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Abstract
Background: As ecologic studies are often inexpensive to conduct, consideration of the
magnitude and direction of ecologic biases may be useful in both study design and sensitivity analysis
of results. This paper examines three types of ecologic bias: confounding by group, effect measure
modification by group, and non-differential exposure misclassification.

Methods: Bias of the risk difference on the individual and ecologic levels are compared using two-
by-two tables, simple equations, and risk diagrams. Risk diagrams provide a convenient way to
simultaneously display information from both levels.

Results: Confounding by group and effect measure modification by group act in the same direction
on the individual and group levels, but have larger impact on the latter. The reduction in exposure
variance caused by aggregation magnifies the individual level bias due to ignoring groups. For some
studies, the magnification factor can be calculated from the ecologic data alone. Small magnification
factors indicate little bias beyond that occurring at the individual level. Aggregation is also
responsible for the different impacts of non-differential exposure misclassification on individual and
ecologic studies.

Conclusion: The analytical tools developed here are useful in analyzing ecologic bias. The concept
of bias magnification may be helpful in designing ecologic studies and performing sensitivity analysis
of their results.

Background
Epidemiology is the study of health and disease in popu-
lations, but the standard for an observational study
remains the individual level design, where we have infor-
mation about outcome, exposure and covariates for each
study subject [1]. This remains an ideal, although some
designs mix group-level and individual-level variables in
ways meant to enhance validity [2-5]. In practice, in the
absence of better information, we often substitute an
aggregate (group summary) value of some variable for
each study subject. The extreme case is when aggregate val-

ues of exposure and outcome are used for every study var-
iable. This is often called an ecologic study.

Resort to ecologic designs usually stems from the practical
consideration that summary information is more easily
obtained and more often available than individual-level
data. Sometimes summary data are all that are available,
and then, only in its crudest form, for example, that a cer-
tain percentage of a group of subjects is exposed (a group
summary of an exposure variable) and a certain percent-
age of the same group has a specific health outcome (a
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group summary of an outcome variable). In this case we
have lost information about whether those with the out-
come are the same as those who are exposed. Despite this
information loss, it is tempting and plausible to say that
we still have some useful information on risks of expo-
sure.

Epidemiologists know that using ecologic designs (group
level variables only) to make inferences about individual
risks (individual level variables) can be seriously biased
[e.g., [6,7]], but exactly how and when this bias occurs is
often mysterious. In discussions of individual-level stud-
ies it is not enough to say a result might be confounded;
one should consider the amount and direction of con-
founding. Given the potential value that ecologic studies
have for obtaining information not otherwise readily
available, it would seem useful to approach these studies
in the same way, i.e., not dismiss them at the outset but
instead try to describe the magnitude and direction of
potential biases.

Here I apply this idea to ecologic studies, using individ-
ual-level studies as a reference. In particular, I will discuss
the direction and extent of bias in ecologic studies com-
pared with studies of individuals. This paper is meant to
reveal underlying mechanisms with a simple model so
practicing epidemiologists can begin to visualize what is
happening when aggregate data are used. Among the
many types of bias possible in ecologic studies [7], I will
examine three of the most important: confounding by
group, effect measure modification by group, and non-
differential exposure misclassification.

Methods
Use of two-by-two tables
Theoretical problems are often best approached by start-
ing simply and adding complications later. I focus here on
closed cohorts with binary exposures and outcomes, using
the risk difference as an effect measure. This approach
allows us to see the ecologic inference problem at work
using simple tools.

Individual outcome and exposure data are readily sum-
marized by the interior cells of a two-by-two table, i.e., the
joint distribution of exposure and outcome (Table 1).
From these data we easily compute the risks of the
exposed and unexposed as well as the risk difference.

The ecologic data are also visible on the margins of the
table [8]. They provide the average exposure and average
risk for the whole group but not the exposed and unex-
posed subjects within the group.

Risk diagrams and equations
We can depict the information in a two-by-two table using
a risk diagram, a graphical device adapted from earlier
work [9-11]. Figure 1 presents a risk diagram for the exam-
ple of Table 1. Risk is plotted on the vertical axis, exposure
on the horizontal. For binary exposures, we plot the risk
in the unexposed (0.2) at x = 0 and the risk in the exposed
(0.4) at x = 1. The line connecting these points has a slope
equal to the risk difference: (0.4-0.2)/(1-0) = 0.2. This line
summarizes essential individual-level information in a

Risk diagram illustrating Table 1Figure 1
Risk diagram illustrating Table 1. We summarize indi-
vidual-level information for a group with a solid black line, 
ecologic data with a solid black dot. The line connects the 
risk in the unexposed (q = 0.2 at x = 0) with the risk in the 
exposed (0.4 at x = 1) and has slope equal to the risk differ-
ence b. The ecologic data are the average exposure X and 
average risk Y for the group.

Table 1: Individual vs. ecologic data

Individual (interior cells) Ecologic (margins)

exposed unexposed sum exposed unexposed sum

cases 16 12 28 ? ? 28
noncases 24 48 72 ? ? 72
total 40 60 100 40 60 100
risks 0.4 0.2 X 0.40
RD 0.2 Y 0.28

n 100

Individual-level information on exposure and outcome are shown by 
the interior of a two-by-two table; they are summarized by the risks in 
the unexposed and exposed and the risk difference (RD). Ecologic 
studies possess only the margins of the table, summarized by the 
average exposure X, average risk Y and group size n.
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two-by-two table: the risk difference, the risks in the
exposed and the risks in the unexposed. We can represent
the ecologic data for the table – the average exposure (X =
0.4) and the average risk (Y = 0.28) – by a large black dot.
Thus risk diagrams show our knowledge about both lev-
els, simultaneously: individual-level information is sum-
marized by the line, ecologic data by the large dot.

For binary exposures, individual-level data only occur at
exposures of zero and one, but it is convenient to think in
terms of a continuous exposure. The simplest relationship
would be a linear equation:

rj = q + bxj (1)
where rj is the risk as a function of exposure x and j is an
index for subjects. The intercept q is the risk in the unex-
posed, also called the background risk. The slope b is the
risk difference. We call these equations (linear) risk func-
tions. They describe risk as a function of exposure on the
individual level.

The expected value of the binary outcome for individual
yj, considered as a probability, is equal to the person's risk,
so that

yj = q + bxj + ej (2)
where ej is an error term. One can also think of the risks as
proportions and the ej as residuals (see appendix 1 for
additional discussion of the model). Ordinary least
squares regression of the individual-level data (xj, yj) in a
two-by-two table can then be used to obtain the intercept
q and risk difference b. We will see it is a useful tool for
estimating ecologic bias. As discussed in appendix 2, this
approach can be readily extended to rates, continuous
outcomes (e.g., birth weights) and continuous exposures.

Since ecologic analyses only give us a single black dot for
each two-by-two table, a collection of two-by-two tables is
typically used. The idea is to extract information by exam-
ining how the outcome marginals vary as the exposure
marginals change (e.g., how cancer rates change as the
proportion of the population exposed to contaminated
water changes across cities). This means we will usually be
concerned with multiple tables, with each table describing
a different group. We index the groups by the letter i:

yij = qi + bixij + eij (3)
Since the background risk and risk difference may vary
between groups, we must also add the index i to q and b.

Equations 1–3 describe individual-level models. In this
paper, we will treat such models as a fixed reference for
comparison with the results of ecologic inference. The fact
that the qi and bi may differ between groups will prove crit-
ically important.

Linearity and aggregation
If the risk function is linear, as in Figure 1, then the dot
describing the ecologic data must lie on the line describ-
ing the individual-level information. For binary expo-
sures, this occurs because the dot represents a weighted
average of the exposed and unexposed. More generally,
this fact is a consequence of the aggregation theorem [7].
Mathematically, this means that if the risk function is lin-
ear, the group-level equations produced by aggregating
individual-level equations will have the same form and
the same parameters (appendix 1). For example, averag-
ing equation 3 within each group yields

Yi = qi + biXi (4)
where Xi and Yi are, respectively, the average exposure and
average risk in group i (the aggregate error or residual term
can typically be ignored). Following Susser [12], capital
letters X and Y refer to group-level variables, lower-case x
and y refer to individual-level variables.

When the risk function is not linear, the equation describ-
ing aggregated data will generally not have the same form,
and the ecologic data point will not lie on the risk func-
tion. Even if there are no other sources of bias, nonlinear-
ity can thus cause trouble for ecologic studies – a problem
called pure specification bias [7,9]. For example, suppose
that exposure is a continuous variable and that the sub-
jects in a group have the exposures denoted by the three
open circles in Figure 2. The aggregate data, shown by the
large dot, must then lie above the risk function (and
below the line connecting the risks at the minimum and
maximum exposures [11]). The average risk Y in the group
is larger than the risk at the average exposure r(X) when

Nonlinearity causes error during aggregationFigure 2
Nonlinearity causes error during aggregation. The 
ecologic data point (X, Y) will generally not fall on the risk 
function when the latter is non-linear as shown here. The 
amount of error depends on the curvature of the risk func-
tion and the exposure distribution, but is bounded above by 
the line connecting the risks at the minimum and maximum 
exposures. This error can lead to pure specification bias.
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the risk function is concave up. The difference between Y
and r(X) depends on the shape of the risk function and
the exposure distribution within groups [7,9]. Log-linear
models introduce bias terms that can be approximated
using within-group variances (appendix 2).

We continue our exposition using linear risk functions,
showing how confounding and effect modification
between groups and exposure misclassification increase
bias when variables are aggregated.

Loss of information and ecologic inference
The traditional goal of ecologic inference is to draw con-
clusions about individuals based on group-level data, or
equivalently: to deduce the interior of a two-by-two table
from its margins, to obtain the line in a risk diagram from
the dot, or to estimate the risk difference from the ecologic
data (the average risks Yi and average exposures Xi). This
goal runs into the fundamental problem that ecologic
studies suffer from a loss of information [10]. In terms of
two-by-two tables, many tables with very different interior
cell contents can have the same margins. In terms of risk
diagrams, many lines can go through the same ecologic
data point (Figure 3).

A single dot is insufficient to determine a line. What if
there were two or more dots, i.e., several two-by-two

tables? Could we then recover the individual level infor-
mation? The answer is "Yes," but only by making some
very strong assumptions. If the assumptions are violated,
large biases can occur.

Results
Epidemiologists often use regression of data from a
number of groups for ecologic inference, regressing the
average risk Yi in each group against the average exposure
Xi in each group. This approach is sometimes called eco-
logic or Goodman regression [10,13] (For a more formal
treatment of ecologic regression and other methods, as
well as ecologic bias, see [14]). We will use weighted least
squares, weighting each group by its population ni.
Unweighted regression of ecologic data can cause an addi-
tional source of bias relative to individual-level analysis
(appendix 3).

Ecologic regression can produce unbiased results. One
way is to assume the individual-level model has the same
background risk (intercept q) and risk difference (slope b)
in every group:

yij = q + bxij + eij (5)
Aggregating yields the equation

Yi = q + bXi (6)
Ecologic regression then yields the correct estimate of the
risk difference b. Assuming qi = q and bi = b is not the only
way to achieve unbiased results, but it is the easiest to
understand. In terms of risk diagrams, the lines describing
the individual-level information in every group coincide.
Since the dots representing the ecologic data all lie on this
line, the ecologic regression reproduces the individual-
level result.

But if q and b differ between the groups, things can go
wrong. This difference corresponds to confounding and
effect measure modification between groups. In an impor-
tant paper, Greenland and Morgenstern [15] described
these sources of ecologic bias. We use the analytic frame-
work described above, the risk diagram and the elegant
work of Palmquist [16] to show how the magnitude and
direction of the ecologic bias from these sources affects
biases present at the individual-level.

Confounding by group
Suppose two groups have the same risk difference b but
different background risks, q0 ≠ q1:

y0j = q0 + bx0j + e0j (7)
y1j = q1 + bx1j + e1j

Figure 4A is a risk diagram illustrating the example of
Table 2. The lines describing the individual-level informa-

Loss of information is a fundamental problem of ecologic studiesFigure 3
Loss of information is a fundamental problem of eco-
logic studies. Many sets of individual-level information 
(lines, interiors of two-by-two tables) generate the same 
ecologic data (dot, table margins). Only some possible lines 
are shown.
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tion for the two groups are parallel because they have the
same risk difference, but have different intercepts because
the background risks are not equal. As the exposure distri-
butions of the two groups also differ (since X0 ≠ X1), ignor-
ing groups causes confounding on the individual level.

The line describing the crude individual-level information
in Table 2 (the table obtained from combining both
groups) has a somewhat higher slope, i.e., confounding
by group biased the crude risk difference upward (we use
the word bias in an epidemiologic sense, the difference
between an estimate and the correct value, b). If we know
the individual-level data, including the variable describ-
ing group, we can prevent confounding by controlling for
group, either by stratifying or adding group as a covariate
in a regression.

Figure 4B shows the ecologic data (Xi, Yi) for the two
groups and the result of an ecologic regression. We know
something has gone wrong, since a risk difference cannot
exceed one, but we cannot determine the source of the
problem from ecologic data alone. Unlike the individual
case, we cannot control for group by stratifying or includ-
ing an indicator variable in the regression: the ecologic
data provide insufficient information for using these tech-
niques (e.g., with only two ecologic data points, we can-
not add a covariate to the ecologic regression).

Figure 4C plots the ecologic and crude individual-level
results on the same risk diagram. The biases are in the
same direction, but much larger for the ecologic study.
Indeed, the ecologic bias is 25 times larger than the crude
individual-level bias:

be and bc are, respectively, the ecologic and crude individ-
ual-level estimates of the risk difference b. In appendix 3
we show that the relative amounts of bias due to con-
founding by group equals the exposure variance on the
individual level divided by the exposure variance on the
group level:

var[xij] is the total exposure variance on the individual
level and varB[Xi] is the exposure variance on the ecologic
level (the between-group variance) weighted using the
population of each group.
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Table 2: Confounding by group

Group 0 Group 1 Crude

expose unexposed sum expose unexpose sum expose unexpose sum

case 16 12 28 48 24 72 64 36 100
noncase 24 48 72 12 16 28 36 64 100
total 40 60 100 60 40 100 100 100 200
risk 0.40 0.20 0.80 0.60 0.64 0.36
RD 0.20 0.20 0.28
Xi 0.40 0.60
Yi 0.28 0.72
ni 100 100

Since background risks and exposure distributions differ between the two groups, the crude individual-level estimate of the risk difference is 
confounded. The ecologic estimate of the risk difference, (Y1-Y0)/(X1-X0) = 2.2, is much more confounded. RD = risk difference; Xi and Yi are the 
average exposure and average risk in group i; ni = size of group i.

Confounding by group, illustrating Table 2Figure 4
Confounding by group, illustrating Table 2. A) Individ-
ual level: The solid black lines describing the individual-level 
information in the two groups are parallel (same risk differ-
ences b) but have different intercepts (different background 
risks q0 ≠ q1). The crude estimate of the risk difference bc is 
confounded (blue line). B) Group level: The ecologic esti-
mate of the risk difference be is the slope of the red line 
through the two ecologic data points. Massive confounding 
has occurred, but we can't tell this from the ecologic data 
alone. C) Comparison of results on the two levels: The eco-
logic estimate of the risk difference be is much more biased 
than the crude individual-level estimate bc. Both biases are in 
the same direction.
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Bias magnification of confounding by group
We can rewrite equation 9 as

(be - b) = (bc - b) M (10)
The amount of ecologic confounding by group (be - b)
equals the amount of individual-level confounding by
group (bc - b) times a magnification factor M:

See Palmquist [16] for a closely related result.

Applying equations 10–11 to our example (Table 2 and
Figure 4) shows that a moderate amount of confounding
on the individual level (0.28-0.2 = 0.08) is magnified 25
times, producing a huge amount of confounding (2.2-0.2
= 2) on the ecologic level:

Several conclusions follow immediately from equation
10. If there is no confounding by group on the individual
level (bc - b = 0), there is no confounding by group on the
ecologic level: be - b = 0. Furthermore, since M is always
positive, both biases are in the same direction. Suppose, as
in the example, that we use the mean exposure in each
group as the ecologic measure of exposure. M is then
always at least one, i.e., the amount of confounding by
group on the ecologic level equals or exceeds the amount
on the individual level (appendix 4). (Note that the deri-
vation of (10) assumes that varB[Xi] is non-zero. When
this assumption is violated, as occurs when the Xi are
equal in all groups, there is no confounding by group on
the individual level. However, ecologic regression is unin-
formative since division by zero makes be and M unde-
fined).

Equation (10) tells us that the relative amount of con-
founding by group on the ecologic and individual level
stems from the reduction of exposure variance caused by
aggregation. The information loss from discarding within-
group exposure variance magnifies the bias already
present on the crude individual level. However, if expo-
sure within groups is homogeneous, i.e., everyone within
a group has the same exposure, M equals one and the
amount of confounding by group is equal on the ecologic
and individual levels. This formalizes, for one source of
bias, the simple idea that ecologic studies with homoge-
neous exposures are really just individual-level studies.

Changes in the background risks (qi) and average expo-
sures (Xi) have different implications for confounding on
the individual and group levels. As shown in Figure 5,
keeping average exposures the same but making the back-
ground risks more similar decreases confounding by
group on both the individual and group levels. However,
keeping background risks the same but making average
exposures more similar (decreasing varB[Xi]) decreases
confounding by group on the individual level but
increases it on the ecologic level: the decrease in bc - b is
outweighed by the increase in M. Thus even a little con-
founding on the individual level can produce a lot on the
ecologic level.

Effect modification of the risk difference by group
Suppose two groups have the same background risk (q)
but different risk differences (b0 ≠ b1):

y0j = q + b0x0j + e0j (13)
y1j = q + b1x1j + e1j

The lines describing the two groups in Figure 6 have the
same intercept but different slopes. As Figure 6 and Table
3 illustrate, the crude individual-level risk difference bc lies
between the bi of the two groups, as it must for binary
exposures (see appendix 5). In contrast, the ecologic esti-
mate of the risk difference be is wildly biased, not even
having the same sign.

We can use equation 10 with one small change to describe
the implications of effect modification of the risk differ-
ence by group. Since b is no longer constant, we use bw, a
weighted average of the risk differences bi in the groups
with weights depending on the within-group exposure
variances (bw is also obtained by regressing the individual-
level data while adjusting for group; see appendix 3):

(be - bw) = (bc - bw) M (14)
In the example, bw is approximately 0.296 (appendix 6).
Allowing for rounding error, applying equation 14 yields

As Figure 6 illustrates, the tiny discrepancy between the
crude risk difference bc and the weighted average bw is mul-
tiplied by a large magnification factor of 99, producing a
large bias on the ecologic level. The difference between bc
and bw is not usually considered a bias on the individual
level. For individual-level studies, some epidemiologists
might report the bi if they consider the variation between
groups important; others might ignore it. While bw is not
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a commonly used data summary of the bi, it helps us
understand a source of ecologic bias when there is effect
modification of the risk difference by group.

Magnification factor
The magnification factor is the linchpin of the mecha-
nism. As Figure 5D–F illustrates, if the exposure distribu-
tion changes so that M increases, the amount of ecologic
bias can increase dramatically. Another example may pro-
vide a better feel for the magnification factor. In Figure 7,
we keep the average exposures (Xi) the same in all three
cases; the between-group variance (varB[Xi]) thus remains
constant. Changing the within-group exposure distribu-
tion from binary to homogeneous reduces the within-

group variance (var[xij]). As a result, M decreases from 25
to 1.

Bias magnification
The bias magnification equation (equation 14), governs bias
from both sources – confounding by group and effect
modification of the risk difference by group – in an addi-
tive fashion, i.e., it can be applied to both sources of bias
separately or together [11]. Application of the bias magni-
fication equation to these sources of ecologic bias brings
together two lines of research. Greenland and Morgen-
stern showed that both confounding by group and effect
measure modification by group could cause ecologic bias
[15]. The bias magnification equation can be derived by

Confounding by group on the individual and group levelFigure 5
Confounding by group on the individual and group level. A, B, C) Suppose average exposures are the same, but the 
difference between the background risks (qi) decreases. Confounding by group decreases on both the individual and group lev-
els with constant proportionality factor M. D, E, F) Suppose background risks (qi) are the same, but the difference between 
the average exposures decreases. Confounding by group decreases on the individual level, but increases on the ecologic level 
because of the large increase in M.
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partitioning covariance and variance within and between
groups (appendix 3). This approach has a distinguished
history, only some of it mentioned here. Robinson's land-
mark 1950 paper [17] discussed such partitions in terms
of correlation coefficients. Duncan et al. discussed regres-
sion coefficients [18]. Piantadosi et al. derived the bias
magnification equation, but they did not emphasize the
magnification factor or discuss the role of effect measure
modification by group [19]. Palmquist derived a general-

ized form of a closely related equation using matrix meth-
ods [16]. Palmquist's insightful work, discussed by King
[10], stresses the role of the inflation factor – the magnifi-
cation factor minus one – and its effect on individual-level
bias (appendix 3). Palmquist and King do not discuss the
individual-level bias (which they call the specification
shift) in terms of confounding and effect measure modifi-
cation, in part because these authors are social scientists.
King considers bc as his parameter of interest, biased by
grouping. In our context, which is epidemiology, the

Effect on M of different within-group exposure distributionsFigure 7
Effect on M of different within-group exposure distri-
butions. The magnification factor M decreases when the 
within-group exposure variance is reduced, keeping the 
between-group variance constant (the Xi do not change 
between rows).

Effect modification of the risk difference by group, illustrating Table 3Figure 6
Effect modification of the risk difference by group, 
illustrating Table 3. The solid black lines describing the 
individual-level information for the two groups have the same 
intercept (background risk q) but different slopes (risk differ-
ences b0 ≠ b1). The crude estimate of the risk difference bc 
(blue line) lies between these two extremes. Relative to bw, 
the ecologic estimate of the risk difference be (red line) is far 
more biased than the crude individual-level estimate bc. Both 
biases are in the same direction. bw (purple line) is the 
weighted average of the risk differences used in the bias mag-
nification equation.

Table 3: Effect modification of the risk difference by group

Group 0 Group 1 Crude

expose unexpose sum expose unexpose sum expose unexpose sum

case 20 10 30 48 12 60 68 22 90
noncase 80 90 170 32 108 140 112 198 310
total 100 100 200 80 120 200 180 220 400
risk 0.2 0.1 0.6 0.1 0.378 0.1
RD 0.1 0.5 0.278
Xi 0.5 0.4
Yi 0.15 0.3
ni 200 200

The background risks in each group are the same but the risk differences vary. The crude individual-level risk difference lies between the two 
extremes, as it must when exposure is binary. The ecologic estimate of the risk difference, (Y1-Y0)/(X1-X0)= -1.5, is extremely biased. RD = risk 
difference; Xi and Yi are the average exposure and average risk in group i; ni = size of group i.
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crude risk difference bc is considered biased by ignoring
groups.

Non-differential misclassification of binary exposure
Here, non-differential exposure misclassification
(NDEM) means that the proportion of people misclassi-
fied by exposure does not depend on disease status. Sen-
sitivity s refers to the proportion of exposed people
classified as exposed; specificity t means the proportion of
non-exposed people classified as non-exposed (More gen-
eral definitions may regard s and t as probabilities).
NDEM causes bias towards the null in individual-level
studies, but away from the null in ecologic studies [20].
This difference has been called one of the most significant
problems of ecologic studies [6], so we conclude this
exposition with an explanation of the mechanism in this
simple case.

We compute misclassified individual and group level data
for a two by two table as shown in Table 4. Since the mis-
classification is non-differential, the average exposure is
affected but the average risk Yi is not changed. This is the
key to the effect. The average exposure Ui in the misclassi-
fied table is given by

Ui = λXi + (1 - t) (16)

λ = s + t - 1 (17)
where λ is Youden's index [1] (for details of this section, see
appendix 7). Since sensitivity and specificity must be
between zero and one, λ must be between -1 and 1. Sen-
sitivity and specificity are typically greater than 0.5 (i.e.,
better than random), so we assume λ is between 0 and 1.

With this background, it is easy to show that ecologic
studies are biased away from the null when sensitivity and
specificity are the same in every group [20]. The ecologic
estimate of the risk difference for the misclassified data
(be') equals

When λ is between 0 and 1, be' is farther away from the
null than the true ecologic estimate and has the same sign.

Figure 8 shows how NDEM works in this simple model.
Suppose we have an ecologic study of two groups with no
other sources of bias (Table 5). The true ecologic data lie
on top of the line describing the underlying individual
level information. NDEM has no effect on the average
risks Yi, so the height of the dots describing the ecologic
data stays the same. NDEM causes the misclassified aver-
age exposures Ui to move closer together and towards the
center compared with the true average exposures Xi. Con-
sequently, the regression line through the ecologic data is
steeper, i.e., biased away from the null. The different
effects of NDEM on the individual and group levels is ulti-
mately due to the loss of information caused by aggrega-
tion. While average risks are unaffected, aggregation
brings the average exposures closer together, i.e., the same
risks are produced by a narrower range of exposures,
resulting in a steeper slope.

It is important to note that not all forms of exposure meas-
urement error will bias ecologic studies away from the
null. We examined a particular error model above: NDEM
of binary exposure at the individual level with sensitivities
and specificities not changing between groups. Other
error models lead to other results [11]. For example, appli-
cation of the classical error model to a continuous expo-
sure variable biases results toward the null in ecologic
studies.

Discussion
Roughly speaking, the bias magnification equation says
that ecologic bias equals individual-level bias magnified.
More precisely, the reduction in exposure variance caused

b
b

e
e′ =
λ

(18)

Table 4: Non-differential exposure misclassification in a 2 × 2 table

Correct Misclassified

expose unexpose sum expose unexpose sum

Case ai bi ai+bi sai + (1-t)bi (1-s)ai+tbi ai+bi
noncase ci di ci+di sci + (1-t)di (1-s)ci+tdi ci+di
Total ai+ci bi+di ni s(ai+ci) + (1-t)(bi+di) (1-s)(ai+ci) + t(bi+di) ni
Xi (ai+ci)/ni s(ai+ci)/ni + (1-t)(bi+di)/ni
Yi (ai+bi)/ni (ai+bi)/ni

Assume that the proportion of people misclassified does not depend on disease status. Sensitivity s is the fraction of exposed people classified as 
exposed; specificity t is the fraction of unexposed people classified as unexposed. On the group level, the average risk remains the same but the 
average exposure changes. Xi and Yi are the average exposure and average risk in the group; ni = size of the group.
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by aggregation (loss of information) magnifies the indi-
vidual-level bias due to confounding by group and/or
effect modification of the risk difference by group. Other
things equal, the magnification factor is maximized if
exposure within groups is dichotomous [11]. Thus text-
book examples, which typically use two-by-two tables,
tend to overstate the amount of bias magnification occur-
ring in many real studies.

Bias magnification provides a useful tool for theoretical
considerations of ecologic bias. Does it have any practical
use? When designing ecologic studies, one should try to
minimize M by increasing between-group differences in
exposure while making within-group exposure as homo-
geneous as possible; see also [7]. Bias magnification also
suggests an approach to sensitivity analysis of ecologic
bias from confounding by group and/or effect modifica-
tion of the risk difference by group. Assume an individual-
level model as a reference. The ecologic bias has two com-
ponents: the amount of bias caused by ignoring group on
the individual-level (bc - bw), and the magnification of this
bias caused by aggregation (M). When analyzing ecologic
data, we will not know the size of the bias on the individ-
ual level, but we can make various assumptions. For
example, we may be able to make educated guesses about
the direction and possible amount of confounding by

group on the individual level. We may then be able to esti-
mate the magnification factor. For binary exposures, we
can compute M from the ecologic data alone (appendix
8). In other situations we may be able to estimate M from
samples of the study population or from routinely col-
lected environmental data. For example, we might use air
pollution measurements and spatial statistics to estimate
the variation in exposure within cities, comparing it to
variation in average air pollution between cities. If M is
small, we gain confidence that the ecologic bias isn't too
different from the bias on the individual level. See [21] for
another approach to sensitivity analysis of ecologic bias.

Ecologic studies using exposure variables of the type "frac-
tion exposed" may be particularly problematic. Such eco-
logic exposure variables are the aggregated form of binary
exposures on the individual level. Other things equal, use
of such variables tends to maximize the magnification fac-
tor (increasing any bias present due to confounding by
group or effect measure modification by group), increase
bias in non-linear models, and bias results away from the
null when non-differential exposure misclassification
occurs. Studies with small variation between average
exposures (as in Figure 5F) are particularly worrisome.

Non-differential exposure misclassification (NDEM), illustrating Table 5Figure 8
Non-differential exposure misclassification (NDEM), illustrating Table 5. A. If there are no other sources of bias, the 
ecologic- and individual-level analyses of the correct data are the same. B. Suppose the dichotomous exposure data are mis-
classified with the same sensitivity and specificity in each group. Then the individual-level result (blue) is biased toward the null 
and the ecologic result (red) is biased away from the null. The average risks (Yi) in each group are unchanged but the average 
exposures move closer together. This causes the resulting ecologic regression line to have higher slope.
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The approach discussed here examines three important
sources of ecologic bias: confounding by group, effect
modification of the risk difference by group, and non-dif-
ferential exposure misclassification. It does not take into
account other potential problems, e.g., confounding
within groups or effect measure modification within
groups (However, confounding within groups alone does
not cause ecologic bias when the relationship between
exposure and outcome is linear; see appendix 9. The plau-
sibility of the linearity assumption must be carefully con-
sidered).

In this paper we have employed a simple, abstract
approach based on several assumptions: availability of the
same types of information on both individual and group
levels, use of average group exposure as the ecologic expo-
sure measure, linear models, weighted least squares
regression, estimation of the risk difference. Our purpose
was to display, as simply as possible, the underlying
mechanisms causing the magnification of individual bias
upon aggregation into groups. The loss of information
about within-group exposure variance is seen to be the
culprit.

The ideas here can be extended, with some modifications
of results, to examine additional issues: inclusion of cov-
ariates, confounding and effect measure modification
within groups, group-level exposure measures other than
means, and partially ecologic studies [4,11]. This paper
has focused on the risk difference, but the results can be
readily applied to the rate difference and studies with con-
tinuous outcomes (appendix 3). Generalization to the
more commonly used relative risks and rate ratios is
underway (see also [21]).

In addition to theoretical investigations like this one, we
also need to know more about the amount of ecologic
bias encountered in practice [7,22-24]. By helping us
focus on how ecologic studies go astray, we hope to move
toward the goal of domesticating ecologic bias: treating it
as another source of epidemiologic bias that needs to be
analyzed and quantified [22].

Mathematical appendix
1. Linear risk functions and aggregation
Assume risk to individuals is a linear function of exposure
x

rij = qi + bixij (A1)
We index groups with i and subjects with j, and allow the
background risk qi and risk difference bi to vary between
groups (Alternatively, one can think in terms of an
unmeasured group-level covariate Zi: qi = q + γZi, bi = b +
ηZi). Conceiving of risks as probabilities of developing

disease, the expected value of the binary outcome for indi-
vidual yij is equal to their risk, so that

yij = qi + bixij + eij (A2)
where eij is an error term. Averaging within groups (of size
ni) produces the aggregate equation

Yi = qi + biXi + ei (A4)
Xi and Yi are the average exposure and outcome per group
(See [14,21] for an in-depth discussion of statistical mod-
els in ecologic studies). The eij and ei vanish under expec-
tation.

Alternatively, we can think of the risks as proportions.
Under the proportion model, the eij and ei are residuals (ei
then vanishes in equation A4 because the sum of residuals
within groups equals zero). Both the probability and pro-
portion interpretations can be applied in this paper: the
proportion model may help in thinking about ecologic
bias in particular data sets. For example, the individual-
level model(s) assumed for an analysis need not be cor-
rect; instead it is a reference against which we measure
ecologic bias.

We assumed a linear risk model (A2) at the individual
level. Although very simple, it still yields insight into
many aspects of ecologic bias (Non-linear functions,
described below, add some additional features). Linear
risk models can also be easily analyzed using ordinary
least squares (OLS). The risk difference (bi) is the natural
effect measure to use in this situation. For example, apply-
ing OLS to the individual-level data in a two-by-two table
yields qi and bi (OLS picks the line that runs through the
mean values of the outcomes at the two exposure levels).
Although OLS is not commonly used for analyzing binary
outcome data, it simplifies the understanding of ecologic
bias. OLS, and other methods described here, are directly
applicable to many studies of continuous outcomes.

While we chose to use a linear risk model, the relationship
between the average outcome in a group (Yi) and the aver-
age exposure (Xi) in two-by-two tables must be linear
[10,11]; using the notation in Table 6, the average risk in
the group is given by:
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Equation A5 is identical to A4 (except for ei).

2. Extensions; non-linear risk functions and pure 
specification bias
Equations 1–3 (in the main text) and Figure 1 were con-
structed to describe two-by-two tables and risks, but the
approach is readily extended to rates, continuous out-
comes and continuous exposures. Instead of modeling
risks in a closed cohort, we can also examine incident
cases in person-time [11]. In this type of individual-level
study, we would know the interior of the table (the
number of exposed and unexposed cases); we could there-
fore compute the rates for the exposed and unexposed as
well as the rate difference. In an ecologic study of this type,
we would know only the marginal rate and the marginal
exposure distribution. Rate diagrams are very similar to
risk diagrams except that the y axis has no upper bound.
For continuous outcomes yij with normally distributed
errors eij, OLS is a conventional model of analysis; b is
then the change in outcome per unit change in exposure.
Instead of restricting xij to zero or one as in a binary expo-
sure, we can also let xij be a continuous measure of expo-
sure. For equations 1–3 (and Figure 1) to hold, the risk

function would have to be linear but non-linear functions
are also possible.

Instead of the linear risk function (A2), suppose we
assume the following log-linear model:

yij = exp[q + bxij] + eij (A6)
Aggregating yields (ignoring error terms)

Equation A7 is generally not equal to exp[q+bXi], i.e., for
non-linear models the individual-level and aggregate
models do not have the same functional form. This dis-
crepancy is the source of pure specification bias [7,9]. If xij
is normally distributed within groups, then applying
expectations and cumulants to (A6) yields:

Y
n

q bxi
i

ij
j

ni

= +
=
∑1

1

exp[ ] (A7)
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Table 5: Effect of non-differential exposure misclassification on individual and ecologic studies

Group 0 Group 1 Crude

Correct

expose unexpose sum expose unexpose sum expose unexpose sum

cases 160 80 240 720 10 730 880 90 970
noncases 40 720 760 180 90 270 220 810 1030
total 200 800 1000 900 100 1000 1100 900 2000
risk 0.8 0.1 0.8 0.1 0.8 0.1
RD 0.7 0.7 0.7
Xi 0.20 0.90
Yi 0.24 0.73

Misclassify

expose unexpose sum expose unexpose sum expose unexpose sum

cases 144 96 240 578 152 730 722 248 970
noncases 176 584 760 162 108 270 338 692 1030
total 320 680 1000 740 260 1000 1060 940 2000
risk 0.45 0.14 0.78 0.58 0.68 0.26
RD 0.31 0.20 0.42
Xi 0.32 0.74
Yi 0.24 0.73

The data are misclassified assuming the same sensitivity and specificity in each group, both equal to 0.8. Since there are no other sources of bias in 
this example, the crude individual and ecologic estimates of the RD are identical (0.7) for the correct data. For the misclassified data, the crude 
individual level estimate of the RD (0.42) is biased toward the null while the ecologic estimate (1.17) is biased away from the null. RD = risk 
difference; Xi and Yi are the average exposure and average risk in group i.
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where  is the exposure variance within group i [9].

More generally, we can approximate (A8) by applying
Taylor series and aggregation to (A6) (see also [25-27]).

Assuming that counts of cases fit a Poisson model, one
can fit ecologic data using (A8). One can, however, gain
some insight into pure specification bias using an approx-
imation. Linearly regressing Xi against log[Yi] yields:

The exponential of be now estimates the relative risk. As

shown by (A9), in the absence of other sources of ecologic
bias, log-linear ecologic regression is subject to pure spec-
ification bias, approximated by the second term in (A9).
For such models, the within-group exposure variances can
often be expected to covary with average exposures. There
is little or no bias if b is small (low curvature), the within

group exposure variance ( ) does not depend on Xi, or

exposure is uniform within groups (  = 0), results con-

sistent with those found by Richardson et al. [9] for the
normal distribution case. Risk diagrams drawn using log-
transformed risks turn exponential risk functions into
straight lines; the line describing the upper bound of the
error in Figure 2 becomes curved (bowing downward).

3. Bias magnification equation
Assume the individual-level model of equation A2. The
crude individual-level and population-weighted ecologic
estimates of the risk difference are, respectively:

VT and VB are the total and between-group exposure vari-
ances (This derivation assumes VT and VB are non-zero).
CT and CB are the total and between-group covariances of
outcome and exposure. CB and VB are weighted by group
size ni:

where N is the number of groups, n is the total popula-

tion, and  and  are the overall means. Expand equa-
tion A10, partitioning the total covariance and variance
into within-group and between-group pieces [18,19]:

CW and VW are the within-group covariance and variance.
Equation A14 shows that the crude individual estimate of
the risk difference bc is a weighted average of the within-
group and ecologic estimates: bw ≤ bc ≤ be since VW + VB =
VT and variances are nonnegative. bw, equal to CW/VW, is
the within-group individual-level estimate of the risk dif-
ference. It is a weighted average of the bi with weights
equal to ni vari(xij), where vari(xij) is the exposure variance
within group i. bw is also the result of ordinary least
squares regression of the individual-level data, adjusted
for group using indicator variables [11,16]. After substi-
tuting VW = VT - VB, a little algebra yields the bias magnifi-
cation equation:

Subtracting (bc - bw) from both sides of equation A15
yields:

(be - bc) = (bc - bw)(M - 1) = (bc - bw) F (A16)
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Table 6: Notation for a general two-by-two table

exposed unexposed sum

cases pimi1 qimi0 pimi1+qimi0
noncases (1-pi)mi1 (1-qi)mi0 (1-pi)mi1 + (1-qi)mi0
total mi1 mi0 ni = mi1+mi0
risks pi qi
RD pi-qi
Xi mi1/ni
Yi (pimi1+qimi0)/ni

Let pi and qi be the risks of the exposed and unexposed in group i. Let 
mi1 and mi0 be the numbers of exposed and unexposed in group i. RD 
= risk difference; Xi and Yi are the average exposure and average risk 
in group i; ni = size of group i.
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where F = M - 1 is called the inflation factor [10,16]. Equa-
tion A16 measures the amount of bias added by aggrega-
tion (Figure 9).

The simplified equation describing bias magnification of
confounding by group (equation 10 in the main text) can
be derived in another way: insert yij = qi + bxij + eij into
equation A10 and expand; insert Yi = qi + bXi + ei into equa-
tion A11 and expand:

Dividing equation A18 by equation A17 yields:

Note that cov[qi, xij] = covB[qi, Xi], a consequence of using
population weighting. Confounding by group is absent if
covB[qi, Xi] = 0, i.e., the background risks and average
exposures are uncorrelated (e.g., q0 = q1 for two 2 × 2
tables).

When M equals one – i.e., exposure within groups is
homogeneous – equation A15 shows that the ecologic
and individual-level results are equal. This result, desira-
ble for the nominally ecologic study, is a consequence of
using population weighting; unweighted ecologic regres-
sion will generally produce different results from the indi-
vidual-level analysis. For example, in (A19) the weighted
and unweighted covariances of Xi and qi will usually not
be equal [11].

4. M ≥ 1 when Xi is the ecologic exposure measure
Suppose we use the mean exposure in each group (Xi) as
our ecologic measure of exposure. Partitioning total expo-
sure variance within and between groups shows that M is
always at least one:

5. Effect measure modification and bc
Using the notation in Table 6, the crude risk difference is

where pi is the risk in the exposed, qi is the risk in the unex-
posed and we sum over groups i.

To consider effect modification of the risk difference,
assume qi = q and pi = q + bi. Substituting into (A21), we
obtain

where the wi are non-negative weights. Thus bc must be
between the minimum and maximum values of bi. For
additional discussion of when bc and be are bounded, see
[11].

6. Computation of bw for Table 3, Figure 6
bw is a weighted average of the bi using weights equal to
group size times the exposure variance within the group:

w0 = n0 var0(x0j) = 200(X0)(1-X0) = 200(0.5)(0.5) = 50
(A23)
w1 = n1 var1(x1j) = 200(X1)(1-X1) = 200(0.4)(0.6) = 48
(A24)

7. Non-differential exposure misclassification
From Table 4, the average exposure in the misclassified
two by two table is

where λ = s+t-1. Assuming s and t are the same in all
groups, the ecologic estimate of the RD for the misclassi-
fied data is
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Since 0 ≤ λ ≤ 1, the variance of Ui is smaller than the vari-
ance of the Xi, i.e., the Ui are closer together. If we think of
equation A26 as an iteration equation, then NDEM moves
the average exposure one step closer to the stationary
point given by solving Xc = λXc + (1-t):

For s = t, Xc = 0.5.

In the absence of any other sources of bias except NDEM,
one can show that the individual-level estimate of the RD
is given by

where uij is the misclassified exposure on the individual
level (If we allow values of s and t below 0.5, the absolute

value of (A29) is less than or equal to unity). Using (A14),
we can expand (A29) into within-group (left term) and
between-group (right term) portions:

where MU is the magnification factor for the misclassified
exposure. All expressions in parentheses in equation A30
are less than or equal to one except (1/λ). Thus, while the
ecologic estimate of the RD is biased away from the null
by 1/λ, this tendency is counterbalanced in individual
level studies by the inverse of the magnification factor MU.
λMU ≥ M ≥ 1, as can be derived from (A29):

8. Computation of M when exposure is binary
When exposure xij is binary, M can be computed from eco-
logic exposure data (Xi) alone. Calculate the total individ-
ual-level exposure variance using the standard equation:

where  is the population-weighted mean of the Xi. Use

equation A13 for varB[Xi].

9. Confounding within groups
Assume a reference individual-level model with a linear
relationship between outcome and exposure. Assume that
outcome is also related to an individual-level covariate zij
via a possibly nonlinear function h():

yij = q + bxij + h(zij) + eij (A33)
Aggregation produces

Yi = q + bXi + Hi(zij) + ei (A34)
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Bias magnification and inflationFigure 9
Bias magnification and inflation. The ecologic bias (be - 
bw) equals the individual-level bias (bc - bw) – due to con-
founding by group and effect modification of the risk differ-
ence by group – multiplied by the magnification factor M, 
assuming no other sources of ecologic bias. The ecologic bias 
also equals the sum of the individual-level bias due to ignoring 
groups and the bias caused by aggregation. The latter is 
measured by F, the inflation factor, equal to M - 1.
Page 15 of 17
(page number not for citation purposes)



Environmental Health 2007, 6:17 http://www.ehjournal.net/content/6/1/17
where Hi(zij) is the average value of h(zij) within group i.
The crude individual-level estimate bc is derived by insert-
ing equation A33 into equation A10 and expanding:

Partitioning the covariance within and between groups
yields

The ecologic estimate be is derived by inserting equation
A34 into equation A11 and expanding:

The individual-level estimate, equation A37, is biased by
two terms: confounding within groups and confounding
between groups. The ecologic estimate, equation A38, is
biased only by confounding between groups (These
results remain true if h() is linear, e.g., h(zij) = γzij and
H(zij) = γZi). Note that an individual-level variable (zij)
can cause confounding between groups even if it doesn't
cause confounding within groups. For models like equa-
tion A33, confounding within groups alone does not bias
the ecologic estimate. For models that are nonlinear in
both exposure and covariates, confounding within groups
remains important. For further discussion of confounding
within groups, see [11,21].

The approach of assuming an individual-level model,
aggregating to obtain an ecologic model, and then com-
paring biases on the individual and group level is very
powerful [11].
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