.7 0.19 0.18

21.4 0.32 0.32

32.1 0.43 0.45

42.8 0.54 0.56

53.5 0.63 0.65

3 years 5.4 0.13 0.15

10.7 0.25 0.25

21.4 0.44 0.45

32.1 0.60 0.61

42.8 0.73 0.73

53.5 0.82 0.82

4 years 5.4 0.16 0.19
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Table 2 Power estimates for time-series models of air pollution under various scenarios (Continued)

10.7 0.31 0.32

21.4 0.56 0.56

32.1 0.72 0.73

42.8 0.83 0.85

53.5 0.91 0.92

Cardiac Arrest PM2.5 1.104 per 10 μg/m3 1 year 1.6 0.18 0.22

3.1 0.32 0.38

6.2 0.58 0.64

9.3 0.75 0.81

12.4 0.87 0.91

15.5 0.93 0.96

2 years 1.6 0.32 0.39

3.1 0.57 0.65

6.2 0.85 0.91

9.3 0.96 0.98

12.4 1.00 1.00

15.5 1.00 1.00

3 years 1.6 0.45 0.54

3.1 0.75 0.82

6.2 0.96 0.98

9.3 1.00 1.00

12.4 1.00 1.00

15.5 1.00 1.00

4 years 1.6 0.56 0.67

3.1 0.86 0.91

6.2 0.99 1.00

9.3 1.00 1.00

12.4 1.00 1.00

15.5 1.00 1.00

Scenario Set 2 CVD Total water- soluble
PM2.5 metals

1.03 per 0.03 μg/m3 1 year 85.8 0.77 0.72

1.05 per 0.03 μg/m3 0.99 0.99

1.07 per 0.03 μg/m3 1.00 1.00

1.03 per 0.03 μg/m3 2 years 0.97 0.95

1.05 per 0.03 μg/m3 1.00 1.00

1.07 per 0.03 μg/m3 1.00 1.00

Dysrhythmia 1.03 per 0.03 μg/m3 1 year 21.4 0.28 0.24

1.05 per 0.03 μg/m3 0.62 0.55

1.07 per 0.03 μg/m3 0.90 0.83

1.03 per 0.03 μg/m3 2 years 0.50 0.44

1.05 per 0.03 μg/m3 0.89 0.85

1.07 per 0.03 μg/m3 1.00 0.99

Scenario Set 3 CVD Elemental carbon (EC)
(single pollutant model)}

EC: 1.052 per 2 μg/m3 1 year 85.8 EC: 0.98 0.99

EC: 1.052 per 2 μg/m3 2 years EC: 1.00 1.00

EC: 1.052 per 2 μg/m3 3 years EC: 1.00 1.00

EC: 1.052 per 2 μg/m3 4 years EC: 1.00 1.00
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Table 2 Power estimates for time-series models of air pollution under various scenarios (Continued)

Carbon monoxide (CO)
(single pollutant model)}

CO: 1.039 per 1 ppmV 1 year CO: 1.00 1.00

CO: 1.039 per 1 ppmV 2 years CO: 1.00 1.00

CO: 1.039 per 1 ppmV 3 years CO: 1.00 1.00

CO: 1.039 per 1 ppmV 4 years CO: 1.00 1.00

Elemental carbon (EC) and
Carbon monoxide (CO) in
two- pollutant model

EC: 1.022 per 2 μg/m3 1 year EC: 0.32 0.35

CO: 1.032 per 1 ppmV CO: 0.94 0.95

EC: 1.022 per 2 μg/m3 2 years EC: 0.54 0.61

CO: 1.032 per 1 ppmV CO: 1.00 1.00

EC: 1.022 per 2 μg/m3 3 years EC: 0.73 0.78

CO: 1.032 per 1 ppmV CO: 1.00 1.00

EC: 1.022 per 2 μg/m3 4 years EC: 0.83 0.89

CO: 1.032 per 1 ppmV CO: 1.00 1.00

Dysrhythmia Elemental carbon (EC)
(single pollutant model)

EC: 1.106 per 2 μg/m3 1 year 21.4 EC: 0.98 0.99

EC: 1.106 per 2 μg/m3 2 years EC: 1.00 1.00

EC: 1.106 per 2 μg/m3 3 years EC: 1.00 1.00

EC: 1.106 per 2 μg/m3 4 years EC: 1.00 1.00

Carbon monoxide (CO)
(single pollutant model)

CO: 1.067 per 1 ppmV 1 year CO: 0.99 0.99

CO: 1.067 per 1 ppmV 2 years CO: 1.00 1.00

CO: 1.067 per 1 ppmV 3 years CO: 1.00 1.00

CO: 1.067 per 1 ppmV 4 years CO: 1.00 1.00

Elemental carbon (EC) and
Carbon monoxide (CO) in
two- pollutant model

EC: 1.058 per 2 μg/m3 1 year EC: 0.49 0.55

CO: 1.049 per 1 ppmV CO: 0.81 0.79

EC: 1.058 per 2 μg/m3 2 years EC: 0.78 0.84

CO: 1.049 per 1 ppmV CO: 0.98 0.97

EC: 1.058 per 2 μg/m3 3 years EC: 0.92 0.95

CO: 1.049 per 1 ppmV CO: 1.00 1.00

EC: 1.058 per 2 μg/m3 4 years EC: 0.97 0.99

CO: 1.049 per 1 ppmV CO: 1.00 1.00

All models controlled for temperature (cubic splines with knots at 12.22°C and 23.89°C, for the moving average of daily average temperature (lags 0–2 days)),
dew point (cubic splines with knots at 4.33°C and 18.28°C, for the moving average of daily average dew point (lags 0–2 days)), weekday, hospital participation
periods, and underlying time trends (cubic spline for time with seasonal knots for four seasons).
† G*Power estimates were generated using the Lyles Enumeration Procedure. Power estimates obtained using PASS were very similar (all within 2 percentage
points of the G* Power results) and are not shown. G*Power estimates use the mean daily count as expβ0 and account for days with missing pollutant values.
}Single pollutant models have missing values on the same days as the two-pollutant models.
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software were nearly identical to results obtained using
G*Power software (always within 2 percentage points)
and are not shown. Power estimates from statistical soft-
ware were very similar to estimates from the simulations
when using the mean daily count as Exp(β0) and
accounting for the number of days with missing pollu-
tant values. If the number of days with missing pollutant
values was not accounted for, power was over estimated
(data not shown). In addition, if a more straightforward
interpretation of Exp(β0) was used, in which the expo-
nentiated intercept from the model was used as Exp(β0),
power was substantially overestimated in some scenarios
and substantially underestimated in other scenarios (data
not shown).
Discussion
These analyses illustrate the impact of increasing time-
series length and mean daily counts on power for air
pollution time-series studies, and the way in which that
impact varies for different pollutants, magnitudes of the
risk ratio, and daily outcome counts. Moreover, they il-
lustrate the potential usefulness of simulations in esti-
mating power for such studies, as well as a reliable
method for using statistical software for estimating
power for such studies.
Scenario Set 1 illustrates the important point that

studies considering outcomes with very low mean daily
counts (<10 per day) will have very low power, even with
time series up to 4 years in length, when the risk ratio is



Figure 1 Power estimates from simulations varying time-series length and daily outcome counts (Scenario Set 1). Power estimates are
for PM2.5 in relation to CVD (a), dysrhythmia (b), and cardiac arrest (c). Simulated daily outcome counts were generated for each scenario with
average daily counts corresponding to average counts in one year of observed data; with the specified temporal associations with air pollutants;
and with associations with variables relating to time and meteorology that reflected the associations in the one year of observed data. For each
scenario, the mean daily counts were scaled appropriately, time series of the specified length were created, and 2000 simulated data sets were
generated based on a Poisson distribution. Power was calculated as the percentage of the 2000 simulated data sets for each scenario that
showed a statistically significant association between the pollutant and the simulated daily outcome counts, using a significance level of 0.05.
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low. Scenario Set 1 also illustrates the two dimensions of
sample size in this type of study: the time-series length
and the mean daily counts. To our knowledge, the rela-
tive impact of these two dimensions of sample size on
power in time-series studies of air pollution health
effects has not previously been directly examined. Our
simulation results suggest that the power can be
increased by increasing either the mean daily count (e.g.,
by increasing the number of hospitals contributing data
to the study) or the time-series length, with both having
a similar impact on the expected value of power if the
joint distribution of the outcome, pollution levels, and
covariates is fixed. In our simulations, by repeating the
values of all covariates in the model in years after the
first year, the distribution of the pollution variable and
the covariance between pollution and other variables in
the model were held constant to allow a ‘pure’ compari-
son of the effect of the two dimensions of sample size.
However, in a real-world study, changing the length of
the time series would likely change the observed distri-
bution of pollution levels and covariates in a way that
changing the mean daily counts would not. This could
lead to changes in the actual power of a study that are
not solely due to the change in the time series length.
As an example, consider the hypothetical example of a
2-day time series with a mean daily count of 5,000
events per day. This study could have excellent power to
detect an air pollution effect if the two days had very
different air pollution levels or very poor power if the
two days had similar pollution levels. That is, there is an
element of chance in the days selected. By contrast, a
5000-day time series with a mean of 2 events per day
could have a more representative distribution of pollu-
tion levels and covariates and would also have the poten-
tial for evaluation of dose–response curves, seasonal
effects, and interactions in a way that the 2-day time
series would not.
In practice increasing each of these dimensions of

sample size may have challenges. The length of the time
series may be limited by the availability of historical data
or the time available for prospective data collection. The
mean daily outcome counts may be limited by the popu-
lation size in the study area, and increasing the number
of hospitals may increase exposure measurement error if
the geographic area is substantially expanded. The sce-
narios considered here reflect those considered in pub-
lished air pollution time-series studies, which have
varied widely in terms of the length of the time series
and the average number of daily events. Some studies
have had long time series and a high average number of
daily events as a result of conducting studies in large
metropolitan areas or of combining data from multiple
cities [13-15]. For example, Strickland et al. [14] exam-
ined a 12-year time series with daily measurements of
air pollutants and a mean of 18.9 pediatric asthma visits
per day during the warm season and 22.8 per day during



Figure 2 Power estimates from simulations varying risk ratio and time-series length (Scenario Set 2). Power estimates are for total water
soluble PM2.5 metals in relation to CVD and dysrhythmia. Mean daily outcome counts were held constant at twice the mean daily counts in the
observed data. Simulated daily outcome counts were generated for each scenario with average daily counts corresponding to average counts in
one year of observed data; with the specified temporal associations with air pollutants; and with associations with variables relating to time and
meteorology that reflected the associations in the one year of observed data. For each scenario, the mean daily counts were scaled appropriately,
time series of the specified length were created, and 2000 simulated data sets were generated based on a Poisson distribution. Power was
calculated as the percentage of the 2000 simulated data sets for each scenario that showed a statistically significant association between the
pollutant and the simulated daily outcome counts, using a significance level of 0.05.
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the cold season. Le Tertre et al. [15] analyzed data for 8
European cities with city-specific time series varying in
length from 3 to 7 years and a mean number of daily
hospital admissions for cardiac conditions in each city
ranging from 16 to 138. However, other studies have
considered shorter time periods and/or lower average
number of daily events [16-18]. Some have had short
time series due to an interest in studying the impact of
short-term events such as wildfires (e.g., a study by
Delfino et al. [16] with a 46-day time series). Some stud-
ies have had a low mean number of daily events due to a
small population size but local concerns about the health
effects of air pollution (e.g., a study by Ulirsch et al. [17]
that combined counts of several different types of health
care visits to achieve a 5.5-year time series with mean
daily event counts of 18.0-21.1 for respiratory outcomes
and 2.0-4.9 for cardiovascular outcomes), or an interest
in locally collected data with a level of covariate detail
not usually available in large administrative data sets
[e.g., a study by Stieb et al. [18] that examined a 3.75-year
time series of ED visits, with information on smoking
status, the presenting complaint, and date of symptom
onset, but with low mean daily ED visit counts (e.g., 10.9
for the ‘all respiratory’ outcome group, and <4 for cardio-
vascular case groups)]. In some studies, mean daily
counts are moderate for some outcomes but very low for
other outcomes (e.g., a study by Slaughter et al. [19] that
examined a 6-year time series for hospital admissions
and a 6.5-year time series for ED visits in which the mean
daily event counts were 12.2 for ‘all respiratory’ ED visits,
but <10 for all other outcome groups including mean
counts of ≤3 for some outcome groups). Our findings
can help guide investigators when considering power in
studies such as these, with very short time series or very
low average daily event counts.
Scenario Set 2 illustrates how power depends on the

specified effect size. The impact of the effect size on
power can also be seen in Scenario Set 1, in the surpris-
ingly high power seen for cardiac arrest in spite of low
daily counts, which was due to the high risk ratio for the
cardiac arrest-PM2.5 association observed in our data set.
However, it should be noted that effect estimates for
outcomes with low daily counts can be very unstable.
Use of an effect estimate for an outcome with low daily
counts from a short time series in a power calculation
may give misleading power estimates.



Figure 3 Power estimates from simulations comparing single pollutant models and two-pollutant models (Scenario Set 3). Power
estimates are for elemental carbon (EC) and carbon monoxide (CO) in relation to CVD and dysrhythmia, with varying time-series length.
Mean daily outcome counts were held constant at twice the mean daily counts in the observed data. Simulated daily outcome counts were
generated for each scenario with average daily counts corresponding to average counts in one year of observed data; with the specified
temporal associations with air pollutants; and with associations with variables relating to time and meteorology and the other pollutant in the
two-pollutant models that reflected the associations in the one year of observed data. For each scenario, the mean daily counts were scaled
appropriately, time series of the specified length were created, and 2000 simulated data sets were generated based on a Poisson distribution.
Power was calculated as the percentage of the 2000 simulated data sets for each scenario that showed a statistically significant association
between the pollutant and the simulated daily outcome counts, using a significance level of 0.05.
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Scenario Set 3 compares the power for analyses that
do or do not control for covarying pollutants. Power to
detect a statistically significant effect may be reduced in
multi-pollutant models for several reasons. First, the risk
ratios for the pollutants are often smaller in the multi-
pollutant model than in the single pollutant models due
to the control for positive confounding between the pol-
lutants. Second, collinearity between pollutants can
cause model instability and inflate parameter estimate
variances in multipollutant models [6], with an accom-
panying decrease in power. Finally, if pollutants have
missing observations on different days, the multi-
pollutant model will have more missing values than the
single pollutant models, leading to increased parameter
estimate variances and reduced power [20]. In our sce-
narios, the single pollutant models were made to have
the same number of missing days as the two-pollutant
models; therefore, this was not the reason for the differ-
ence in power. In scenario set 3, although the RR was
greater for EC than for CO in the two-pollutant model
for dysrhythmia, the power was greater for CO in all
models. The reason for this is that in addition to the
odds ratio, the proportion of the variance of a pollutant
that is explained by other variables in the model and the
variability of pollutant values also affect power. In the
two pollutant models, the proportion of the variance
explained by other variables in the model was higher for
EC than for CO, and the coefficient of variation was
lower for EC than for CO. Both of these factors will de-
crease power for EC. These findings demonstrate the
important fact that the power to detect an effect may
not be the same for all pollutants in a multipollutant
model, due to different pollutant distributions and differ-
ent relationships with other variables in the model. All
else being equal, pollutants that have high correlations
with other variables in the model or that have low vari-
ability will have lower power.
When the power estimates from the simulations were

compared with those obtained from statistical software,
we found that the power estimated by the statistical
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software was very similar to that estimated through the
simulations. The similarity between power estimates
from simulations and power software was observed des-
pite the challenges in calculating some of the parameters
required for the statistical software. For example, several
of the pollutants had skewed distributions, which could
have led to inaccuracies in resulting power estimates due
to the assumption of a normal pollutant distribution and
to use linear regression models for estimation of the
proportion of the pollution variable variance that was
due to other model variables. In addition, we found that
implementation of the software for time-series studies
was not straightforward due to difficulties involved in
defining Exp(β0). Our results show that using the mean
daily count in power calculations for these types of stud-
ies (with risk ratios that are close to the null) may be a
reasonable approach to estimating Exp(β0). The more
straightforward approach based on a simple interpret-
ation of the instructions, of exponentiating β0 from the
models, led to inaccuracies in the power estimates.
When using power software to estimate power, it is also
important to account for the expected degree of missing
data, as was done here. Power estimates from software
that did not account for missing data overestimated
power.
Power in time-series analyses could also vary in ways

not considered in these analyses. There are many ways
to model a particular pollutant-outcome relationship
with regard to pollutant characterization, lag structure,
control for confounding due to time trends and me-
teorological factors, and type of analysis [21]. The ques-
tion, “What is the power?” can only be answered for a
specific pollutant-outcome model with specified effects
and a specified modeling strategy. Model specifications
can affect power by impacting the covariation between
the pollutant of interest and other variables in the
model. Power can also be affected by factors that may
not be directly controllable in the study design phase,
such as missing values [20] and measurement error,
which can decrease power [22,23].
The magnitudes of the power estimates in these simu-

lations are specific to our model specifications, as well as
to the pollutant, outcome and covariate distributions and
observed risk ratios in our observed data set. However,
the conclusions relating to how various factors impact
power are generalizable to different model specifications
within the framework of Poisson generalized linear mod-
els. They are also generalizable to different outcomes,
different pollutants and different locations. In any sce-
nario, the same factors influence power in the same way.
While power calculations such as these can be helpful

in assuring that a study is well-designed, they must be
interpreted correctly. While increasing the sample size
will increase power, this should not be interpreted to
mean that an estimated effect bordering on statistical
significance would necessarily become significant with
increased sample size. In multi-pollutant models, power
calculations can reflect the power for estimating the ef-
fect of each pollutant given a specified correlation with
other pollutants, but such calculations do not address
the adequacy of the control for confounding or differen-
tial measurement error, which can be major issues in
such models [5,24]. Similarly, in any model, adequate
statistical power does not ensure validity of model
results, as there still may be problems compromising
validity (e.g. lack of control for confounding, misspecifi-
cation of dose response functions, measurement error).
The validity of power analyses is also contingent on ana-
lyses being conducted in the proper framework. One can
spuriously increase the probability of finding significant
effects by using procedures such as data mining. Finally,
the accuracy of power estimates from simulations based
on data from a short time period depends on the degree
to which the short time period is representative of the
period in the planned study with respect to daily counts,
the magnitude of associations between air pollution and
outcomes, and the relationships between the various
variables in the model.
Conclusions
The findings of these simulations have several implica-
tions for the design of studies of acute air pollution
health effects. Such studies often model many pollutant-
outcome combinations, and power will be better for
some hypotheses than for others. The issue of sufficient
power should be viewed as a continuum and not a di-
chotomous (yes or no) issue. To optimize power, one can
increase either time-series length (by acquiring data for a
longer time period) or the daily outcome counts (e.g., by
acquiring data from more hospitals). While mathematic-
ally both have a similar impact on power, the actual im-
pact might not be the same if increasing time series
length changes pollutant distributions and the relation-
ships between pollutants and other variables in the
model. Allowance should also be made for the impact on
power of controlling for covarying pollutants. Finally,
power estimates obtained from standard software were
very close to those from simulations, but care is needed in
selecting proper values for the software input parameters.
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