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Abstract

Background: Characterizing multipollutant health effects is challenging. We use classification and regression trees
to identify multipollutant joint effects associated with pediatric asthma exacerbations and compare these results
with those from a multipollutant regression model with continuous joint effects.

Methods: We investigate the joint effects of ozone, NO2 and PM2.5 on emergency department visits for pediatric
asthma in Atlanta (1999–2009), Dallas (2006–2009) and St. Louis (2001–2007). Daily concentrations of each pollutant
were categorized into four levels, resulting in 64 different combinations or “Day-Types” that can occur. Days when
all pollutants were in the lowest level were withheld as the reference group. Separate regression trees were grown
for each city, with partitioning based on Day-Type in a model with control for confounding. Day-Types that
appeared together in the same terminal node in all three trees were considered to be mixtures of potential interest
and were included as indicator variables in a three-city Poisson generalized linear model with confounding control
and rate ratios calculated relative to the reference group. For comparison, we estimated analogous joint effects
from a multipollutant Poisson model that included terms for each pollutant, with concentrations modeled
continuously.

Results and discussion: No single mixture emerged as the most harmful. Instead, the rate ratios for the mixtures
suggest that all three pollutants drive the health association, and that the rate plateaus in the mixtures with the
highest concentrations. In contrast, the results from the comparison model are dominated by an association with
ozone and suggest that the rate increases with concentration.

Conclusion: The use of classification and regression trees to identify joint effects may lead to different conclusions
than multipollutant models with continuous joint effects and may serve as a complementary approach for
understanding health effects of multipollutant mixtures.
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Introduction
Humans breathe a mixture of different air pollutants.
Characterization of these multipollutant mixtures in
relation to health effects has been addressed by air pol-
lution research groups for decades. Historically, a com-
mon epidemiological approach for addressing mixtures
has been through single pollutant models, in which a
single pollutant effect is viewed as a surrogate for a par-
ticular air pollution mixture. Other approaches for in-
vestigating pollutant mixtures include composite metrics
such as air quality indices [1], hierarchical and k-means
clustering [2, 3], supervised principal components ana-
lysis [4], groupings based on chemical properties of pol-
lutants [5], source apportionment [6], and exposure to
specific mixtures, such as traffic-related pollutants [7].
Two reviews of statistical approaches for multipollutant

research were recently published [8, 9]. In both reviews,
classification and regression trees (C&RT), a supervised
recursive partitioning approach, was cited as a method for
handling multipollutant exposures; however, there have
been few applications of C&RT in assessing the health ef-
fects of ambient air pollution exposure [10, 11]. In a re-
cent paper we showed how C&RT can be adapted for
epidemiologic research, particularly to control for con-
founding, and become a useful tool for generating hypoth-
eses about multipollutant joint effects [12].
C&RT groups days according to their multipollutant

profiles. This can help to elucidate patterns of meteor-
ology, seasonality, and emission sources that cause certain
pollutants to covary more strongly than others. From a
health perspective, grouping days can enable identification
of day types that are more harmful to human health and
help to improve risk prediction systems. From a regulatory
perspective, identifying the most harmful multipollutant
joint effects can lead to more targeted regulation.
In this analysis, we use C&RT to identify multipollutant

mixtures associated with pediatric asthma emergency de-
partment (ED) visits and calculate the joint effects associ-
ated with each mixture in a time series framework. Our
analysis focuses on three criteria pollutants, ozone (O3), ni-
trogen dioxide (NO2), and particulate matter less than 2.5
microns in diameter (PM2.5), shown to have strong associa-
tions with asthma/wheeze in previous analyses [13, 14]. We
conduct three separate C&RT analyses using time series
data from Atlanta, Dallas and St. Louis. To increase statis-
tical power we combined C&RT results across three cities.
Although methods exist for combining trees generated
from random subsets of a single data source (e.g. bagging
and random forests), similarly well-established methods do
not exist for combining trees generated from different data
sources. In this paper we present an approach for combin-
ing C&RT results across cities to identify between-city simi-
larities. A drawback of combining results from different
cities is that city-specific heterogeneity will be masked. This
concern is not unique to our study but rather is a generic
epidemiologic concern that should be considered whenever
estimates are pooled across strata, and in air pollution epi-
demiology there is a precedent of combining data across
different cities, starting with the National Morbidity, Mor-
tality and Air Pollution Study [15].
Finally, because C&RT is seldom used in multipollu-

tant research, we compare the results of this three-city
C&RT approach with the analogous joint effects esti-
mated from a multipollutant regression model with each
pollutant concentration modeled continuously [16].

Methods
Data
Emergency Department visit data
Computerized billing records for ED visits to acute care
hospitals in each city were obtained as follows: for 20-
county Atlanta, from individual hospitals and the
Georgia Hospital Association for an 11-year study period
(1/1/1999 – 12/31/2009); for 12-county Dallas, from the
Dallas-Fort Worth Hospital Council Foundation for a
3.5-year study period (1/1/2006 – 8/31/2009); and for
16-county St. Louis, from the Missouri Hospital Associ-
ation for a 6.5-year study period (1/1/2001 – 6/27/2007).
Relevant data elements included a patient identifier, ad-
mission date, patient age, primary and secondary Inter-
national Classification of Diseases 9th Revision (ICD-9)
diagnosis codes, and ZIP code of patient residence. Data
were used in accordance with the individual hospital
and/or hospital association data use agreements; this
study was also approved by the Emory University Insti-
tutional Review Board. Visits by patients living in ZIP
codes outside the city-specific study areas were
excluded.
The individual-level data were restricted to visits by

pediatric patients ages 2–18 years and aggregated to
daily counts of asthma and/or wheeze, identified as any
ICD-9 code of 493 and/or 786.07, resulting in 271,725
visits in Atlanta, 116,212 in Dallas, and 100,471 in St.
Louis.

Air pollution data
Daily population-weighted average concentrations of
ambient O3 (8-hr max), NO2 (1-hr max) and PM2.5

(24-h average) were calculated using measurements
from stationary monitors in each of the three cities
[17]. The averaging times for each pollutant were se-
lected to coincide with those used for the National
Ambient Air Quality Standards.

Statistical methods
Base model
The base model used to analyze each city-specific time
series was a Poisson generalized linear model using a
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framework equivalent to the conditional logistic case-
crossover model [18]. This is the same model used by
Gass et al. [12]. Time trends were controlled by matching
on weekday, month and year, and meteorology was con-
trolled with cubic terms for the three-day moving average
of: maximum temperature, maximum temperature inter-
acted with season, and dew point. A spline for day-of-year
with two knots was included to provide additional control
for seasonal trends. This base model was used to generate
the city-specific C&RT trees, estimate the joint effects for
the mixtures identified by C&RT, and estimate the joint
effects from the comparison multipollutant model.

Classification and regression trees: an overview
C&RT is a non-parametric regression approach that rep-
resents a supervised form of hierarchical clustering in
which the observations are sequentially split into dichot-
omous groups, such that each resulting group contains
Fig. 1 Flow diagram outlining three-city C&RT approach. The table in the u
pollutant into four levels and the frequency at which each level occurred b
increasingly similar responses for the outcome [19, 20].
Every tree starts with a “root node” that contains the ob-
servations from which the tree will be grown. The obser-
vations are then partitioned into two “child nodes” based
on the value of an independent predictor variable. The
resulting child nodes each contain a subset of the ori-
ginal observations. Child nodes may be further parti-
tioned, again based on the value of an independent
predictor variable. This process continues until a set of
partitioning criteria are no longer met, resulting in ter-
minal nodes. The collection of terminal nodes forms a
complete partition of the observations in the root node.
Each terminal node can be viewed as a unique mixture,
defined by the path of partitions, or splits, leading from
the root node to that particular terminal node. Previ-
ously we described how C&RT was used in a single-city
analysis [12]; next we describe its application in the
three-city analysis. Figure 1 summarizes this approach.
pper right contains the concentration cutoffs used to categorize each
y city
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Three-city C&RT approach
Step 1: Categorize pollutants into levels: The first step in
our three-city C&RT comparison was to specify concen-
tration cut-points for O3, NO2, and PM2.5 that were
common across all three cities. Each of the three pollut-
ants was divided into four levels, resulting in 43 or 64
possible daily pollution profiles (aka “Day-Types”).
Throughout the paper, the nomenclature used to de-
scribe these Day-Types is “O3-level/ NO2-level/ PM2.5-
level”. For example, Day-Type “2/2/4” refers to days
where both O3 and NO2 concentrations (3-day moving
average) are in the 2nd level and the PM2.5 concentration
(3-day moving average) is in the 4th level (with levels 1 –
4 ranging from lowest to highest concentration).
Step 2: Define a common referent group: To enable

estimation of joint effects, we defined a referent group
corresponding to days when all three pollutants were in
the lowest level (i.e., days designated as Day-Type 1/1/1).
It was decided a priori that the referent group should
include at least 100 days in each city. To satisfy this
requirement, the referent group was defined as: O3 ≤
35 ppb, NO2 ≤ 21 ppb, PM2.5 ≤ 11ug/m3, which corre-
sponds to roughly the 40th percentile of the overall
distribution for the 3-day moving average of each pollu-
tant, from the three cities combined. The remaining
level cut-points were defined at approximately the 60th

and 80th percentiles (Fig. 1). We chose to use absolute
cut-points, rather than city-specific relative cut-points,
so improve generalizability of the results. This approach
is consistent with the setting of uniform air quality stan-
dards across cities or regions.
Step 3: Generate city-specific regression trees: For

each city, the referent days were withheld while the
remaining days formed the root node in the C&RT algo-
rithm. We considered the nine possible ways these days
could be partitioned based on the three pollutant con-
centration levels. This was accomplished by creating
three mutually exclusive indicator variables for each pol-
lutant representing the different comparisons: level 1 vs.
2–4, levels 1 and 2 vs. 3 and 4, and levels 1–3 vs. 4. Each
of these nine indicators was considered one-at-a-time in
the base model that controlled for confounding (de-
scribed earlier). The selected indicator was the one that
resulted in the smallest P-value for the null hypothesis
that the beta for that indicator was 0. The days were
then partitioned according to pollution levels defined by
that indicator. For example, if the indicator representing
NO2 level 1–3 vs. 4 had the lowest P-value, the data
were partitioned into two groups: one consisting of all
days with NO2 concentration in levels 1–3 and the other
with days with NO2 concentration in level 4. Partitioning
according to levels of a single pollutant continued until
one of three stopping criteria were met: there were no
remaining ways to partition the days, the remaining
splits were not significant at a pre-specified level of
alpha (α = 0.15), or the minimum number of days for
each node (n = 60) was not met. In this case partitioning
stopped and the node became a terminal node. Note
that the confounding variables were included in the
model but not used in the splitting.
Step 4: Identify pollution mixtures of interest: We

grew three separate trees using the same algorithm and
splitting indicator definitions for Atlanta, Dallas, and St.
Louis. For each city, the C&RT algorithm partitioned the
63 Day-Types (all but the withheld referent group) into
terminal nodes according to their association with the
outcome. Rather than comparing the shapes of the trees
or the ordering of the splits we focused on the mixtures
of air pollutants encompassed in the terminal nodes that
were common across cities. For example, suppose Day-
Types 2/3/4 and 3/3/4 appear together in a terminal
node in all three cities, then we say this pair of Day-
Types constitutes a “mixture” in which we are poten-
tially interested. This approach was used to identify all
mixtures encompassed in the terminal nodes across the
three city trees.
Step 5: Estimate joint effects of mixtures: We then es-

timated the joint effects of these C&RT-generated mix-
tures using the base model with indicators for each
mixture. Rate ratios for each mixture were estimated
using the previously withheld referent group (Day-Type
1/1/1) as the comparison in a three-city model with city-
specific effects for all covariates (excluding the mixture
indicator variables). Day-Types that did not fall into one
of the 17 mixtures were represented with a single indica-
tor variable in the model; rate ratios for these Day-Types
are not presented in the Results.

Comparison model: multipollutant regression with
pollutants modeled continuously
Finally, we compared our findings from the C&RT-
identified mixtures to those obtained from a multipollutant
regression model with pollutants modeled continuously.
This comparison model consisted of the base model de-
scribed above with the inclusion of a linear term (β*pollu-
tant) for each of the three pollutants, modeled using the
continuous 3-day moving average concentrations. A three-
city model was run that included city indicator variables
and product terms between these indicators and each other
model covariate (excluding the pollutant concentrations).
To compare the joint effects of this model with those of the
C&RT-identified mixtures, we specified pollutant concen-
trations that were most commensurable to the pollutant
concentrations of each mixture as well as the referent
group (Day-Type 1/1/1). Specifically, we used the compari-
son model to estimate the joint effects for a change in con-
centration from the mean of the referent group to the
mean of each C&RT-identified mixture, for each pollutant.
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This was accomplished by multiplying the coefficient for
the linear effect of each pollutant by the difference in the
pollutant-specific mixture mean and referent group mean.
These products were summed and exponentiated to get the
rate ratio for the joint effect. Standard errors for the joint
effects were calculated using the variance-covariance
matrix. As a sensitivity analysis, we also calculated the joint
effects using the contrast represented by the change from
the median concentration in the referent group to the me-
dian concentration in each C&RT-identified mixture.
Further sensitivity analyses were conducted considering al-
ternative comparison models, including a model with all
first- and second-order multiplicative terms for the interac-
tions between the pollutants as well as a model with both
linear and quadratic terms for each pollutant. As before,
joint effects were calculated for the differences in concen-
tration between the mixture mean and the referent group
mean. Analyses were performed using SAS® v9.3 (Statistical
Analysis System; North Carolina).

Results
After excluding days with missing air pollution levels,
4012 observations remained for analysis from Atlanta,
2354 days from St. Louis and 1337 days from Dallas.
The referent group, identified as days where all pollut-
ants were in the lowest level, contained 606 days (15 %)
for Atlanta, 115 days (5 %) for St. Louis, and 121 days
Table 1 Distribution of referent and non-referenta days by city

Atlanta Dallas

Referent
(n = 606)

Non-referent
(n = 3406)

Refere
(n = 12

Month N % N % N

January 106 17.49 229 6.72 15

February 41 6.77 270 7.93 6

March 26 4.29 315 9.25 14

April 12 1.98 318 9.34 3

May 24 3.96 317 9.31 10

June 15 2.48 315 9.25 13

July 9 1.49 332 9.75 8

August 18 2.97 323 9.48 2

September 54 8.91 276 8.10 11

October 79 13.04 262 7.69 4

November 96 15.84 234 6.87 11

December 126 20.79 215 6.31 24

Precipitation N % N % N

Days with precipitation 246 40.59 968 28.45 49

Wind Mean SD Mean SD Mean

Wind speed 9.36 3.54 7.62 3.16 12.49

SD standard deviation
aNon-referent days were used to generate the city-specific trees
(9 %) for Dallas (Fig. 1). A more extensive description of
the referent group is provided in Table 1, including the
monthly distribution, percent of days with precipitation,
and average wind speed. Table 2 contains the frequency
of each of the 64 Day-Types (the joint distribution of the
three pollutants parameterized as ordinal variables) in
each city and the correlations between each of the pol-
lutants, by city, are shown in Table 3. All Day-Types oc-
curred at least once in Atlanta; in St. Louis there was
one Day-Type that never occurred, and in Dallas there
were five Day-Types that never occurred.
The C&RT algorithm was run separately for each city,

generating regression trees with seven, six, and seven
terminal nodes in Atlanta, Dallas, and St. Louis, respect-
ively (Figs. 2, 3, 4). Comparing terminal nodes across the
three cities, there were 17 pollution mixtures of two or
more Day-Types that occurred together in the same ter-
minal node in all three cities (Table 4). The numeric la-
beling of the mixtures was arbitrary; we ordered the
mixtures according to the level of O3, followed by NO2.
Of the 7709 days from the three cities combined, 842
were in the referent group (Day-Type 1/1/1) and 5446
were in one of the 17 mixtures. Table 4 contains the
number of days in each mixture by city, as well as the
mean concentrations of O3, NO2, and PM2.5. There were
10 Day-Types, corresponding to 1421 days from Atlanta,
St. Louis and Dallas combined, that did not appear in
St. Louis

nt
1)

Non-referent
(n = 1261)

Referent
(n = 115)

Non-referent
(n = 2239)

% N % N % N %

12.40 107 8.80 25 21.74 190 8.49

4.96 107 8.80 5 4.35 192 8.58

11.57 110 9.05 1 0.87 203 9.07

2.48 117 9.62 5 4.35 205 9.16

8.26 114 9.38 4 3.48 213 9.51

10.74 107 8.8 0 – 207 9.25

6.61 116 9.54 0 – 186 8.31

1.65 122 10.03 4 3.48 182 8.13

9.09 79 6.50 9 7.83 171 7.64

3.31 89 7.32 25 21.74 161 7.19

9.09 79 6.5 21 18.26 159 7.10

19.83 69 5.67 16 13.91 170 7.59

% N % N % N %

40.5 213 17.52 39 33.91 663 29.61

SD Mean SD Mean SD Mean SD

4.62 10.68 4.31 10.03 3.36 8.71 3.21



Table 2 Frequency at which each Day-Type (n = 64) occurred by city, as well as the terminal node designation from the city-specific
trees

Day-
Typea

Atlanta Dallas St. Louis

N % Terminal Nodeb N % Terminal Nodec N % Terminal Noded

1/1/1 606 (15.1 %) Referent 121 (9.1 %) Referent 115 (4.9 %) Referent

1/1/2 137 (3.4 %) 1A 29 (2.2 %) 1D 30 (1.3 %) 6S

1/1/3 98 (2.4 %) 1A 30 (2.2 %) 1D 25 (1.1 %) 6S

1/1/4 24 (0.6 %) 1A 6 (0.4 %) 1D 11 (0.5 %) 1S

1/2/1 137 (3.4 %) 5A 46 (3.4 %) 1D 152 (6.5 %) 3S

1/2/2 56 (1.4 %) 5A 9 (0.7 %) 1D 46 (2 %) 7S

1/2/3 70 (1.7 %) 5A 4 (0.3 %) 1D 63 (2.7 %) 7S

1/2/4 21 (0.5 %) 5A 1 (0.1 %) 1D 26 (1.1 %) 1S

1/3/1 61 (1.5 %) 5A 70 (5.2 %) 1D 171 (7.3 %) 2S

1/3/2 46 (1.1 %) 5A 9 (0.7 %) 1D 47 (2 %) 2S

1/3/3 70 (1.7 %) 5A 5 (0.4 %) 1D 86 (3.7 %) 2S

1/3/4 33 (0.8 %) 5A 0 (0 %) 1D 43 (1.8 %) 2S

1/4/1 11 (0.3 %) 4A 114 (8.5 %) 1D 84 (3.6 %) 2S

1/4/2 23 (0.6 %) 4A 18 (1.3 %) 1D 63 (2.7 %) 2S

1/4/3 41 (1 %) 4A 0 (0 %) 1D 99 (4.2 %) 2S

1/4/4 28 (0.7 %) 4A 0 (0 %) 1D 101 (4.3 %) 2S

2/1/1 221 (5.5 %) 1A 116 (8.7 %) 1D 30 (1.3 %) 3S

2/1/2 92 (2.3 %) 1A 34 (2.5 %) 1D 13 (0.6 %) 6S

2/1/3 104 (2.6 %) 1A 41 (3.1 %) 1D 19 (0.8 %) 6S

2/1/4 25 (0.6 %) 1A 19 (1.4 %) 1D 14 (0.6 %) 1S

2/2/1 80 (2 %) 6A 16 (1.2 %) 1D 47 (2 %) 3S

2/2/2 32 (0.8 %) 6A 10 (0.7 %) 1D 12 (0.5 %) 7S

2/2/3 31 (0.8 %) 6A 5 (0.4 %) 1D 17 (0.7 %) 7S

2/2/4 10 (0.2 %) 6A 1 (0.1 %) 1D 4 (0.2 %) 1S

2/3/1 42 (1 %) 7A 28 (2.1 %) 1D 69 (2.9 %) 2S

2/3/2 21 (0.5 %) 7A 7 (0.5 %) 1D 18 (0.8 %) 2S

2/3/3 31 (0.8 %) 7A 2 (0.1 %) 1D 19 (0.8 %) 2S

2/3/4 16 (0.4 %) 7A 0 (0 %) 1D 3 (0.1 %) 2S

2/4/1 7 (0.2 %) 4A 54 (4 %) 1D 58 (2.5 %) 2S

2/4/2 11 (0.3 %) 4A 6 (0.4 %) 1D 31 (1.3 %) 2S

2/4/3 26 (0.6 %) 4A 0 (0 %) 1D 33 (1.4 %) 2S

2/4/4 26 (0.6 %) 4A 1 (0.1 %) 1D 17 (0.7 %) 2S

3/1/1 123 (3.1 %) 2A 59 (4.4 %) 5D 11 (0.5 %) 3S

3/1/2 88 (2.2 %) 2A 34 (2.5 %) 2D 10 (0.4 %) 6S

3/1/3 154 (3.8 %) 2A 30 (2.2 %) 2D 17 (0.7 %) 6S

3/1/4 80 (2 %) 2A 12 (0.9 %) 2D 12 (0.5 %) 1S

3/2/1 33 (0.8 %) 2A 17 (1.3 %) 5D 24 (1 %) 3S

3/2/2 23 (0.6 %) 2A 11 (0.8 %) 2D 12 (0.5 %) 7S

3/2/3 45 (1.1 %) 2A 16 (1.2 %) 2D 24 (1 %) 7S

3/2/4 39 (1 %) 2A 4 (0.3 %) 2D 14 (0.6 %) 1S

3/3/1 21 (0.5 %) 2A 28 (2.1 %) 6D 31 (1.3 %) 2S

3/3/2 26 (0.6 %) 2A 11 (0.8 %) 2D 18 (0.8 %) 2S
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Table 2 Frequency at which each Day-Type (n = 64) occurred by city, as well as the terminal node designation from the city-specific
trees (Continued)

3/3/3 37 (0.9 %) 2A 7 (0.5 %) 2D 23 (1 %) 2S

3/3/4 26 (0.6 %) 2A 1 (0.1 %) 2D 14 (0.6 %) 2S

3/4/1 4 (0.1 %) 2A 35 (2.6 %) 6D 44 (1.9 %) 2S

3/4/2 9 (0.2 %) 2A 7 (0.5 %) 2D 43 (1.8 %) 2S

3/4/3 23 (0.6 %) 2A 6 (0.4 %) 2D 45 (1.9 %) 2S

3/4/4 42 (1 %) 2A 4 (0.3 %) 2D 14 (0.6 %) 2S

4/1/1 22 (0.5 %) 3A 15 (1.1 %) 3D 0 (0 %) 3S

4/1/2 38 (0.9 %) 3A 17 (1.3 %) 3D 7 (0.3 %) 6S

4/1/3 111 (2.8 %) 3A 25 (1.9 %) 3D 7 (0.3 %) 6S

4/1/4 216 (5.4 %) 3A 11 (0.8 %) 3D 19 (0.8 %) 1S

4/2/1 11 (0.3 %) 3A 14 (1 %) 4D 8 (0.3 %) 3S

4/2/2 17 (0.4 %) 3A 10 (0.7 %) 4D 5 (0.2 %) 7S

4/2/3 60 (1.5 %) 3A 26 (1.9 %) 4D 10 (0.4 %) 7S

4/2/4 164 (4.1 %) 3A 5 (0.4 %) 4D 27 (1.1 %) 1S

4/3/1 7 (0.2 %) 3A 15 (1.1 %) 4D 6 (0.3 %) 4S

4/3/2 19 (0.5 %) 3A 15 (1.1 %) 4D 11 (0.5 %) 4S

4/3/3 43 (1.1 %) 3A 24 (1.8 %) 4D 38 (1.6 %) 4S

4/3/4 138 (3.4 %) 3A 18 (1.3 %) 4D 58 (2.5 %) 4S

4/4/1 1 (0 %) 3A 17 (1.3 %) 4D 8 (0.3 %) 5S

4/4/2 1 (0 %) 3A 8 (0.6 %) 4D 28 (1.2 %) 5S

4/4/3 38 (0.9 %) 3A 13 (1 %) 4D 68 (2.9 %) 5S

4/4/4 116 (2.9 %) 3A 20 (1.5 %) 4D 132 (5.6 %) 5S
aDay-Types are represented by the level of O3, NO2 and PM2.5 respectively
bThe seven terminal nodes from the Atlanta tree are designated as 1A – 7A
cThe six terminal nodes from the Dallas tree are designated as 1D – 6D
dThe seven terminal nodes from the St. Louis tree are designated as 1S – 7S
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any of the 17 mixtures, meaning these Day-Types did
not appear together in terminal nodes with other Day-
Types consistently across the cities.
The rate ratios (RR) for the 17 mixtures, modeled as in-

dicator variables in the base case-crossover model with all
three cities combined, are shown in Table 5 (2nd column).
Table 3 Spearman correlations between O3, NO2, and PM2.5

within each city

City Pollutant O3 NO2 PM2.5

O3 1.00 0.19a 0.57a

Atlanta NO2 0.19a 1.00 0.39a

PM2.5 0.57a 0.39a 1.00

O3 1.00 0.05b 0.42a

Dallas NO2 0.05b 1.00 −0.15a

PM2.5 0.42a −0.15a 1.00

O3 1.00 0.22a 0.29a

St. Louis NO2 0.22a 1.00 0.25a

PM2.5 0.29a 0.25a 1.00
ap < 0.01
bp = 0.06
Nearly every RR, with the exception of the RRs for mix-
tures 1 and 9, was suggestive of a harmful association with
pediatric asthma. Mixtures 10 and 13 had the largest effect
sizes (RR: 1.07, 95 % CI: 1.03, 1.12; and RR: 1.06, 95 % CI:
1.02, 1.09).
The RR results of the C&RT-identified mixtures are

presented alongside the RRs for the joint effects calcu-
lated from the comparison model in Table 5. The RRs
shown for the comparison model are for a concentration
change from the referent mean to the mixture mean for
each of the three pollutants. A Wald test of the statis-
tical significance for the exposure terms, considered sim-
ultaneously, was significant for the C&RT model as well
as the comparison model (p = 0.006 and p < 0.001,
respectively).
The RRs from the comparison model have relatively

good agreement with the C&RT-identified results for the
mixtures with lower mean concentrations. At higher pol-
lution levels, joint effects calculated from the compari-
son model suggest increasing risk with concentration,
while the C&RT-identified results suggest risk plateaus
at the highest concentration mixtures. For example, the



Fig. 2 Regression tree illustrating multipollutant joint effects on pediatric asthma emergency department visits in Atlanta (1999 – 2009). Internal
nodes are designated with an oval and numbered such that each node, n, produces two child nodes numbers 2n and 2n + 1. The branches of
the tree are labeled according to the level of the pollutant used to partition the tree. For each partition, the branch with the more harmful
association is bolded. Terminal nodes are numbered 1A-7A (A for Atlanta). The pie graphs at each terminal node are a graphical representation of
the Day-Types that fall into each terminal node. Each pie graph has 12 wedges, four representing each level (L1-L4) of O3 (shades of purple), four
representing each level of NO2 (shades of gold), and four representing each level of PM2.5 (shades of blue). Pie wedges are colored if a pollutant
level is classified into that terminal node and left white if the pollutant level is absent from the terminal node. Day-Types present in the terminal
node can be identified by finding every combination of one O3 wedge (purple), one NO2 wedge (gold) and one PM2.5 wedge (blue). For example
terminal node 7A contains 4 Day-Types: O3 level 2, NO2 level 3 and PM2.5 levels 1–4 (2/3/1, 2/3/2, 2/3/3, 2/3/4)
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RR for mixture 17, which contains the Day-Type when all
pollutants are at their highest level (4/4/4), is 1.05 in the
C&RT model (95 % CI: 1.01, 1.09) vs. an RR of 1.10 in the
comparison model (95 % CI: 1.06, 1.14). To highlight this
further, the 95 % confidence levels for the joint effects of
mixtures 1, 9, 14, 15 and 17 calculated using the compari-
son model do not contain the point estimate from the
corresponding joint effects from the C&RT approach,
whereas for the other mixtures there was some overlap.
The sensitivity analysis using the mixture medians (as

opposed to mean) to calculate the joint effects for the
comparison model yielded similar estimates (Table 6).
Joint effects from the two alternative comparison models
(the multipollutant model with interaction terms and
multipollutant model with quadratic effects) using the
mixture means are included in Table 6. For the multipol-
lutant model with interaction terms, the confidence in-
tervals were large, while for the quadratic model, a test
of significance for the exposure terms beyond the linear
effects was non-significant (p = 0.63) and suggests that
the multipollutant effect does not have a quadratic form.
In both sensitivity analysis models, the point estimates
of the joint effects for each mixture were nearly identical
to the comparison model with only linear effects.

Discussion
In this paper we used classification and regression trees,
a non-parametric recursive partitioning approach, to



Fig. 3 Regression tree illustrating multipollutant joint effects on pediatric asthma emergency department visits in Dallas (2006 –2009). Internal
nodes are designated with an oval and numbered such that each node, n, produces two child nodes numbers 2n and 2n + 1. The branches of
the tree are labeled according to the level of the pollutant used to partition the tree. For each partition, the branch with the more harmful
association is bolded. Terminal nodes are numbered 1D-6D (D for Dallas). The pie graphs at each terminal node are a graphical representation of
the Day-Types that fall into each terminal node. Each pie graph has 12 wedges, four representing each level (L1-L4) of O3 (shades of purple), four
representing each level of NO2 (shades of gold), and four representing each level of PM2.5 (shades of blue). Pie wedges are colored if a pollutant
level is classified into that terminal node and left white if the pollutant level is absent from the terminal node. Day-Types present in the terminal
node can be identified by finding every combination of one O3 wedge (purple), one NO2 wedge (gold) and one PM2.5 wedge (blue). For example terminal
node 6D contains 2 Day-Types: O3 level 3, NO2 levels 3 and 4, and PM25 level 1 (3/3/1, 3/4/1)
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identify multipollutant joint effects associated with
pediatric asthma in Atlanta, Dallas and St. Louis. As evi-
denced by our sensitivity analyses, it is difficult to iden-
tify complex interactions of two, three or four pollutants
using conventional regression models due to power limi-
tations [21]. A known advantage of C&RT is that it can
be used to detect complex and multiple interactions be-
tween covariates [8, 9]. We have previously shown that
with few modifications, C&RT can be used to detect in-
teractions between pollutant concentrations while simul-
taneously controlling for temporal and meteorological
confounding [12].
A key finding of this analysis is that no single C&RT-

identified mixture emerged as being substantially more
harmful than the rest. All mixtures, with the exception
of mixtures 1 and 9, had a harmful association relative
to days when all pollutants were in the lowest level.
There were seven mixtures with statistically significant
associations, all of which were similar in magnitude.
There was no apparent pollutant-specific pattern to the
RRs of the C&RT-identified mixtures, suggesting that no
single pollutant was driving the associations. Instead the
results of the C&RT approach suggest that higher levels
of any of the three pollutants (O3, NO2, and PM2.5) are
more harmful and that the rates appear to plateau at
higher concentrations. For example mixture 17, which
contains the highest mean concentrations of O3 and
NO2 and the second highest PM2.5 concentration, has an
RR of 1.05, while mixture 13, which is characterized by
more moderate concentrations of the three pollutants,
has an RR of 1.06. While this lack of a synergistic –or
even multiplicative– response is surprising, it is not un-
precedented. In a review of the literature, Mauderly and
Samet found that 22 out of 36 laboratory studies failed
to demonstrate a synergistic response [22]. A hypothesis
that could explain the C&RT finding that risk plateaus



Fig. 4 Regression tree illustrating multipollutant joint effects on pediatric asthma emergency department visits in St. Louis (2001–2007). Internal
nodes are designated with an oval and numbered such that each node, n, produces two child nodes numbers 2n and 2n + 1. The branches of
the tree are labeled according to the level of the pollutant used to partition the tree. For each partition, the branch with the more harmful
association is bolded. Terminal nodes are numbered 1S-7S (S for St. Louis). The pie graphs at each terminal node are a graphical representation of
the Day-Types that fall into each terminal node. Each pie graph has 12 wedges, four representing each level (L1-L4) of O3 (shades of purple), four
representing each level of NO2 (shades of gold), and four representing each level of PM2.5 (shades of blue). Pie wedges are colored if a pollutant
level is classified into that terminal node and left white if the pollutant level is absent from the terminal node. Day-Types present in the terminal
node can be identified by finding every combination of one O3 wedge (purple), one NO2 wedge (gold) and one PM2.5 wedge (blue)
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on the highest pollution days is if asthmatic children
change their behavior and limit exposure. A cross-
sectional study by Wen et al. lends some support to this
theory; the study found that asthmatic adults had a
greater odds of modifying their outdoor activity com-
pared with non-asthmatics on days with media alerts
due to a high air quality index [23].
This C&RT approach for identifying and evaluating

multipollutant joint effects yielded different results than
the multipollutant comparison model with continuous
terms for the three pollutants. This latter multipollutant
regression model was selected for comparison with the
C&RT approach because it is an extension of the trad-
itional single-pollutant models and likely represents a
characterization of joint effects for which researchers are
most familiar, although only a few studies have actually
used such models to estimate a combined multipollutant
joint effect [16, 24–26]. It should be emphasized that the
comparison model was not expected to generate equiva-
lent results as the C&RT model, but rather to serve as a
comparison for the C&RT approach.
Examination of the differences between the C&RT and

comparison model results suggests that the two ap-
proaches for modeling multipollutant exposures lead to
different conclusions regarding the roles of individual
pollutants. In the comparison model, joint effects are
driven by O3 concentration. This is demonstrated by the
increasing RRs from top to bottom in Table 5, an artifact
of assigning arbitrary labels to the mixtures based on in-
creasing O3 concentration. Conversely, one does not see
the same pattern of increasing RRs in the C&RT-
identified mixtures, again suggesting that no single



Table 4 Mixtures described by Day-Type, number of days and mean concentration

Labela Day-Typeb O3/NO2/PM2.5 All Atlanta Dallas St. Louis O3
c NO2

c PM2.5
c

N N N N Mean(SD) Mean(SD) Mean(SD)

Referent 1/1/1 842 606 121 115 25.9 (6.3) 15.4 (3.8) 8.2 (1.7)

Mixture 1 1/1/2, 1/1/3, 2/1/2, 2/1/3 652 431 134 87 32.3 (9.4) 16.4 (3.4) 13.2 (1.6)

Mixture 2 1/1/4, 2/1/4 99 49 25 25 33.1 (10.2) 16.5 (3.5) 19.8 (3)

Mixture 3 1/2/2, 1/2/3 248 126 13 109 23 (7.2) 22.9 (1.2) 13.3 (1.5)

Mixture 4 1/3/1, 1/3/2, 1/3/3, 1/3/4 642 210 85 347 24.8 (7) 27.5 (1.4) 12 (3.9)

Mixture 5 1/4/1, 1/4/2, 1/4/3, 1/4/4, 2/4/1, 2/4/2, 2/4/3, 2/4/4 855 173 196 486 30 (8.9) 34.7 (4.1) 13.3 (5.2)

Mixture 6 2/2/2, 2/2/3 107 63 15 29 40.3 (2.8) 23 (1.1) 13.1 (1.6)

Mixture 7 2/3/1, 2/3/2, 2/3/3, 2/3/4 257 110 38 109 40.1 (2.8) 27.3 (1.4) 11.3 (3.5)

Mixture 8 3/1/1, 3/2/1 267 156 76 35 49.3 (2.8) 18 (4.2) 9.2 (1.4)

Mixture 9 3/1/2, 3/1/3 333 242 64 27 50 (3) 16.3 (3) 13.7 (1.6)

Mixture 10 3/1/4, 3/2/4 161 119 16 26 50.9 (2.8) 18.7 (3.9) 19.9 (2.8)

Mixture 11 3/2/2, 3/2/3 131 68 27 36 49.4 (2.8) 22.9 (1.2) 13.7 (1.6)

Mixture 12 3/3/1, 3/4/1 163 25 63 75 49.7 (2.7) 31 (4.3) 9.1 (1.4)

Mixture 13 3/3/2, 3/3/3, 3/3/4, 3/4/2, 3/4/3, 3/4/4 356 163 36 157 50 (2.9) 31.7 (5.4) 15.6 (4.2)

Mixture 14 4/1/2, 4/1/3, 205 149 42 14 61.4 (5.6) 17.3 (2.8) 14.3 (1.7)

Mixture 15 4/2/2, 4/2/3 128 77 36 15 63.1 (6.1) 23.1 (1.1) 14.3 (1.7)

Mixture 16 4/3/1, 4/3/2, 4/3/3, 4/3/4 392 207 72 113 67.2 (10.7) 27.4 (1.4) 19.1 (6.6)

Mixture 17 4/4/1, 4/4/2, 4/4/3, 4/4/4 450 156 58 236 68.5 (11.2) 35.7 (4.9) 19.7 (6.3)

SD standard deviation
aMixture labels are arbitrary and ordered according to level of O3, followed by NO2
bDay-Types are represented by the level of O3, NO2 and PM2.5 respectively
cMean concentrations and standard deviations are presented for the 3-day population weighted average of O3 (ppb), NO2 (ppb) and PM2.5 (μg/m

3)
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pollutant is driving these results. With respect to PM2.5,
results from the comparison model with continuous
terms suggest that PM2.5 has a null association (overall
RR 1.00 for an IQR increase in PM2.5, holding the other
two pollutants constant), while the C&RT approach sug-
gests that PM2.5 drives some of the mixture associations.
This is perhaps best highlighted by comparing the RRs
for mixtures 1 and 2, which have very similar levels of
O3 and NO2 but differ in the concentration of PM2.5.
Using the C&RT approach the RR for mixture 1, which
has the lower PM2.5 mean concentration, is 0.99 (95 %
CI: 0.97, 1.02) while the RR for mixture 2 is 1.04 (95 %
CI: 0.99, 1.09) (Table 5). In contrast, the RRs for mix-
tures 1 and 2 using the multipollutant comparison
model are both 1.01 (with 95 % CIs of 1.00, 1.02 and
1.00, 1.03, respectively).
Although the joint effects of the C&RT and compari-

son models differ (i.e., in the C&RT model pollution is
modeled categorically whereas in the comparison model
pollution is modeled continuously), the differences im-
plied by the results are striking and merit further atten-
tion. One possibility is that C&RT identified joint effects
are driven by PM2.5 constituents. For example, the com-
parison model treats all specific PM2.5 concentrations
equally; a high PM2.5 day that has high levels of
elemental carbon is not distinguished from a high day
that has a greater proportion of sulfates. Conversely the
C&RT model has the potential to distinguish mixtures
of PM2.5 constituents through the interactions detected
by subsequent partitioning. By partitioning on a pollu-
tant (e.g., NO2) that is correlated with certain PM2.5

components, C&RT has the ability to differentiate PM2.5

mixtures through their correlation with other independ-
ent variables in the model. While the multipollutant
comparison model with the inclusion of first- and
second-order interaction terms could discriminate be-
tween some PM2.5 mixtures, its discriminatory power
would be limited to a linear effect for each of the inter-
action terms. As such it could not, for example, identify
the same complex interactions as seen in the St. Louis
C&RT tree through nodes 1-2-4-9 (Fig. 4).
By binning days, the C&RT model may be able to ac-

count for unmeasured confounding that is non-smooth
(i.e., that varies with terminal node classification, not
pollution). For example, people may modify their be-
havior under certain types of days in a way that affects
ED visits for asthma. As a result, it is possible that the
point estimates for the mixture results are measuring
not only the multipollutant effect but also the effects
of other factors that are correlated with those Day-



Table 5 Rate ratios for the multipollutant joint effects of the C&RT-identified mixtures and comparison model

C&RT-identified mixtures (modeled with indicators) Mixture mean - referent mean Comparison model with continuous terms
(linear terms only)

Label RR 95 % CI O3 NO2 PM2.5 RRa 95 % CI

Mixture 1 0.99 (0.97, 1.02) 6.35 1.01 5.04 1.01 (1.00, 1.02)

Mixture 2 1.04 (0.99, 1.09) 7.20 1.18 11.64 1.01 (1.00, 1.03)

Mixture 3 1.01 (0.98, 1.04) −2.89 7.56 5.18 1.01 (1.00, 1.02)

Mixture 4 1.03 (1.01, 1.06) −1.05 12.11 3.83 1.02 (1.00, 1.03)

Mixture 5 1.04 (1.01, 1.07) 4.06 19.34 5.14 1.04 (1.02, 1.06)

Mixture 6 1.03 (0.99, 1.08) 14.37 7.63 4.97 1.03 (1.02, 1.05)

Mixture 7 1.02 (0.99, 1.06) 14.24 11.91 3.12 1.04 (1.02, 1.06)

Mixture 8 1.04 (1.01, 1.08) 23.43 2.68 0.98 1.04 (1.02, 1.06)

Mixture 9 1.00 (0.97, 1.03) 24.15 0.94 5.56 1.04 (1.02, 1.06)

Mixture 10 1.07 (1.03, 1.12) 24.96 3.35 11.74 1.04 (1.02, 1.07)

Mixture 11 1.04 (0.99, 1.08) 23.48 7.53 5.52 1.05 (1.03, 1.07)

Mixture 12 1.04 (0.99, 1.08) 23.84 15.68 0.92 1.06 (1.04, 1.09)

Mixture 13 1.06 (1.02, 1.09) 24.15 16.29 7.46 1.06 (1.04, 1.09)

Mixture 14 1.01 (0.97, 1.05) 35.53 1.98 6.09 1.06 (1.03, 1.09)

Mixture 15 1.03 (0.98, 1.08) 37.21 7.71 6.16 1.07 (1.04, 1.10)

Mixture 16 1.05 (1.01, 1.09) 41.33 12.04 10.94 1.08 (1.05, 1.12)

Mixture 17 1.05 (1.01, 1.09) 42.56 20.37 11.55 1.10 (1.06, 1.14)

Wald Testb χdf = 18
2 c = 36.6, p = 0.006 χdf = 3

2 =27.06, p < 0.001

C&RT classification and regression tree, CI confidence interval, DF degrees of freedom, RR rate ratio
aRate ratios calculated for the effect of an increase equal to the mixture mean minus the referent mean for all pollutants
bSimultaneous Wald test for all exposure parameters in the model
cThere are 18, as opposed to 17, degrees of freedom to account for the Day-Types not included in any mixture
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Types. While this could be a disadvantage if one in-
tends to use the point estimates to conduct risk assess-
ment, it could be beneficial if the interest is in
identifying types of days that are most harmful for a
particular health outcome and could lead to a more
targeted warning system.
When considering the C&RT approach, if two or more

Day-Types appear together in a terminal node, this is ei-
ther indicative of homogeneity of effect or lack of power
to detect any further effect (i.e., drive any further parti-
tioning). It is likely that one or more of the 17 mixtures
were formed as a result of insufficient power to further
partition the terminal node in a given city. This would
result in an “artificial group”, that is a mixture in which
the Day-Types do not have a similar association with the
outcome.
One downside to presenting the combined mixture

RRs in this analysis is that any heterogeneity across the
cities will be masked. Some between-city heterogeneity
is to be expected due to tangible and intangible city dif-
ferences, including socio-economic status, air condition-
ing use, climate acclimation and behavior patterns that
are likely to modify the estimated health associations
[27]. Nonetheless, it seems likely that there exist some
ambient pollution mixtures that are universally harmful,
and by combining cities our aim was to overcome some
of the power limitations mentioned above.
Conclusion
C&RT can be used to investigate multipollutant joint
effects and may lead to different conclusions than
multipollutant models with continuous terms. In par-
ticular, the results from this study suggest C&RT and
comparison models lead to different joint effects of
O3, NO2 and PM2.5 when concentrations are high and
that the apparent role of PM2.5 differs according to the
model used. Furthermore we have shown how C&RT
models can be used to identify types of days that are
particularly harmful to health, which can help to im-
prove warning systems and lead to more targeted
regulation.
Understanding the potential risk air pollution mixtures

pose to human health is a complex and challenging
undertaking that has only just begun. It is important to
emphasize that we do not know which, if either, of the



Table 6 Sensitivity analysis results for linear term models using Mixture median and Mixture mean with interactions and quadratic
terms

Comparison models with continuous terms

C&RT-identified mixtures
(modeled with indicators)

Linear terms (mixture median) Linear terms + all two- and three-way
interaction terms (mixture mean)

Linear terms + quadratic effects
(mixture mean)

Label RR 95 % CI RRa 95 % CI RRb 95 % CI RRb 95 % CI

Mixture 1 0.99 (0.97, 1.02) 1.01 (1.00, 1.02) 1.02 (0.96, 1.08) 1.01 (1.00, 1.03)

Mixture 2 1.04 (0.99, 1.09) 1.02 (1.00, 1.03) 1.03 (0.97, 1.11) 1.02 (1.00, 1.04)

Mixture 3 1.01 (0.98, 1.04) 1.01 (1.00, 1.02) 1.01 (0.97, 1.06) 1.01 (1.00, 1.03)

Mixture 4 1.03 (1.01, 1.06) 1.02 (1.00, 1.03) 1.02 (0.97, 1.07) 1.02 (1.01, 1.04)

Mixture 5 1.04 (1.01, 1.07) 1.03 (1.01, 1.05) 1.04 (0.98, 1.10) 1.04 (1.02, 1.06)

Mixture 6 1.03 (0.99, 1.08) 1.03 (1.02, 1.04) 1.04 (0.97, 1.12) 1.04 (1.02, 1.06)

Mixture 7 1.02 (0.99, 1.06) 1.04 (1.02, 1.05) 1.05 (0.98, 1.13) 1.05 (1.02, 1.07)

Mixture 8 1.04 (1.01, 1.08) 1.04 (1.02, 1.06) 1.05 (0.96, 1.14) 1.04 (1.02, 1.07)

Mixture 9 1.00 (0.97, 1.03) 1.04 (1.02, 1.06) 1.05 (0.96, 1.15) 1.04 (1.02, 1.07)

Mixture 10 1.07 (1.03, 1.12) 1.04 (1.02, 1.07) 1.06 (0.97, 1.15) 1.05 (1.02, 1.08)

Mixture 11 1.04 (0.99, 1.08) 1.05 (1.03, 1.07) 1.06 (0.97, 1.15) 1.05 (1.03, 1.08)

Mixture 12 1.04 (0.99, 1.08) 1.06 (1.03, 1.08) 1.08 (0.99, 1.18) 1.06 (1.03, 1.09)

Mixture 13 1.06 (1.02, 1.09) 1.06 (1.04, 1.08) 1.08 (0.99, 1.17) 1.07 (1.04, 1.10)

Mixture 14 1.01 (0.97, 1.05) 1.06 (1.02, 1.08) 1.07 (0.96, 1.19) 1.06 (1.03, 1.10)

Mixture 15 1.03 (0.98, 1.08) 1.07 (1.03, 1.10) 1.08 (0.97, 1.21) 1.08 (1.04, 1.11)

Mixture 16 1.05 (1.01, 1.09) 1.08 (1.04, 1.11) 1.09 (0.98, 1.22) 1.09 (1.05, 1.13)

Mixture 17 1.05 (1.01, 1.09) 1.09 (1.05, 1.13) 1.10 (0.98, 1.24) 1.10 (1.06, 1.15)

Wald Testc χdf = 18
2 =36.6, p = 0.006 χdf = 3

2 =27.06, p < 0.001 χdf = 7
2 =40.69, p < 0.001 χdf = 6

2 =28.77, p < 0.001

Wald Testd NA NA χdf = 4
2 =13.55, p = 0.009 χdf = 3

2 =1.72, p = 0.633

C&RT classification and regression tree, CI confidence interval, DF degrees of freedom, RR rate ratio
aRate ratios for the comparison model are calculated for the effect of an increase equal to the mixture median minus the referent median for all three pollutants
bRate ratios for the comparison model are calculated for the effect of an increase equal to the mixture mean minus the referent mean for all three pollutants
cSimultaneous Wald test for all exposure parameters in the model
dSimultaneous Wald test for additional exposure parameters beyond the linear effects
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models is more correct. Different assumptions are made
when exposure is modeled categorically vs. continuously,
making direct comparisons of results difficult. Neverthe-
less, exploring alternative models can be a useful way to
generate new ideas and perhaps gain greater insight into
air pollution mixtures.
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