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Abstract

Background: In a community in northern Chile, explosive procedures are used by two local industrial mines (gold,
copper). We hypothesized that the prevalence of asthma and rhinoconjunctivitis in the community may be
associated with air pollution emissions generated by the mines.

Methods: A cross-sectional study of 288 children (aged 6–15 years) was conducted in a community in northern
Chile using a validated questionnaire in 2009. The proximity between each child’s place of residence and the mines
was assessed as indicator of exposure to mining related air pollutants. Logistic regression, semiparametric models
and spatial Bayesian models with a parametric form for distance were used to calculate odds ratios and 95 %
confidence intervals.

Results: The prevalence of asthma and rhinoconjunctivitis was 24 and 34 %, respectively. For rhinoconjunctivitis,
the odds ratio for average distance between both mines and child’s residence was 1.72 (95 % confidence interval 1.
00, 3.04). The spatial Bayesian models suggested a considerable increase in the risk for respiratory diseases closer to
the mines, and only beyond a minimum distance of more than 1800 m the health impact was considered to be
negligible.

Conclusion: The findings indicate that air pollution emissions related to industrial gold or copper mines mainly
occurring in rural Chilean communities might increase the risk of respiratory diseases in children.
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Background
The mining industry has been one of the most import-
ant contributors to the Chilean economy with a share of
13 % of the gross domestic product [1]. Gold and copper
are extracted in open-pit mining facilities through exca-
vation—a process that uses explosives and heavy ma-
chinery. Most of the air pollutants emerging form open
pit mining are total suspended particulate (TSP) matter
and particles, including aerodynamic diameter smaller

than 10 μm (PM10) [2, 3]. The gold and copper mining
activities generating these particles are mainly drilling,
blasting, sediments loading and unloading, road trans-
port over unpaved roads and losses from exposed over-
burden dumps, residuals handling plants and exposed
pit faces [4]. Dust after the explosion and transportation
of materials and have been identified as the main source
of TSP and PM10 pollution [5–7] in open-pit mining re-
gions. High concentrations of particulate material (TSP
and PM10) have been associated with asthma and aller-
gies among others diseases [8–11]. Asthma is a common
disease that affects children and adults of all ages. Ac-
cording to findings of the International Study of Asthma
and Allergies in Childhood (ISAAC), the prevalence of
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asthma in childhood in Latin America is on average
around 13 % and ranging between 13 and 16 % in Chile
[12, 13].
Using measurements of air pollutants, associations be-

tween elevated levels of ambient air pollution and fre-
quency of asthma attacks (emergency room visits/
hospital admissions) have been shown [14–17]. Using
proximity to the air pollution source as a proxy of ex-
posure, studies suggested associations between living in
areas close to industrial zones and the risk of asthma in
children based on spatial analyses [18, 19]. In these stud-
ies, mainly logistic regression models and generalized
additive models (GAM) [20] have been used. One limita-
tion of the first approach is the use of arbitrarily chosen
cut-off points for quartiles of exposure. For the latter,
the interpretation of the results might be challenging,
particularly when the association between the exposure
and the outcome is non linear.
Countries in South America are experiencing high

prevalence of asthma with rates ranging from 18 to 27 %
[13, 21]. In Chile, higher prevalence of asthma and aller-
gies was found in urban than in rural areas [22]. To the
best of our knowledge associations between point
sources of air pollution and respiratory health in chil-
dren have not been studied in Chile to date. Exposure to
open-pit mining is of particular interest as the exposure
is widespread in Chile and other Latin American coun-
tries. In some communities, residents live less than one
kilometer away from these open-pit mines.
Therefore, we examined associations between average

distance of child’s place of residence to the two open-pit
mines in a rural mining community and the prevalence
of respiratory disease in children. The community is a
mining dependent town located in Region IV in Chile
with less than 10.000 inhabitants located at 1050 m
above the sea level. Using data from a cross-sectional
study, we assessed associations between the distance to
the mines and respiratory diseases applying Bayesian
semiparametric and parametric models including a
spatial effect.

Methods
Study population
Data were used from a cross-sectional questionnaire
based study in school children in a small town in Chile,
which has one open-pit gold and one open-pit copper
mine. Children and their parents or legal guardians pro-
vided written informed consent. The study included
school children from 1st to 6th grade attending the two
major local elementary schools. These two schools were
the only ones in the community offering complete elem-
entary education, and approximately 84 % of children in
grades 1st to 6th were registered in these schools. Paren-
tal questionnaires with instructions were mailed to

children’s homes. Further details about the study design
are reported in Ohlander et al. [23].

Data
The original study included 288 children (out of 418
children invited to participate, response rate: 69 %). Data
on outcome variables and potential confounders were
ascertained using a validated questionnaire in Spanish
[24]. We groped the variables into three categories:

Child health outcomes
Asthma: a child was considered to have asthma, if the
child was reported to ever have had asthma confirmed
by a medical doctor or if the child had taken asthma
medication during the last 12 months prior to the sur-
vey. Asthma medication was considered, because pa-
tients in Chile are often not aware of their asthma
diagnosis (personal communication).
Rhinoconjunctivitis: positive report of one or more of

the following nasal symptoms during the past 12 months
prior to the survey: sneezing, itching, nasal congestion
or rhinitis in conjunction with itchy, red, and watery
eyes.

Characteristics of the participants
Sex (female vs. male), age (6–7 years vs. 8–9 years, 10–
11 years and 12 years or more), parental history of atopic
disease defined as reported history of asthma, rhinitis or
eczema in the child’s biological mother or father (no vs.
yes). Indicators of socioeconomic status in this setting
were whether the mother (no vs. yes) or father (no vs. yes)
of the participant were working, and whether the child
was living with both parents (no vs. yes).

Other sources of air pollution
The following variables were considered as additional
sources of exposure: current cigarette exposure at home
(no vs. yes), type of heating used at home (other vs. coal
and gas), pavement of the nearest street (no vs. yes)
(“no” indicates the nearest street was mainly a dirt road),
the child’s preferred play area (inside vs outside), and
time spent at home (less than 3 h/day vs. 3–6 h/day,
more than 6 h/day).

Exposure assessment
In the absence of ambient measurements of emission or
of personal exposures, we used the proximity to the
open pit mines as proxy of exposure [25, 26]. We used
the residential proximity to the gold and the copper
mines, and the average distance to both. During the
fieldwork, the geographical coordinates of each place of
residence was obtained using global positioning system
(GPS). The locations of the main extraction places were
geocoded using official information given by the
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companies. The Harvesine formula for distance was used
to account for the curvature of the earth [27]. The lower
quartile of distance to each mine separately and of the
average distance was selected a-priori as cut-off point of
the exposure categories.

Statistical analysis
To assess associations between mining exposure and
health outcomes, we conducted a three-step analysis 1)
Logistic regressions were fitted for the two outcomes
using the dichotomized proximity variable; 2) Bayesian
structured additive regressions were used to estimate a
possible non-linear effect on the respiratory diseases re-
lated to the proximity to the mines; results of this part
were used to calibrate the subsequent modeling step; 3)
Bayesian models with a parametric distance function
were used to estimate associations between distance to
the mines and the outcomes, and to identify a minimum
distance to the point sources beyond which the health
impact is considered non statistically significant. To ad-
just for possible regional effects, which are not captured
by distance to the mine or the individual’s characteris-
tics, we included an additional spatial effect. All analyses
where done using the statistical software R [28].

Logistic regression
We estimated associations between distance from the
mines (i.e., gold mine, copper mine and average distance
to both mines) and the respiratory diseases using logistic
regression models adjusting for potential confounders.
Distance was dichotomized at the first quartile, i.e., the
quartile closest to the point sources was categorized as 1
for children living in the closest quartile, 0 otherwise. A
variable was considered a potential confounder if it was
associated with the outcome in the crude models. All
subsequent analyses were adjusted for these variables.
To assess the potential influence of item non-response,
we performed sensitivity analyses employing multiple
imputation (MI) under the assumption of missing at
random. Seven data sets were generated with the MI
procedure and combined to create pooled estimates
using Rubin’s rules [29]. We then compared the pooled
with the complete case estimates. The MI process and
model estimation were done using the R libraries Amelia
[30] and Zelig [31], respectively.

Bayesian structured additive regression
We investigated non-linear associations between air pol-
lution exposure proxies (i.e., the distance variable) and
respiratory diseases using Bayesian generalized struc-
tured additive regression (STAR) [32] from a Bayesian
perspective. The model has the equation: logit(πi) = β0 +
f(dik) + Xβ, where f(dik) is an unknown smooth function
of the distance dik of child i to mine k. X comprises

additional confounders with effects β. We used Bayesian
P-splines f(dik). We assumed independent diffuse priors
for the estimated effects of the potential confounders β,
the intercept β0 and the P-splines [33].
The Markov chain Monte Carlo methods was imple-

mented through the software BayesX [34] using 70,000
iterations including a burn-in phase of 15,000 iterations.
Two chains were generated with different starting
values. Finally, convergence was evaluated with trace
plots and the convergence statistics provided by the soft-
ware BayesX.
We used the results of the Bayesian Structured Addi-

tive Regression to calibrate the prior distributions for
the Bayesian models with parametric distance functions.
This approach is preferable when little or nothing is
known about the shape of the relationship between the
proximity to the point sources of pollution and the dis-
ease [35]. Then, STAR models could be seen as a cali-
bration step for models with a parametric form for the
distance.

Bayesian models with a parametric distance function
We fitted Bayesian models with a parametric distance
function proposed by [25, 36, 37] and used the Bayesian
perspective suggested by [26], and extended these
models for multiple diseases with one point sources and
a spatial effect. These models have the function [38],

logit πi sð Þð Þ ¼ β0
þ f dik αk ; ;ϕk ; ; δkj Þ þ Xβþ S sð Þð ð1Þ

where f(.) is the parametric function of the distance pro-
posed in [39] as

f dik αk ;ϕk ; δkj Þ ¼
1þ αk ; if dik≤ δk

1þ αkexp
dik−δk
ϕk

� �2
( )

; if dik > δk

8><
>:

0
B@

ð2Þ
Here 1 + αk reflecting the excess of odds ratio at the

mine, δk represents the radius of the plateau around the
mine, ϕk represents the rate at which the risk decreases
with each additional kilometer of distance to the edge of
the plateau. An additional spatial effect S(s) corrects for
any regional differences in the risk of the disease, which
could not be explained by the potential confounders or
by the proximity to the mines. Model construction was
performed in a hierarchical procedure:

Model 0: logit(πi) = β0 + Xβ, including only potential
confounders
Model 1: logit(πi(s)) = β0 + Xβ + S(s), including a spatial
variation.
Model 2: logit(πi(s)) = β0 + f(dik| αk, k, δk) + Xβ,
including the parametric proximity function.
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Model 3: logit(πi(s)) = β0 + f(dik|αk, k, δk) + Xβ + S(s),
including an additional spatial effect to explore if there
is a remaining spatial variation which could not be
explained by the proximity or the confounders.

The models were compared using the deviance infor-
mation criterion (DIC) [40] where lower values indicate
an improvement of the fit. These models were estimated
using the software JAGS [41] called from R.

Results
The final sample included 275 children; 3 children with
missing residence location, and 10 children who lived in
isolated zones outside of the municipality (thus were
outliers) were excluded. Children’s mean (± sd) age was
9.05 years (aged 6 to 15 years), and 46 % were girls.
Most children lived with both parents (67 %) and 25 %
of mothers worked. More than half of the children re-
ported to be at home 6 h or more per day (54 %). The
main place for play was outside (Table 1).
The prevalence of asthma was 24 %, and the preva-

lence of rhinoconjunctivitis was 34 %. The mean (± sd)
distance to the gold mine was 2.1 (± 0.26) km (median:
2.1 km; range 1.3–2.8 km) and 1.9 (± 0.37) km (median:
2.0 km; range 0.9–3.1 km) for the copper mine. For the
average distance to both mines the mean was 2.1 km (±
0.26) km (median: 2.0; range 1.3–2.7). The prevalence of
the diseases among the 25 % of children living closest to
the mines, was between 30 and 45 %, and was slightly
higher than for the remaining sample (Table 1). A geo-
graphical map of children’s place of residence is pre-
sented in the Additional file 1: Figure SA.1.
The adjusted odds ratios for the respiratory outcomes

were higher with closer proximity to the mines. Stron-
gest associations were estimated for the combined out-
come for children living on average closer than 1.8 km
to both mines. Asthma was associated with parental his-
tory of atopic diseases, living with both parents, and hav-
ing a working mother (Additional file 1: Figure SB.1).
Including these covariates in a multiple regression, did
not change the estimated effects of proximity to the
mines and respiratory diseases appreciably. Including
imputed data did also not change our findings appre-
ciably (Table 2), therefore we used complete case data
for the further analyses. The associations estimated
using the multiple imputation dataset are presented in
Additional file 1: Figure SC.1.
The adjusted STAR models confirmed the results of

the logistic regressions for all outcomes (Figs. 1 and 2)
with those living closer to the mines having higher risks
for respiratory diseases. A slight “U” shape in the estima-
tions of the associations was seen for the copper mine,
and for average distance in both outcomes (Figs. 1 and
2). For the association between distances to the copper

mine and asthma no decrease towards zero was esti-
mated. The findings for the two outcomes were consist-
ent, i.e., with closer distance to the gold mine the risk of
all respiratory diseases increased about exp(1) with con-
fidence interval reaching from exp(0) to exp(2). Within a
distance of 2 km to the gold mine we estimated a posi-
tive effect suggesting an increased risk for the respira-
tory outcomes. Around the copper mine, the risk was
increased by exp(0.5) with BCIs between exp(1) and
exp(2). The odds ratios were positive up to a distance of
around 1.7 km. Combining the proximity to both mines
by using the average distance resulted in similar esti-
mates as the analyses of the distance to the gold mine
only. The unadjusted models did not differ appreciably
from the adjusted models (Additional file 1: Figures
SD.1 to SD.2).
Using the STAR models (Figs. 1 to 2), we found a

maximum OR of exp(1) at the minimum distance to the
mines, with the lower and upper limits of the confidence
intervals around exp(1) and exp(2), respectively. The
construction of the prior distributions is presented in
the Additional file 1: (Section F.1).
The parametric Bayesian models 0 to 3 indicated that

model 3, including the proximity-risk function together
with the spatial terms resulted in a better fit for all out-
comes and exposures (Additional file 1: Table SD.1); the
DIC was lower than for other models.
Table 3 shows the parameter estimates and the 95 %

Bayesian confidence intervals for each mine. Generally,

the point estimates of α̂k lay within 1.6–2.4, for ϕ̂k had

values of 1.05–1.13 and δ̂k between 0.72 and 0.95. Fig-

ure 3 shows the posterior f̂ k estimates for distance func-
tions. These graphs present similar values at the source
of around 2, and it maintains the risk constant until
around 1 km of distance from the mines; at further dis-
tance, the risk declines to 1 at around 2.5 km of distance

to the mine. The 95 % confidence intervals for f̂ k are
above 1 up to a distance of 1.8 km. Plots of the random
terms Ŝk(s) using T = 40 spatial nodes are presented in
the Additional file 1: Figures SE.1 to SE.2.

Discussion
The findings of our community based study in Chile
suggest that proximity of children’s residence to open-
pit mines, one of the main income sources in many low
and middle income countries, is associated with allergic
rhinoconjunctivitis and asthma with markedly increased
risks in children living closest to the mines. We used dif-
ferent measures of proximity as proxy for ambient air
pollution exposure which resulted in comparable results.
The results of our study corroborate previous study

from Latin America suggesting increased risks for
asthma within a distance of two kilometers to different
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Table 1 Sociodemographic characteristics of the study participants for the total population and by different outcomes

Totala Asthma Rhinoc.

N = 275 (n = 66; NAb) (n = 66; NAb)

Potential confounders % n % n %

Sex

Female 46 28 22 44 35

Male 54 38 26 49 33

Age

6–7 years 27 14 19 25 34

8–9 years 31 24 28 25 29

10–11 year 30 17 21 31 38

≥ 12 years 12 11 33 12 36

Living with both parents (NA = 9)

No 29 28 35 29 36

Yes 67 38 21 62 34

Parental atopic disease (NA = 30)

No 58 27 17 43 27

Yes 31 32 38 43 51

Mother working (NA = 14)

No 69 54 27 63 33

Yes 25 11 16 26 38

Father working (NA = 22)

No 8 7 32 6 27

Yes 84 51 22 81 35

Hours child stay at home (NA = 61)

< 3 h 7 5 25 5 25

3-6 h 17 11 24 18 39

> 6 h 54 44 30 58 39

Place child most of the time (NA = 9)

Inside 38 22 21 33 31

Outside 59 43 27 58 36

Smoking in child’s presence (NA = 28)

No 65 44 24 63 35

Yes 24 19 28 24 36

Paved street near to house (NA = 10)

No 21 18 32 19 33

Yes 76 48 23 74 36

Type of heater (NA = 69)

Other 29 21 26 29 36

Coal and gas 46 34 27 41 33

Gold mine distance

1st quartile 25 22 32 28 41

2nd quartile 25 12 17 20 29

3rd quartile 26 20 28 22 31

4th quartile 24 12 18 23 35
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air pollution sources including power plants, quarries or
petroleum refineries [18]. Using categorical distance
measures, investigators also found an increased preva-
lence of respiratory diseases and allergies in children
who lived near wood industries in Alaska [19]. Indeed, the
use of cut-off points is arbitrary, making the use of STAR
models an alternative allowing a broader perspective on
the exposure-outcome association in this kind of analysis.
We also estimated the spatial effect to capture the re-

sidual variation not accounted for by the population at
risk, and to estimate risks across the study area. Models
including an effect of distance from the mine on the re-
spiratory diseases resulted in a better fit; however, the
improvements were small.
Variables included as potential confounders for asthma

were parental history of atopic disease, child’s mother
working and living with both parents. For rhinitis only
parental history of atopic disease played a role and was
included in the adjusted models. Exposure to indoor
sources of pollutants such as type of heating and smok-
ing in presence of the child was not relevant for the the
respiratory diseases in our data. Parental occupation was
not included, because the work environment did not

involve exposure to contaminants that could be associ-
ated with asthma attacks or any other respiratory disease
in the children. We considered residential area rather
than school location, as children reported to spend most
leisure time at home. We assumed children spent only
the remaining time at school. Since our study population
only consisted of children from two different schools,
the variation of school-based exposure will be small.
Our study has several limitations. Asthma and rhino-

conjunctivitis diagnosis was reported by parents or children
themselves even though the questionnaire was intended to
be answered by the children’s parents; this could have led
to an inaccurate report of the prevalence of the diseases,
because most parents or children may not have been
aware of the diagnosis. However, the inclusion of asthma
medication data should have improved the accuracy of the
outcome assessment. Likewise, the symptoms of rhinocon-
junctivitis were self-reported. However, both questions
were previously validated within the ISAAC study [24].
There were no emission measurements available of the

mining related exposures. Unfortunately, we do not have
any information on the particle concentration or com-
position in the mining community. In general, the

Table 1 Sociodemographic characteristics of the study participants for the total population and by different outcomes (Continued)

Copper mine distance

1st quartile 25 21 30 31 45

2nd quartile 25 14 20 21 30

3rd quartile 25 14 20 20 29

4th quartile 25 17 25 21 31

Average distance to both mines

1st quartile 25 24 34 31 44

2nd quartile 25 11 16 21 31

3rd quartile 25 15 22 19 28

4th quartile 25 16 24 22 32

Abbreviations: Rhinoc. rhinoconjunctivitis, NA Missing values
a Percentages include the missing values
b Indicates number of participants without any information regarding to the respective disease under study

Table 2 Association between distance to the mines and respiratory diseases. Sensitivity analysis for missing data. Complete cases,
multiple imputation and adjustment for potential confounders

Respiratory disease Gold mine Copper mine Average distance

ORc 95 % CI ORc 95 % CI ORc 95 % CI

Asthma Complete cases 1.67 (0.90–3.12) 1.47 (0.79–2.74) 1.62 (0.87–3.00)

Multiple imputation 1.63 (0.91–2.93) 1.46 (0.78–2.73) 1.75 (0.96–2.99)

Adjusted multiple imputationa 1.71 (0.89–3.28) 1.33 (0.69–2.55) 1.62 (0.82–3.18)

Rhinoc. Complete cases 1.54 (0.87–2.75) 1.79 (1.02–3.16) 1.72 (1.00–3.00)

Multiple imputation 1.54 (0.87–2.74) 1.84 (1.03–3.26) 1.72 (0.98–3.00)

Adjusted multiple imputationb 1.56 (0.87–2.79) 1.78 (0.98–3.26) 1.87 (1.05–3.35)

Abbreviations: CI confidence interval, OR odds ratio, Rhinoc. rhinoconjunctivitis
a Adjusted for parental atopic diseases, if the child lived with both parents and if the child’s mother worked using logistic regression models
b Adjusted for parental atopic diseases using the logistic regression models
c Reference categories is to live to a distance above of the cut-off points (first quartile) using the logistic regression models
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particles include minerals, chemicals, heavy metals,
aluminum, mercury, and arsenic; several of these com-
ponents are known to be associated with impaired re-
spiratory health [42]. Moreover, it is also known that
particulate material may act as allergenic compound
and thus might not only contribute to non allergic
asthma and rhinitis, but also to allergic and atopic
asthma [43]. Additionally, we did not incorporate in-
formation on wind direction or other geographical in-
formation (i.e. the angle of the mines to each
residence) [44]. Since these data were not available in
our study region, we used spatial models to estimate
risks. However, misclassification of exposure is likely
non-differential which may bias our findings likely to-
wards the null. However, this approach can be used
for risk estimation in other communities in Latin
America with similar mining procedures where meas-
urement data are often not available.
We found wide Bayesian confidence intervals which

may be explained by the “flat” likelihood of these kinds
of models, and the high standard errors in the estimates

that usually result in posterior estimates close to the
mean of the prior distribution [38, 45], especially for the
αk. Therefore, we used different types of prior distribu-
tion to evaluate this choice of the α parameter (see
Section F.2 and Additional file 1: Figures SF.1 to SF.3) as
a sensitivity analysis. Our findings of two previous stud-
ies [45, 46] that suggested prior distributions for para-
metric form in the distance function should be carefully
chosen.
This study has several strengths. We assessed the

models specifications by permitting distance-risk rela-
tionships to be nonlinear and free of a pre-specified
shape. We compared traditional statistical methods with
most recent approaches proposed in the literature as
easy to interpret. Semiparametric methods suffer from a
number of limitations for incorporating information
about a realistic shape of the proximity-risk [26, 35].
Therefore, we combined Bayesian semiparametric
models to specify the prior distributions for parametric
form, since no or little epidemiological data on the asso-
ciation was available.
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Fig. 1 Association between proximity to the mines and asthma adjusted for parental congenital atopic diseases, if the child lived with both
parents and if the child’s mother worked. Dotted vertical line indicates the first quartile of the distance. Plots are based on participants’ data living
within minimum and maximum of the distances from the mines. The shaded area is the 95 % Bayesian confidence intervals
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We implemented complex models in standard statis-
tical software. These implementations could be extended
to consider a model for multiple diseases and multiple
sources, avoiding the specification of a single model for
each disease, potentially taking into account scenarios in
which the outcomes are correlated.

Conclusions
Our findings suggest that proximity to mines using
open-pit procedures increases the risk for asthma and
rhinoconjunctivitis in children. In communities with
high concentrations of environmental pollution from

mining facilities, the adverse effect on children’s
health highlights the importance of stricter emissions
regulating policies. Most important in terms of public
health would be emission control and reduction at
the emission source. In addition, education campaigns
regarding the identification and control of respiratory
disease in order to improve the diagnosis and treat-
ment of respiratory diseases in children are suggested.
Finally, the proposed threshold distance might be
used as an initial indicator to define zones which
should be restricted for residential use. Such a policy
might implicate the relocation of parts of the

Table 3 Posterior estimates and 95 % Bayesian confidence intervals for parameters of the proximity-odds function, α, ϕ and δ in the
model 3 for the three respiratory diseases

Respiratory disease Mine α̂ 95%BCI Φ̂ 95 % BCI δ̂ 95 % BCI

Asthma Gold 2.48 (0.51–6.80) 1.08 (0.80–1.46) 0.80 (0.31–1.88)

Copper 1.92 (0.29–5.81) 1.13 (0.82–1.53) 0.95 (0.31–2.13)

Average distance 2.26 (0.42–6.62) 1.10 (0.80–1.50) 0.86 (0.31–1.95)

Rhinoc. Gold 1.85 (0.46–4.87) 1.08 (0.78–1.48) 0.78 (0.28–1.97)

Copper 1.61 (0.52–3.27) 1.07 (0.81–1.47) 0.78 (0.29–1.67)

Average distance 1.65 (0.61–4.28) 1.07 (0.80–1.46) 0.77 (0.30–1.59)

Abbreviations: BCI Bayesian confidence interval, Rhinoc. rhinoconjunctivitis

Fig. 3 Association between proximity to mines and each respiratory disease using the Model 3. Gold mine, Copper mine and Average distance.
The shaded area is 95 % Bayesian confidence interval
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population. Adequate prediction models would allow
estimations of possible health impacts of such a pol-
icy in terms children’s health in the affected areas.
Impacts of such a policy should also be examined
from different societal perspectives.

Additional file

Additional file 1: Proximity to mining industries and respiratory diseases
in children of a Northern Chilean Community: A Cross-sectional study
Supplemental Material. (PDF 3236 kb)
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BCI, Bayesian confidence interval; CI, confidence interval; GAM, Generalized
additive models; GPS, Global positioning system; ISAAC, International study
of asthma and allergies in childhood; Rhinoc., Rhinoconjunctivitis
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