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Abstract

Background: Most health effects studies of ozone and temperature have been performed in urban areas, due to
the available monitoring data. We used observed and interpolated data to examine temperature, ozone, and
mortality in 91 urban and non-urban counties.

Methods: Ozone measurements were extracted from the Environmental Protection Agency’s Air Quality System.
Meteorological data were supplied by the National Center for Atmospheric Research. Observed data were spatially
interpolated to county centroids. Daily internal-cause mortality counts were obtained from the National Center for
Health Statistics (1988–1999). A two-stage Bayesian hierarchical model was used to estimate each county’s increase
in mortality risk from temperature and ozone. We examined county-level associations according to population
density and compared urban (≥1,000 persons/mile2) to non-urban (<1,000 persons/mile2) counties. Finally,
we examined county-level characteristics that could explain variation in associations by county.

Results: A 10 ppb increase in ozone was associated with a 0.45% increase in mortality (95% PI: 0.08, 0.83) in
urban counties, while this same increase in ozone was associated with a 0.73% increase (95% PI: 0.19, 1.26) in
non-urban counties. An increase in temperature from 70°F to 90°F (21.2°C 32.2°C) was associated with a 8.88%
increase in mortality (95% PI: 7.38, 10.41) in urban counties and a 8.08% increase (95% PI: 6.16, 10.05) in non-
urban counties. County characteristics, such as population density, percentage of families living in poverty, and
percentage of elderly residents, partially explained the variation in county-level associations.

Conclusions: While most prior studies of ozone and temperature have been performed in urban areas, the impacts in
non-urban areas are significant, and, for ozone, potentially greater. The health risks of increasing temperature and air
pollution brought on by climate change are not limited to urban areas.
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Introduction
Ground level ozone and temperature are current envir-
onmental health stressors that are expected to worsen
with climate change. Daily mortality is associated with
short-term peaks in both ozone and temperature [1-6],
which often co-occur during warm months. However,
one recent study found that the association between
ozone and mortality depends on the specification of
temperature in the model [7]. Since the formation of
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ozone is temperature dependent, ozone may or may not
be included in models that assess temperature-related
mortality, depending on the research question [8].
Additionally, environmental data are often rich in time

but sparse in space hampering health effects analysis
and leading to generalizations from studies where data
are available. Most health effects studies of ozone and
temperature have been performed in urban areas [1,9-11]
and very limited work has been done in suburban and
rural areas [12-14] with conflicting results as to whether
the magnitude of risk is the same in urban and non-urban
areas. The disparity in number of research studies for
urban and non-urban areas relates to the nature of large-
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scale monitoring networks for ozone monitors, which are
more likely to be in urban areas, and concerns of popula-
tion size, which are less problematic for studies focusing
on urban populations. Similarly, many public health pre-
paredness efforts for climate change adaptation (e.g. heat-
health warning systems) have been concentrated in major
metropolitan areas [15] and there is some evidence that
rural communities are not well represented in climate and
health research [16]. Although, several recent studies have
suggested that heat-health risks are also of concern in
rural areas [17-19]. If non-urban areas are also at risk,
local public health departments may be ill equipped to
deal with the health impacts of a changing climate, or
even to develop efficient policies to mitigate the current
risks. Research results from one area may not be applic-
able to another due to differences in population demo-
graphics, health care systems, baseline health care status,
and other factors [20-22].
In this study, we used a combination of observed and

interpolated data to examine the relationship between
temperature, ozone, and mortality in 91 counties in the
Northeastern United States, comprising urban, suburban,
and rural areas. We wanted to determine how the use of
interpolated data influenced our results, compared to those
using observed data alone. We also wanted to evaluate
whether the risk was the same in urban versus non-urban
counties in our study area, given the paucity of information
on health risks of air pollution in non-urban regions and
since assessing these differences within a given geograph-
ical region remains an understudied area of research. We
hypothesized that the risks in non-urban areas would be at
least as great as those in urban areas. Finally, we assessed
whether county characteristics could explain variation in
the county-level associations.

Methods
We obtained daily mortality records from the National
Center for Health Statistics for every county in the states
of New York, New Jersey, and Connecticut. There are 62
counties in New York, 21 counties in New Jersey, and 8
counties in Connecticut, for a total of 91 counties. Data
were obtained for the years 1988 through 1999. Daily
mortality counts were computed by adding all deaths from
internal causes (i.e., non-accidental deaths) that occurred
on each day in each county. We performed this analysis
in two phases; first, using only observed (i.e., measured)
ozone and temperature data, and second, incorporating
interpolated data.

Exposure
Ozone measurements were extracted from EPA’s AQS
(Air Quality System) for all stations in the eastern U.S.
from 1988 – 1999. For ozone, the daily maximum 8-hour
average was derived from hourly ozone data obtained
from AQS and matched to a master station file obtained
from EPA. A daily mean 8-hour ozone value from all
ozone-monitoring stations in each county was calculated.
We restricted attention to 12 counties (2 in Connecticut, 2
in New Jersey, and 8 in New York) for which both ozone
and temperature data were available for at least 75% of
possible days. Ten counties met these criteria for the entire
study period (1988 – 1999). For two counties (Chautauqua,
NY and New Haven, CT), the study period was restricted
to years that met the criteria, 1992 – 1999 and 1993 –
1999, respectively. We obtained meteorological data (daily
maximum temperature) from the CISL Research Data
Archive (http://rda.ucar.edu/datasets/ds472.0/).
In the second phase of this analysis, observed ozone and

temperature data from all sites within a rectangular do-
main that encompassed the tri-state area were spatially in-
terpolated (kriging) to the 91 population-weighted county
centroids (this is illustrated by Additional file 1: Figures S1
and S2). We first estimated variograms for each day for
each variable. Maximum likelihood fitting was then used
to fit five alternative theoretical variogram models (circu-
lar, spherical, cubic, Gaussian, and exponential) to the em-
pirical variogram. The best fit was determined for each
day and variable by cross-validation and maximum likeli-
hood goodness of fit metrics. Using this approach, data
were interpolated to population-weighted county cen-
troids. Population-weighted centroids were computed as
the point in each county that minimized the sum of
squared distances to the people living there. This method
generates a centroid that represents the average center of
persons’ residences in the county, as opposed to area-
weighting, which notes the center of the area. Thus, this
method accounts for differences in population density
throughout the county.

Statistical analysis
We performed this analysis in two phases. In the first
phase, we used data only from counties (n = 12) with ob-
served environmental data for at least 75% of available
days in a given year for at least 5 years. In the second
phase, we incorporated interpolated exposure data for
all 91 counties for all possible days. During each phase,
we applied a two-stage Bayesian hierarchical model. In
the first stage, we estimated increase in mortality risk
using generalized linear models with an over-dispersed
Poisson distribution for each county. We ran separate
models to estimate the effects of daily 8-hour maximum
ozone and daily maximum temperature. When assessing
the effect of temperature, we ran models without control
for ozone and included ozone as a covariate as a sensi-
tivity analysis. When assessing the effect of ozone, our
primary analysis included temperature as a covariate.
In all models, we controlled for day of the week and
time trends, to account for seasonal and long-term
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time trends. The general structure of each county-specific
model was:

log μct
� � ¼ β0

c þ βcOZONEt
c þ ns Tc

t ; 3ð Þ
þ ycDOWt þ ns timet ; dfð Þ ð1Þ

where

μct ¼ the expected mortality rate for county c on day t

β0
c ¼ the model intercept

βc ¼ the regression coefficient for mortality for a
unit increase in ozone for county c

OZONEt
c ¼ the average of the daily maximum

8‐hour average ozone for day t
and day t‐1

ns Tc
tð Þ ¼ the natural cubic spline of the average of

maximum temperature for county c on
day t and day t‐1; with three degrees of
freedom

yc ¼ the regression coefficient for day of the week
for county c

DOWt ¼ the categorical variable for day of the week

ns timetð Þ ¼ the natural cubic spline of a variable
representing time to adjust for
long‐term trends with 4 degrees of
freedom per year:

We estimated a separate effect for each county using
equation 1 and then generated an overall effect estimate
across all counties by combining the county-specific ef-
fects, accounting for the estimate’s statistical uncertainty,
using a Bayesian hierarchical model through the Two-
Level Normal independent sampling estimation (TLNise)
package in R [23]. Similar community-specific models and
Bayesian hierarchical modeling strategies were used in
previous work to analyze how ozone and temperature are
associated with mortality risk [20,24]. We calculated the
relative increase in mortality for a 10 ppb increase in daily
8-hour maximum ozone. To quantify results from the
non-linear function relating temperature to risk of mortal-
ity, we estimated a heat effect by comparing the increase
in mortality at 90°F, corresponding to approximately the
99th percentile of the temperature distribution of all coun-
ties, versus 70°F (32.2°C versus 21.1°C).
Due to data availability during the study period at the

county level, we were unable to account for other envir-
onmental pollutants (e.g., particulate matter) that may
be correlated with ozone and associated with daily mortal-
ity. However, in one county (New Haven, CT) where con-
sistent PM10 data were available throughout the study
period, we performed a sensitivity analysis to determine if
adjustment for PM10 affected the association between
ozone and mortality.
We next compared the estimates between urban and

non-urban counties. We stratified our data by popula-
tion density, defining urban counties as those having a
population density greater than or equal to 1,000 per-
sons per square mile and non-urban counties as those
having a population density of less than 1,000 persons
per square mile (one dimension used by the U.S. Bureau
of the Census to define urban). Population density esti-
mates were obtained from the year 2000 US Census, and
a sensitivity analysis used data from the 1990 Census.
We then computed two summary estimates; one for the
urban counties (n = 23) and one for the non-urban coun-
ties (n = 68).
Finally, to determine if heterogeneity between coun-

ties could be explained by population characteristics,
we fit the following Bayesian hierarchical regression
model:

β̂c βc; v̂ceN βc; v̂cð Þj

βcjα0; α1j; τ2eN α0 þ
X
j

α1j xcj−�xj
� �

; τ2
 !

where

β̂c ; βc ¼ estimated and true log relative risk effect
estimate; respectively; for ozone or
temperature on mortality for county c

v̂c ¼ estimated statistical variance of β̂c

xcj ¼ value of characteristic variable j for county c

�xj ¼ average value of characteristic variable j across
all counties

α0 ¼ average log relative risk for an “average county”

α1j ¼ change in the relative risk; βc; for a unit increase
in xcj−�xj

τ2 ¼ variance across counties of the true
county‐specific relative risks; βc;
unexplained by the community‐specific
characteristics xcj for all j

� �
The following county characteristics were obtained from

the United States Census summary files: proportion of
county families living in poverty, population density, and
proportion of residents over the age of 65. We also in-
vestigated whether mean county ozone concentration
or temperature modified the county-specific results. All
of our analyses were restricted to warm months (April –
October) as this time of the year has the highest levels
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of our exposures of interest (ozone and temperature).
Analyses were conducted using R 2.8.1 (R Foundation
for Statistical Computing, Vienna, Austria).

Results
Summary statistics for mortality, ozone, and temperature
for each of the 12 counties used in the analysis with ob-
served data, as well as summaries for these 12 counties, all
91-study counties, 23 urban counties, and 68 non-urban
counties, are shown in Table 1. Across all 91 counties, the
mean observed daily 8-hour maximum ozone concentra-
tion was 46 ppb and the mean warm-month daily maximum
temperature was 74°F. On average, there were 6 deaths
per day (range 0 to 99) across the 91 counties.

Observed data analysis
In the analysis of 12 counties with observed data, we
found that an increase in exposure to ozone was associ-
ated with an increase in risk of mortality in the majority
of counties (Figure 1a). When we generated an overall
effect across counties by combining county-specific ef-
fect estimates, we found that a 10 ppb increase in daily
8-hour maximum ozone was associated with a 0.80% in-
crease in mortality [95% Posterior Interval (PI): 0.31, 1.30],
after adjusting for temperature. Similarly, we found
that mortality was statistically significantly increased
in all but one county when comparing days of 90°F
versus 70°F (Figure 1b). Across counties, we found that
there was an increase in mortality of 10.11% (95% PI:
Table 1 Environmental and mortality data for study area, Apr

Ozone (ppb)

Minimum Maximum Mean

Hartford, CT 0 146 44.3

New Haven, CT 4 127 44.6

Atlantic, NJ 3 136 53.8

Essex, NJ 1 145 37.1

Albany, NY 0 116 42.8

Chautauqua, NY 10 107 49.9

Chemung, NY 4 118 45.3

Erie, NY 1 134 44.8

New York, NY 3.5 149 45.4

Niagara, NY 6 134 46.5

Suffolk, NY 8 138 47.7

Westchester, NY 3 150 45.2

12 Counties (using observed data) 1 149 45.6

91 Counties (using kriging data) 4.7 136.6 45.7

23 Urban Counties 4.7 133.5 45.6

68 Non-Urban Counties 5.3 136.6 45.7
8.34, 11.91) when comparing expected mortality at 90°F
versus 70°F.

Kriging data analysis
In our analysis of 91 counties using data from kriging
methods, we found some variability in the effect estimates
for ozone and temperature (Figure 2a and b), but overall,
across counties, we found a 10 ppb increase in daily 8-
hour maximum ozone was associated with a 0.55% in-
crease in mortality (95% PI: 0.25, 0.86), after adjustment
for temperature. There was an increase in mortality of
8.44% (95% PI: 7.24, 9.65) when comparing expected mor-
tality at 90°F versus 70°F.

Sensitivity analysis
In our models for the observed data we used a spline with
7 degrees of freedom per year to control for time trends,
however, due to model convergence problems when using
data for all 91 counties, we reduced the degrees of freedom
to 4 per year for the 91-county analysis. To assess how this
would impact our results, we re-ran the models for only
the 12 counties with observed data, but using 4 degrees of
freedom per year. A comparison of the results across all
counties from these three methods is shown in Table 2.
We found that using 4 degrees of freedom instead of 7 de-
grees of freedom did not substantially impact the results.
Although we did not have complete data for particu-

late matter for all counties during our study period, we
ran a sensitivity analysis for New Haven county (CT),
il – October, 1988 - 1999

Maximum Temperature (°F) Mortality (n/day)

Minimum Maximum Mean Minimum Maximum Mean

33.5 100.5 73.4 5 34 17.4

32 97 71.1 7 36 17.2

41 100 74.4 0 15 5.2

40 105 75.8 4 40 17.6

30 98 71.2 0 18 6.1

24 93 66.3 0 11 3.2

34 102 71.8 0 9 2.2

31 96 60.1 10 45 24.4

39 102 74.8 11 67 34.3

30 99 70.1 0 15 4.8

37 101 71.8 11 47 23.9

34 100 72.5 3 33 17.0

29 104 71.8 0 67 14.4

35.2 102.4 73.8 0 99 6.2

40.7 102.4 75.8 0 99 17.2

35.2 100.0 73.1 0 45 2.5



Figure 1 Point estimates and 95% posterior intervals showing association between (a) ozone and mortality in twelve counties and (b)
temperature and mortality in twelve counties.
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where sufficient PM10 data were available. Without ad-
justment for PM10, there was a 2.54% (95% PI: 0.78,
4.33) increase in mortality for a 10 ppb increase in daily
8-hour maximum ozone in New Haven. After adjustment
for PM10, there was a 2.49% (95% PI: 0.69, 4.31) increase in
mortality for a 10 ppb increase in daily 8-hour maximum
ozone in New Haven.
Urban and non-urban analysis
When we stratified our data into urban and non-urban
counties, the effect of ozone, after adjusting for temperature,
in urban counties was a 0.45% (95% PI: 0.08, 0.83) increase
in mortality for a 10 ppb increase in daily 8-hour maximum
ozone. Across non-urban counties, there was a 0.73%
(95% PI: 0.19, 1.26) increase in mortality for a 10 ppb



Figure 2 Point estimates and 95% posterior intervals showing association between (a) ozone and mortality in 91 counties and
(b) temperature and mortality in 91 counties.
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increase in daily 8-hour maximum ozone. When assessing
the impact of temperature across urban counties, there
was an 8.88% (95% PI: 7.38, 10.41) increase in mortality
comparing expected mortality at 90°F to 70°F. Across non-
urban counties, this estimate was 8.08% (95% PI: 6.16,
10.05). Figure 3a and b show the variation in these esti-
mates by county and according to urban or non-urban clas-
sification. A sensitivity analysis using population density
estimates from the 1990 US Census did not impact these
results.



Table 2 Summary estimates across counties

Increase in Mortality for a 10 ppb Increase in Ozone Increase in Mortality Comparing 90°F to 70°F

Unadjusted Adjusted for temperature Unadjusted Adjusted for ozone

Data % Increase PI % Increase PI % Increase PI % Increase PI

12 counties, 7 df 1.54 (1.19,1.90) 0.80 (0.31,1.30) 10.11 (8.34,11.91) 6.67 (4.13,9.27)

12 counties, 4 df 1.50 (1.14,1.86) 0.70 (0.10,1.22) 9.63 (7.42,11.89) 6.39 (2.93,9.97)

91 counties, 4 df 1.39 (1.22,1.57) 0.55 (0.25,0.86) 8.44 (7.24,9.65) 5.87 (3.95,7.82)

ppb parts per billion.
PI posterior interval.
df degrees of freedom per year for spline of time in model.
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County characteristic effect modification
Urban counties had a higher mean population density,
proportion of families living in poverty, mean temperature,
and lower proportion of residents over the age of 65
(Table 3). Table 4 shows the results of the effect modifica-
tion analysis, including the overall relative increase in mor-
tality after adjusting for the county characteristic and the
percentage change in the mortality effect estimate due to
each county characteristic. The percent of families living
in poverty and population density both modified the asso-
ciation of temperature and ozone with mortality. With in-
creasing levels of these characteristics, there was a greater
association between temperature and mortality and a
lower association between ozone and mortality. The per-
centage of residents over 65 in a county only explained
heterogeneity of the ozone estimate, which increased with
a greater number of residents over 65. Variation in mean
temperature and ozone in a county did not explain any of
the heterogeneity observed in our results.

Discussion
In this analysis of 91 counties in the Northeastern United
States, we found that ozone and temperature were inde-
pendently associated with daily mortality. Several studies
have shown an association between ozone and all-cause
mortality [1,2,25] and our estimate of the association be-
tween ozone on mortality is consistent with that seen in a
study of 95 urban communities in the US [1]. Similarly,
our finding of an association between heat and all-cause
mortality is consistent with the literature [26].
Recently, there has been a discussion in the literature

of the most appropriate way to adjust for temperature
when examining ozone-related mortality, as well as the
appropriateness of controlling for ozone in studies of
temperature-related mortality. Pattenden and colleagues
found that their estimate of ozone-related mortality was
most sensitive to adjustment by temperature when max-
imum daily temperature was used [7], and therefore, we
present results for ozone adjusted for maximum daily
temperature. In assessing temperature-related mortality,
some studies adjust for ozone and others do not. As Reid
and colleagues outline, ozone can cause mortality, but it is
unlikely to have a sufficient impact on local temperature
to cause a health response [8]. Therefore, ozone can be
thought of as a causal intermediate in the relationship be-
tween temperature and mortality, but is unlikely to con-
found the association between temperature and mortality.
We primarily present the results of models examining
temperature-related mortality, unadjusted for ozone, but
also show these results adjusted for ozone. The former
can be thought of as the total effect of temperature on
mortality, including through any increases in ozone con-
centration it causes, while the latter can be thought of as
the controlled direct effect of temperature on mortality.
In this study we used a combination of measured and

interpolated data to assess exposure across three states in
the Northeast. Although more extensive methods of esti-
mating air pollution levels are available, we found that a
method of interpolation provided useful information, and
future studies may investigate other approaches to esti-
mate ozone levels. By incorporating additional estimates
of ozone into our analysis, we were able to evaluate the
health impacts of ozone and temperature in every county
across the tri-state region, including those without moni-
tors. Additionally, we were able to generate an overall ef-
fect estimate using more information throughout the
region (91 as opposed to 12 counties), as well as examine
differences in urban and non-urban counties. Finally, by
using this expanded set of counties, and matching it to
publicly available data, we were able to examine a set of
population characteristics as explanatory variables for the
observed variation in results.
Previous large studies in the US, have estimated that a

10 ppb increase in ozone contributes to an increased
risk of mortality of between 0.39% (95% CI: 0.26, 0.51)
[2] and 0.52% (95% PI: 0.27, 0.77) [1], which is consistent
with our overall result of a 0.55% (95% PI: 0.25, 0.86) in-
crease. However, when we stratified counties by a meas-
ure of urbanicity (above or below 1,000 persons/mile2),
we found that the point estimate for the association be-
tween ozone and mortality was higher for non-urban
counties. Although the confidence intervals between the
two estimates overlapped, the central estimate for non-
urban counties was 1.6 times greater than the estimate
for urban counties. Since most prior investigations of
ozone and mortality have been conducted in urban



Figure 3 Percent increase in mortality by county for (a) a 10 ppb increase in ozone and (b) comparing 90°F to 70°F.
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areas, this may indicate that the public health burden of
ozone is even greater than previously estimated. Our as-
sessment of the impact of temperature found that sig-
nificant associations between temperature and mortality
persisted in both urban and non-urban counties. This
indicates that the health impacts of temperature are not
limited to the “urban heat island”. Few other studies in
the U.S. have examined temperature-related mortality
and morbidity across urban, suburban, and rural areas,
but there are some indications that being an urban resi-
dent does not necessarily make one more vulnerable to
heat [14,19].
Studies indicate that many local governments do not

feel adequately prepared to address the health impacts of
heat [27] and, specifically, in a survey of local health de-
partments in New York state, the majority of respondents



Table 3 County characteristics by urban and non-urban
classification

Urban counties
(n = 23)

Non-Urban counties
(n = 68)

Mean ± SD Mean ± SD

% Families in poverty 8.9 ± 6.3 7.2 ± 2.6

Population density,
person/mile2

9,390.4 ± 15,756.8 231.3 ± 224.8

% Over 65 12.7 ± 1.3 14.0 ± 2.6

Ozone, ppb 45.6 ± 2.5 45.7 ± 2.8

Temperature, °F 75.8 ± 1.4 73.1 ± 2.0

Madrigano et al. Environmental Health 2015, 14:3 Page 9 of 11
http://www.ehjournal.net/content/14/1/3
did not feel that their department had the necessary ex-
pertise to assess potential public health risks of climate
change in their jurisdiction [28]. New York, New Jersey,
and Connecticut include both urban and non-urban areas
and the decentralized public health structure, along with
limited budgets, can mean that public health preparedness
for climate change can be a challenge. Our findings indi-
cate that both urban and non-urban areas should be pre-
pared to address this challenge.
When we examined county characteristics that might

explain the observed variation in our effect estimates, we
found that greater poverty in a county was associated
with larger effect estimates for heat and mortality. This is
consistent with other studies that have examined modifica-
tion in the temperature-mortality association. Both indi-
vidual and neighborhood characteristics related to lower
socioeconomic position have been found to enhance the
relationship between temperature and mortality [10,29,30],
and this may be partially explained by lack of financial re-
sources to keep indoor environments cool or poorer base-
line health. On the contrary, the inverse association of
poverty observed for the ozone and mortality association
Table 4 Modification by county characteristics

% Increase in mortality
per 10 ppb ozone,

adjusted for community
characteristic

% Change in ozon
estimate per IQ

increase in comm
level variabl

Central
estimate

95% PI Central
estimate

95

No modification by
county characteristic

0.55 (0.25, 0.86) -

% Families Poverty 0.64 (0.37, 0.90) −0.02 (−0.04

Population Density 0.66 (0.36, 0.96) −0.002 (−0.003

% Over 65 0.59 (0.31, 0.88) 4.41 (0.75

Mean ozone 0.56 (0.25, 0.86) 0.001 (−0.0

Mean temperature 0.70 (0.35, 1.05) −0.04 (−0.1
1IQR = Interquartile Range; IQR for families in poverty = 3.6%, IQR for population den
concentration = 2.3 ppb, IQR for temperature = 3.6°F.
All ozone results include adjustment for temperature; temperature results do not in
for temporal trend.
is not consistent with prior investigations that provide evi-
dence for an enhanced impact of ozone among populations
with higher unemployment [20,31]. Whether our findings
are indicative of greater/lesser susceptibility among impo-
verished populations or they serve as a marker for other
unobserved characteristics associated with urban popula-
tions, similar to population density, cannot be distinguished
from this data. In our data, a greater proportion of residents
over age 65 in a county was associated with increased risk
of mortality from ozone, and this is consistent with several
studies that have showed that the elderly are more suscep-
tible to the health impacts of ozone and that age is one of
the strongest risk factors for ozone sensitivity [31,32]. Nei-
ther mean concentration of ozone nor mean temperature
served to explain variation in the observed effect estimates.
Our analysis did have a number of limitations. We

used one estimate of ozone and temperature for each
county, which could have contributed to error in our ex-
posure estimate. Our analysis was also restricted to nat-
ural causes of death, potentially underestimating the effect
of temperature, as heat stroke is classified as an external
cause of death. Due to data availability during the study
period at the county level, we were unable to account for
other environmental pollutants (e.g., particulate matter)
that may also be correlated with ozone and associated
with daily mortality. While some studies in the region
have shown confounding of the ozone mortality associ-
ation by other pollutants [33,34], other national studies
have shown that the ozone mortality association is robust
[1,2]. In our data for one county (New Haven, CT), we
found no significant difference in our model results for
the effect of ozone after adjusting for PM10. Our investiga-
tion of effect modification was based on county-level data
and not individual-level data. Additionally, our exam-
ination of county characteristics was based on publicly
e effect
R1

unity
e

% Increase in mortality
90 F vs 70 F, adjusted

for community
characteristic

% Change in temperature
effect estimate per IQR1

increase in community
level variable

% PI Central
estimate

95% PI Central
estimate

95% PI

- 8.44 (7.24, 9.65) - -

, −0.01) 8.21 (7.17, 9.26) 1.22 (0.59, 1.85)

,−0.0001) 8.09 (6.94, 9.26) 0.08 (0.01, 0.15)

, 8.21) 8.37 (7.20, 9.55) −51.42 (−88.29, 101.45)

2, 0.02) 8.60 (7.45, 9.76) −0.71 (−1.51, 0.09)

0, 0.01) 9.02 (7.66, 10.40) −1.81 (−3.78, 0.21)

sity = 891 persons/mile2, IQR for residents over age 65 = 2.9%, IQR for ozone

clude adjustment for ozone. Estimates are based on 4 degrees of freedom/year



Madrigano et al. Environmental Health 2015, 14:3 Page 10 of 11
http://www.ehjournal.net/content/14/1/3
available data and, therefore, not exhaustive. Other factors,
including baseline health, activity patterns, and other
population characteristics, may also account for the vari-
ation between county effect estimates that was observed.
Our novel finding of a greater magnitude of association
between ozone and mortality in non-urban counties
than in urban counties requires replication. However, if
further work can substantiate these findings it may in-
dicate that the public health burden of ozone has been
underestimated and current regulatory standards are not
fully protective.

Conclusions
We found effects of both ozone and temperature on
mortality in this county-level analysis of three states in
the Northeastern United States. By making use of a simple
method of interpolation, we were able to estimate these
associations over a wider geographic area and population
than previous investigated. We also found that these asso-
ciations existed in both urban and non-urban counties,
with a potentially greater association between ozone and
mortality in non-urban areas than in urban areas. These
results indicate that the health risks brought on by climate
change are not limited to urban areas and warrant further
investigation.

Additional file

Additional file 1: Figure S1. Example of kriging of 8-hour maximum
ozone concentrations for July 18, 1999 within the northeastern US domain.
Figure S2. Example of kriging of daily maximum temperature for July 18,
1999 within the northeastern US domain.
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