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Should oral gavage be abandoned in toxicity
testing of endocrine disruptors?
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Abstract

For decades, hazard assessments for environmental chemicals have used intra-gastric gavage to assess the effects
of ‘oral’ exposures. It is now widely used – and in some cases required – by US federal agencies to assess potential
toxicity of endocrine disrupting chemicals (EDCs). In this review we enumerate several reasons why gavage is not
appropriate for the assessment of EDCs using bisphenol A (BPA) as a main example. First, whereas human dietary
exposures interact with the oral mucosa, gavage exposures avoid these interactions, leading to dramatic differences
in absorption, bioavailability and metabolism with implications for toxicokinetic assumptions and models. Additionally,
there are well acknowledged complications associated with gavage, such as perforation of the esophagus that diminish
its value in toxicological experiments. Finally, the gavage protocol itself can induce stress responses by the endocrine
system and confound the assessment of EDCs. These serious flaws have not been taken into account in interpreting
results of EDC research. We propose the exploration of alternatives to mimic human exposures when there are multiple
exposure routes/sources and when exposures are chronic. We conclude that gavage may be preferred over other routes
for some environmental chemicals in some circumstances, but it does not appropriately model human dietary exposures
for many chemicals. Because it avoids exposure pathways, is stressful, and thus interferes with endocrine responses,
gavage should be abandoned as the default route of administration for hazard assessments of EDCs.
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Background
The realization that a large number of chemicals used
in products disrupt endocrine function, referred to as
endocrine disrupting chemicals (EDCs), has created sig-
nificant challenges for the approaches used in hazard
assessments of environmental chemicals. Knowledge
generated in the last several decades about EDCs ques-
tions many assumptions used in chemical risk assess-
ments. This has led to a number of published studies
disputing current hazard and risk assessment approaches
and assumptions for studies of EDCs [1-5].
In this review we examine a method commonly used

in toxicology studies, intra-gastric gavage, to deliver che-
micals to subjects in a controlled manner. Intra-gastric
gavage involves the insertion of a tube into the mouth,
the sliding of this tube through the esophagus, and the
deposition of the compound directly into the stomach
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[6]. This method has been widely used to test potential
hazards of EDCs because it is thought to allow precise
control of both the dose and timing of treatment. Two
comparable delivery methods used in humans involve
enclosing the chemical in pills that only release their
contents in the stomach and the delivery of nutrients
directly to the stomach of patients (enteral dosing) via a
feeding tube.
We specifically address recent studies that challenge

the use of gavage for the study of EDCs using bisphenol
A (BPA) as a model EDC. We chose BPA because hu-
man exposures are widespread [7], low doses have been
linked to adverse effects in laboratory animals [8,9],
exposures are associated with a wide range of human
diseases [10], and there remain unanswered questions
about how best to model routes and sources of exposure
[11]. Although we chose to focus on BPA, the issue of a
lack of detailed understanding of all potential routes of
exposure applies to many chemicals used in a wide range
of products [12].
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We also review a number of studies suggesting that
gavage does not appropriately model dietary chemical
exposures and what the consequences might be for the
interpretation of toxicokinetic studies. We discuss how
gavage can induce stress responses that may interfere
with hazard assessments of chemicals that have endo-
crine modes of action. We conclude by identifying other
methods of chemical administration and address how to
best mimic exposures experienced by humans.

Gavage does not model human dietary exposures
When exposures occur via the diet, the chemical can
interact with numerous surfaces in the oral cavity in-
cluding the buccal, sublingual, gingival, palatal and labial
mucosa [13]. Each of these surfaces is fed by a rich
blood supply, and the epithelia within the oral mucosa
are 4 to 4000-times more penetrable than skin [13].
Chemical absorption occurs efficiently via these surfaces,
leading to rapid transport to the arteries delivering the
chemical to tissues. Importantly, chemicals that are
absorbed via this route evade a sequential first-pass me-
tabolism first by the gut wall and then by the liver. For
example, the gut wall first-pass effect is relevant in rats
for BPA, but not in humans [14], whereas hepatic first-
pass metabolism is most important in humans [15,16].
When chemicals that are absorbed in the mouth evade
first-pass metabolism, they are then bioavailable at higher
levels relative to chemicals absorbed from the gut that
are transported directly to the liver via the mesenteric
vessels.
The toxicokinetic profiles of several chemicals have

been shown to differ substantially in animals treated via
gavage versus administration via other oral routes. In
one example, rodents were administered donepezil, a
pharmaceutical used in the treatment of Alzheimer’s dis-
ease, either via gavage or in a solution consumed from a
syringe [17]. Both blood and brain concentrations were
lower when the drug was administered via gavage com-
pared to when it was swallowed, differences the authors
attributed to absorption via the buccal and/or sublingual
surfaces. Steroid hormone absorption is more rapid and
leads to higher blood concentrations when administered
sublingually than when ingested via a capsule or pill
[18]. Gavage versus dosed feed administration of benzyl
acetate affected the carcinogenic response by this chem-
ical [19]. Finally, for Sulindac, a non-steroidal anti-
inflammatory, oral gavage resulted in higher peak and
lower trough concentrations in plasma and mammary
tissue, and had a greater effect on prostaglandin E2 levels
than the corresponding dietary dosing [20].
In a recent study, circulating BPA concentrations were

examined in dogs administered BPA via the sublingual
mucosa or via traditional gavage methods [15]. Following
sublingual exposure, BPA entered into circulation largely
in an unconjugated form, consistent with a pathway that
evades hepatic first-pass metabolism. This contrasted with
the results of gavage administration in the same study, in
which over 99% of BPA reaching the systemic circulation
was in a conjugated (glucuronidated) form, as would be
expected when a compound undergoes extensive first-
pass metabolism [15,21,22]. An interesting additional
comparison is provided by studies in which BPA was ad-
ministered to rhesus monkeys via gavage [23] and less than
1% of administered BPA was bioavailable (unconjugated)
in blood; in contrast, BPA fed in a piece of fruit resulted
in over 7% of administered BPA being bioavailable in
blood [16,24].
A human de facto variant of gavage involves delivery

of the chemical in hard pills or gelatinous capsules. Like
gavage, this form of administration prevents the chem-
ical from interacting with the oral mucosa, leading to
toxicokinetic parameters that are unlikely to reflect all of
the human experience for a chemical that people are ex-
posed to via an oral route. Unfortunately, the only ex-
perimental human BPA toxicokinetic study conducted to
date delivered the chemical using a hard gelatin capsule
[25], rendering their results irrelevant to real-life human
exposures via the diet.
For chemicals like BPA found as contaminants in food

and beverages, human exposures via dietary sources
likely occur throughout the day in meals and snacks.
Buccal absorption associated with discrete meals should
generate a series of BPA peaks in the blood and then
troughs during the inter-digestive period, rather than a
low steady exposure expected following intestinal ab-
sorption. In addition, the amplitude of these intermittent
bursts of BPA concentrations could be higher in arterial
blood than those that can be measured peripherally [26].
Although there are protocols to employ the gavage
method of administering chemicals to animals repeatedly
during the day, handling animals and inserting a tube
into their stomach multiple times daily is clearly prob-
lematic. Thus, studies aimed to assess the hazards of
chemicals have used gavage protocols that typically rely
on a single daily administration [see for example [27-29]].
These differences between real-world experience and ex-
perimental protocol in the timing and duration of expo-
sures reduce the utility of gavage protocols for studies
concerned with mimicking human dietary exposures. A
study that directly compared the toxicokinetic profiles of
BPA in mice exposed via gavage and those exposed in
their feed revealed higher concentrations of unconjugated
BPA in the blood of mice that consumed BPA via food ver-
sus those that were treated via gavage [30]. In fact, after
adjusting for dose, the maximum serum concentration
reached was 3-fold greater when BPA was consumed in
feed vs. when administered via gavage. Note that the ro-
dent mouth is more heavily keratinized compared to dog
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or primate [15], reducing but likely not eliminating oral
absorption.
In sum, exposure by gavage or by swallowing a capsule

may result in significant differences in toxicokinetics
compared to an oral exposure that mimics the routes
and timing of exposure to chemicals consumed in food
or beverages. There are two principle reasons: gavage
avoids absorption by surfaces in the oral cavity, and it
typically involves only a single daily pulse (bolus). An
analysis of data that showed that time since the last meal
did not account for BPA levels in urine in the US popu-
lation [31] suggested that gavage models [32,33] are likely
not accounting for major sources and routes of BPA
exposure.

Why are these differences in toxicokinetic parameters
important?
Calculating toxicokinetic parameters from data obtained
in gavage and/or hard gelatin capsule experiments could
lead to inaccurate conclusions about expected bioactive
levels of EDCs in serum in the general population. For
example, because gavage/capsule experiments show that
over 99% of BPA absorbed in the gastrointestinal tract
undergoes first pass metabolism, a recent study esti-
mated that the amount of unconjugated BPA in human
serum would be below the limit of detection of even the
most sensitive analytical methods available [34]. This
analysis assumes that no absorption occurs via the oral
mucosa; yet as discussed above, oral absorption can be
substantial and, in fact, not significantly different from
exposure via IV injection [15]. The assumption that al-
most all BPA from oral exposures undergoes first-pass
metabolism has been used to argue that any observed
unconjugated BPA in human serum must be the result
of contaminated lab procedures, and therefore has been
used to dismiss dozens of biomonitoring studies that re-
port unconjugated BPA in human serum samples [11].
A recent NIH-sponsored study assessed whether BPA

could be measured accurately in human serum by mul-
tiple laboratories and whether there was contamination
during blood collection [35]. The conclusion was that
sources of contamination could be identified and elimi-
nated, allowing contamination-free assays to be con-
ducted [36]. Other studies have similarly reported that
BPA contaminations can be eliminated during blood col-
lection. For example, one study referred to BPA contam-
ination as “an elusive laboratory challenge” [37] and
another noted “a propensity to introduce artifactual agly-
cone BPA” into assays [23], yet both of these studies
report that sources of BPA contamination could be iden-
tified and eliminated prior to collection and assay of
serum samples. Thus, BPA contamination can be con-
trolled when assaying human serum and urine samples.
Suggestions that unconjugated BPA cannot be detected
in human serum also imply that BPA should have no ef-
fects on human health at current levels of exposure [34].
Yet over sixty epidemiology studies show associations
between BPA exposures and disease outcomes [10].

Stress associated with gavage is problematic for
endocrine endpoints
A large literature has examined the effects of gavage on
stress. A meta-analysis of experiments designed to assess
the effects of gavage (without assessing the effects of
specific test chemicals) indicates that the process of
gavaging animals induces rapid, pronounced and statisti-
cally significant effects on stress-related responses [38].
Individual studies have shown that gavage can increase
the secretion of the stress-response hormone cortico-
sterone in mouse feces, evidence that the hypothalamic-
pituitary-adrenal axis is activated [39]. The effects on
corticosterone levels can vary depending on the vehicle
and volume of liquid used [40,41]. Other studies indicate
that gavage affects cardiovascular endpoints including
diastolic and systolic blood pressure and heart rate
[38,42]. Interestingly, Okva and colleagues demonstrated
that small volumes of gavage fluid have greater effects
on heart parameters than larger volumes [42], an unex-
pected finding that challenges the assumption that stress
responses occur only when animals are gavaged with
inappropriately high volumes. In these studies, physio-
logical differences were apparent at least one hour after
the gavage protocol. This is likely to be of particular im-
portance when studying pregnant females; acute mater-
nal stress causes elevated serum corticosterone levels to
persist for 12 hours [43], indicating that a significant
portion of the day could be spent with elevated circulat-
ing stress hormones due to stress during pregnancy.
Stress has a significant impact on some of the major

drug-metabolizing enzyme systems; different forms of
stress were reported to either increase metabolic clear-
ance [44] or decrease metabolic rate [45]. For example,
stressed rats display significantly decreased blood levels
of hexobarbital, pentobarbital and meprobamate, but not
phenobarbital, after administration of these drugs [46].
The ability of stress to decrease drug levels in blood was
shown to be dependent upon an intact pituitary-adrenal
axis.
In an ongoing FDA-sponsored study that is examining

the effects of BPA on physiological and behavioral end-
points, a wide range of BPA doses were administered
daily by gavage first to pregnant rats and then to the off-
spring from birth for up to two years [35]. In the first
published study from this experiment, BPA produced
significant effects at the two lowest doses in the experi-
ment (2.5 and 25 μg/kg/day) on expression of the genes
for estrogen receptors alpha and beta, Esr1 and Esr2, in
the brains of neonates [47]. The authors also reported
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that the gavage protocol alone altered these endpoints
compared to pups produced from mothers that had not
been gavaged but had been subjected to all other hand-
ling and restraint procedures; restraint is commonly
used as a stress-inducing procedure in rats [48]. Cao
et al. noted that gavage may confound the study of BPA
and other EDCs [47], writing, “Interpreting the BPA and
[ethinyl estradiol] results in regions where there were
statistically significant differences in [estrogen receptor]
expression between the naïve and vehicle controls re-
quires caution because the BPA- or [ethinyl estradiol]-
related effects on expression may have been influenced
by prenatal stress (from gavage)”. Thus, there is evidence
that restraining and gavaging animals induces stress re-
sponses that can increase the probability of false nega-
tive or false positive findings if appropriate controls are
not employed in endocrine disruption research.
Unfortunately, in the next phase of the FDA study, the

only control animals not treated with BPA are being
subjected to both restraint and daily gavage, so the con-
trol animals will be subjected to significant multiple
sources of stress on a daily basis beginning during fetal
life and then continuing from birth, for as long as 2 years.
As noted by Cao and colleagues [47], this experimental de-
sign will impair the ability to distinguish the effects of the
compound from the effects of stress.
Roberts et al. reported that gavage can also induce sig-

nificant levels of apoptosis in the liver, a response with
obvious physiological consequences [49]. Because this
study was not initially designed to test the effects of gav-
age itself, the authors concluded that without the use of
appropriate control groups (the inclusion of both un-
treated controls and vehicle gavage controls), completely
different conclusions could have been made about the
effects of their test chemical on the liver. Roberts et al. also
demonstrated that the effects of gavage on liver apoptosis
can be masked by co-treatment with compounds that act
as liver hyperplastic agents, increasing concerns that gav-
age can confound or alter the results of studies designed to
test the health effects of pharmaceuticals or xenobiotics.
These concerns were again raised by Okva et al. [42], who
noted that “[p]hysiological, metabolic, endocrine and be-
havioural changes can be attributed to stress, and [intragas-
tric]-gavaging procedures as such may interfere with the
evaluation of novel drugs administered by this route.”
Collectively, this evidence has wide-reaching implica-

tions. Thousands of studies performed by regulatory
agencies, academic researchers and industry labs have
used gavage to assess thousands of compounds, includ-
ing EDCs. Data showing that gavage activates the stress
response system indicate that these time-consuming and
costly studies cannot be interpreted as showing effects
(or no effect) of any chemical due to the confounding
factor of stress; at best, positive findings can only be
interpreted as due to an interaction between stress and
chemical exposure. More problematic from a public
health perspective is the interpretation of results that do
not show a significant effect (i.e. negative results), since
assumptions regarding the absence of hazard may be
based on masking of an effect by the stress associated with
gavage. Multiple controls are required to separate these
interacting factors, and studies that do not include all of
the appropriate controls cannot be easily interpreted.

Acknowledged complications with gavage
The issues we have raised here are largely but not com-
pletely unacknowledged in the literature and are com-
pounded by other issues also widely recognized. For
example, a common complication with gavage involves
perforation of the esophagus or stomach [41]. Additional
complications involve the accidental introduction of
fluids into the trachea or lungs, asphyxia, inflammation,
weight loss, hemorrhage, and reflux [41,50]. Other stud-
ies report high frequencies of morbidity and mortality
due to the use of gavage; several report rates greater
than 50% [38]. Numerous factors can influence the suc-
cess of gavage, including the level of experience of the
technician, size and type of probe used, volume adminis-
tered, repetitive dosing and vehicle used [42]. Because of
the relatively high frequency of gavage-related complica-
tions and the need for highly trained animal care staff,
some animal welfare groups propose that alternative
dosing methods be used whenever possible [6].
Gavage has been used in many hazard assessments be-

cause this method is thought to allow precise control of
both the dose and timing of treatment. Yet, recent stud-
ies have revealed that this assumption may not be accur-
ate. In a recent study using ‘Good Laboratory Practices’
(GLP), scientists from the FDA reported substantial BPA
contamination (including serum concentrations of BPA-
metabolites consistent with uncontrolled exposures of up
to 80 μg BPA/kg/day) in two sets of negative controls:
those that were administered an oil vehicle, and those that
were not gavaged with any compound [51,52]. Unfortu-
nately, the source of the contamination could not be iden-
tified, so it cannot be determined what role the gavage
method itself played in this inadvertent exposure. Import-
antly, these results suggest that the positive aspects of
using gavage (i.e. precise control of exposures) may over-
estimate the value of this exposure route, and thus other
large GLP-compliant studies that have used gavage but
have not measured BPA and BPA metabolites in serum to
evaluate actual contamination should be examined with
more caution (for example, [53,54]).

Should endocrine disruptor screening assays use gavage?
The US EPA’s Endocrine Disruptor Screening Program
states that gavage delivery is preferred in its Tier 1
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testing protocols [55]. All of the studies included in their
validation of two protocols, the Hershberger assay and
the TG-407 28-day oral toxicity study, solely used the
gavage method [56]. Similarly, the NTP’s developmental
and reproductive screening assays are expected to use the
most relevant route of exposure for the chemical of inter-
est, but note that when conducting toxicokinetic studies,
“[i]f feed or drinking water will be the exposure route in
the toxicology study, gavage exposure should also be in-
cluded to estimate the absorption parameter(s)” [57].
Data from toxicokinetic studies and data from studies

investigating the effects of gavage itself do not support
the use of gavage in the testing of putative EDCs. Clearly,
toxicokinetic profiles can differ when exposures occur via
gavage versus other routes of exposure [15]. Additionally,
the stressful nature of the gavage method can alter function
of the hypothalamic-pituitary-adrenal axis [39] and could
confound the assessment of chemicals that interfere with
hormones that act on this axis. Because the endocrine sys-
tem has complex positive- and negative-feedback loops,
the effects of a stressful event may not be limited to end-
points associated with the hypothalamic-pituitary-adrenal
axis [58] – challenging the use of gavage for the assessment
of any endocrine-responsive endpoint. As noted elsewhere,
the gastrointestinal tract “is the largest endocrine organ
system in the body, and may secrete more hormones than
all other organ systems combined” [59]. Therefore, it is es-
sential to understand the implications of the administration
of EDCs to the gastrointestinal tract, for example by re-
quiring the inclusion of both non-gavaged controls as well
as vehicle-only gavage controls.

Other options for chemical administration
For hypothesis testing, route of exposure may not be of
central importance, but for hazard assessment, risk as-
sessors typically require that studies use a route of ex-
posure that is deemed “relevant” to humans [57]. There
are exceptions to this requirement: the FDA requires
that all animal studies used in hazard assessments em-
ploy oral exposure routes, even if non-oral routes occur
or are expected; an example is diethyl-phthalate (DEP), a
compound used in cosmetics with dermal and inhalatory
human exposure routes that has been tested in animals
via oral administration [60].
All dosing methods have pros and cons that must be

considered in the design of a study, bearing in mind
how the data will be used. Most of this review has fo-
cused on limitations to the gavage method, particularly
because we have not seen these issues acknowledged in
a regulatory context, and because recent studies suggest
that the use of gavage may interfere with the study of
EDCs [47]. Yet, EDCs and pharmaceuticals have also
been administered by milling the compound of interest
into feed, dissolving it in drinking water, feeding animals
from a pipette, or adding the compound to a wafer or
other food and allowing the animal to consume it. Al-
though the FDA and other regulatory or advisory panels
have clearly given priority to studies that use oral and gas-
tric exposures [61,62], it is important to note that there
are alternatives, including Silastic implants and osmotic
pumps. These implanted devices are of particular interest
in BPA studies because they can provide constant expo-
sures to low doses that produce serum concentrations that
approximate those found in humans [16,63,64]. These
routes of exposure may be relevant also because there are
important and significant non-oral sources of BPA expos-
ure [11,65]. The issue of stress during the placement of
implanted devices, and also the possibility of chronic in-
flammation that can alter disposition of many substances
and hormones, however, requires further attention.

Conclusions: how well do exposure protocols in
experimental studies mimic human exposures?
For a chemical like BPA, the majority of exposures are
currently thought to come from food, but by no means
does this mean that gavage exposures adequately model
human dietary exposures, nor should this prediction
eliminate from consideration non-dietary sources [65];
the European Food Safety Authority recently acknowl-
edged that there was “uncertainty” regarding the degree
to which thermal paper contributed to BPA exposure in
the general population [66]. In the study of chemicals
with multiple routes and chronic exposures, which method
of administration appropriately mimics this situation? At
one end of the spectrum, it has been proposed that as long
as a method produces circulating blood concentrations
that are within the range of what has been measured in
humans, the study should be considered relevant, regard-
less of how the chemical was administered [2]. At the other
end of the spectrum is the FDA’s stance that only oral ex-
posures, preferably by gavage, are relevant, even if actual
human exposures occur via other routes.
We conclude that the use of gavage administration as

the recommended approach may be inappropriate in the
study of EDCs because it can confound studies by indu-
cing substantial stress in animals, thus altering all endo-
crine and non-endocrine responses associated with a
regular meal. Gavage also avoids oral absorptions that are
part of human dietary exposure. Although there are limita-
tions to all methods of dosing animals, the flaws associated
with gavage are so severe for some substances, especially
those subjected to a large first-pass effect, that this route of
exposure should be abandoned for the study of EDCs. For
some chemicals, there may be reasons why gavage is pre-
ferred over other routes of administration, but this method
should not be employed using the rationale that it ‘appro-
priately models human dietary exposures’; the data do not
support this assumption.
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