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Abstract

Background: Heavy metals including lead and cadmium can disrupt the immune system and the human
microbiota. and are increasingly of concern with respect to the propogation of antibiotic-resistence. Infection by
methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of global morbidity and mortality. Heavy metal
exposure may be associated with increased MRSA colonization and infection, and a decrease in methicillin-
susceptible Staphylococcus aureus (MSSA) through co-selection mechanisms and natural selection of antibiotic
resistance in the presence of heavy metals. This study examines the association between blood lead (Pb) and
cadmium (Cd) level, and MRSA and MSSA nasal colonization.

Methods: All data used for this analysis came from the 2001–2004 National Health and Nutrition Examination
Survey (NHANES). The analytical sample consisted of 18,626 participants aged 1 year and older. Multivariate logistic
regression, including adjustment for demographic and dietary factors, was used to analyze the association between
blood Pb and Cd, and nasal colonization by MRSA and MSSA.

Results: Prevalence of MRSA and MSSA carriage were 1.2%, and 29.3% respectively. MRSA was highest in women,
individuals age 70 and older, who self-identified as black, had only a high school diploma, lived below 200% of the
Federal Poverty Level, and had a history of smoking. While not significantly different from those colonized with
MSSA, geometric mean blood Pb (1.74 μg/dL) and blood Cd (0.31 μg/L) were highest in those colonized with
MRSA. Associations with MRSA colonization appeared to increase in a dose-dependent manner with increasing
quartile of blood Pb level. Blood Cd level in the fourth quartile was also significantly associated with lower odds of
MRSA colonization. Both metals were associated with lower odds of MSSA colonization.

Conclusions: Both MRSA and MSSA results suggest that general population levels of blood Pb but not Cd are
associated with differences in nasal carriage of S. aureus. While further research is needed, reduction in heavy metal
exposures such as lead, concurrently with maintaining a healthy microbiota may be two modifiable options to
consider in the fight against antibiotic-resistance.
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Background
Exposure to heavy metals, such as lead (Pb) and cad-
mium (Cd), has been shown to reduce immune function,
and has previously been associated with increased preva-
lence of infection [1–5]. While studies on the immuno-
toxicology of Cd have shown mixed results across
varying conditions of exposure and immunological out-
comes, cell-mediated immunity has consistently been
depressed upon exposure to Cd [4]. Similarly, even low
levels of Pb exposure have been shown to affect almost
every aspect of immune function [6]. Some of the most
prominent effects of Pb on the immune system are a
shift toward Type 2 T helper Cell (Th2) response and in-
creased Interleukin-4 secretion, reducing the Type 1 T
helper Cell (Th1) response, and increasing autoimmune
antibodies [6]. Beyond the typically reported adverse ef-
fects of lead exposure, such as neurological, renal, and
developmental effects, and of cadmium, respiratory, car-
diovascular, and renal effects, these changes in immune
function caused by heavy metal exposure reduce the
body’s ability to fight infection [7, 8].
Heavy metals are not only harmful to humans; they

can often have toxic effects on bacteria, much like anti-
biotics. Moreover, metals are increasingly being incorpo-
rated into products for their antimicrobial properties.
Considering the vast number of microbes that live on
and within humans (the human microbiota), human ex-
posure to heavy metals has the potential to influence our
health not only by their toxicological effects on human
cells and systems, but by altering our microbiota as well.
Imbalance, or dysbiosis, of the microbiota have been
linked to many adverse chronic health outcomes includ-
ing infection [9–12]. Our microbiota play a large role in
the development of the immune system, and continue to
interact with the immune system to maintain homeosta-
sis throughout our lives [13–15]. Beneficial bacteria
within the microbiota produce cytokines, short and long
chain fatty acids, and other signaling molecules that
affect mucus production, epithelial barriers, and increase
Th1 response [16, 17]. Heavy metal exposure could
thereby reduce immune function indirectly through the
microbiota, as well as through direct effects to the im-
mune system, both increasing risk of infection. Not only
is the risk for increased infection a concern, increasing
antibiotic resistance of bacteria compound the potential
health impact of these exposures.
Although heavy metals can be toxic to microbes, metal

resistance, similar to antibiotic resistance, has been well
documented across many different bacteria for many
different metals [18–21]. Often, metal resistance and
antibiotic resistance are present in the same bacteria
[22–24]. There are multiple potential mechanisms for
the co-selection of metal and antibiotic resistance genes
within bacteria. Microbes can have two separate genes

that code for metal and antibiotic resistance, which can
either be physically linked within a genetic unit, like a
plasmid, or can be transcriptionally linked, with one
stimulus initiating transcription of both genes [22].
Alternatively, bacteria may have one gene that pro-
duces a protein set conferring resistance to both
metals and antibiotics via the same mechanism [22].
In any of these cases, exposure to metal would not
only cause bacteria to select for metal resistance, but
antibiotic resistance as well.
Heavy metals such as Pb and Cd have been shown to

co-select for metal and antibiotics in many different en-
vironmental settings, including groundwater, drinking
water and wastewater [23–25]. Co-selection occurs
through multiple mechanisms including co-resistence.
Bacterial resistance to heavy metals and antibiotics are
often associated as the genes that encode resistance can
be physically or transcriptionally linked, or one gene can
confer resistance to both antibiotics and metals by the
same mechanism. Beyond studies of co-election in envir-
onmental media, studies on Staphylococcus isolates from
animals and humans have shown associations between
Pb and Cd resistance and antibiotic resistance [26, 27].
For example, fecal bacterial isolates from leghorn chick-
ens that were fed Pb at levels that did not cause other
morbidity or mortality, showed significantly elevated
levels of antibiotic resistance compared to controls, and
demonstrated a dose response relationship within differ-
ent levels of Pb in the diet [28]. However, to our know-
ledge, few if any studies have examined the relationship
between Pb or Cd exposure and selection for antibiotic
resistance in humans.
Methicillin-resistant Staphylococcus aureus (MRSA) is

a serious cause of bacteremia, resulting in 100,000 ser-
ious infections and 20,000 deaths in the US annually
[29]. Although MRSA is commonly thought of as a
health-care-acquired infection, it can be transmitted
through the community as well, particularly in settings
with a large amount of person to person contact [29,
30]. Those asymptomatically colonized by MRSA are at
increased risk of infection compared to those who carry
methicillin-susceptible Staphylococcus aureus (MSSA),
and those who carry neither [31–33]. Antibiotic resistance
and virulence factors can be easily transferred between
bacteria, thus colonization by either MRSA or MSSA in-
creases risk of infection. Prevention of MRSA colonization
and infection is critical as effective treatment options are
becoming increasingly sparse [34].
Reduction in heavy metal exposure concurrent with

maintaining a healthy microbiota may be two modifiable
options to consider in the fight against antibiotic-
resistance. The mechanism by which heavy metal expo-
sures such as ingestion of Pb and Cd could lead to anti-
biotic resistant infections and MRSA colonization is
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multifaceted. Presence of toxic metals in the digestive
and circulatory system can alter the microbiome by re-
ducing the abundance of metal susceptible bacteria, that
are also likely antibiotic susceptible [35]. A healthy
microbiome can help prevent antibiotic resistant infec-
tions by improving immune function and via competitive
inhibition, in which commensal (non-disease causing,
symbiotic) bacteria outcompete pathogens for finite re-
sources like nutrients and mucosal binding sites. Redu-
cing the number of commensal metal and antibiotic
susceptible bacteria within the microbiome both reduces
the capacity for competitive inhibition, and increases the
prevalence of metal and antibiotic resistance within the
remaining bacteria. Ultimately, Pb and Cd’s capacity to
reduce competitive inhibition, select for metal and anti-
biotic resistance, either in vivo or in the environment,
and inhibit immune function, make it highly plausible
that Pb and Cd exposure in humans would be associated
with colonization and subsequent infection by MRSA
and other antibiotic resistant organisms.
Due to the paucity of human data available to study

these potential mechanisms, this study aimed to examine
human blood Pb and Cd levels and their associations with
concurrent MRSA and MSSA nasal colonization among a
general population based sample of United States resi-
dents. We hypothesized that circulating levels of Pb and
Cd in blood would both be associated with an increase in
MRSA colonization by co-selecting for metal and anti-
biotic resistance and a decrease in MSSA colonization by
reducing the abundance of metal and antibiotic suscep-
tible bacteria.

Methods
Data source
Data were abstracted from the 2001–2004 National
Health and Nutrition Examination Survey (NHANES).
NHANES is a population based survey including a wide
range of determinants of health and health outcomes, in-
corporating a nationally representative sample of the U.S.
population using a complex sampling framework and sur-
vey design [36, 37]. Data collection includes a household
interview followed by a physical examination in which
blood samples and nasal swabs were collected, along with
additional bio-specimens and physical measurements (e.g.
height, weight, blood pressure). Screening for MRSA and
MSSA colonization occurred only during the 2001–2004
waves of the survey. Questionnaires used for data collec-
tion, and the publicly available data sets can be found on
the NHANES website (https://www.cdc.gov/nchs/nhanes/
nhanes_questionnaires.htm). The analytical sample for
this study was 18,626 aged 1 year and older. This study
was deemed exempt from review by the University of
Wisconsin Institutional Review Board as it uses a publicly
available, de-identified data set.

Exposure measurement
Exposure to Pb and Cd were measured in whole blood
samples collected during the physical examination por-
tion of the survey. Blood lead levels of both elements
were simultaneously analyzed in the laboratory using
atomic absorption spectrophotometry [38] for years
2001–2002 and with inductively coupled plasma mass
spectrometry in years 2003–2004 [39]. The lower limit
of detection (LOD) was 0.30 μg/dL for Pb in 2001–2004,
0.30 μg/dL for Cd in 2001–2002, and 0.20 μg/dL for Cd
in 2003–2004. Any results that were below the LOD
were replaced by LOD/√2. Population distribution in
whole blood concentrations of Pb and Cd were analyzed
using geometric means, and quartiles.

Outcome measurement
Colonization by S. aureus was tested using nasal swabs
from eligible participants aged 1 year and older during
the physical examination portion of the survey. Swabs
were analyzed for the presence of S. aureus using stand-
ard culture based procedures [38, 39]. Identified S.
aureus isolates were then tested for resistance to methi-
cillin by disk diffusion. Participants that tested positive
for S. aureus and negative for MRSA were considered
positive for MSSA. Participants that tested negative for
S. aureus were considered negative for both MRSA and
MSSA. No data was collected on clinical infection
status.

Confounder measurement
Confounders included in the multivariate analysis for
both Pb and Cd models were socio-demographics in-
cluding gender, age, income, race and education, all of
which were self-reported. Gender was modeled as a di-
chotomous variable, while age and income were both
continuous. Age was categorized in 20-year increments,
and income was categorized as above or below 200% of
the Federal Poverty Level (FPL) for comparison in the
descriptive statistics table. Race was included in the ana-
lysis of Pb because it has previously been associated with
the outcome and exposure [40, 41]. Race was catego-
rized as follows: non-Hispanic white, Mexican, other
Hispanic, non-Hispanic black, and other. These categor-
ies are predefined in the data set and have been used in
previous investigations of S. aureus and of blood Pb
[42–44]. Education was categorized into three groups:
those with less than a high school diploma, those with
only a high school diploma, and those with a high school
diploma and at least some college. Smoking status was
included in the analysis of both Pb and Cd, as it is a
source of exposure to both metals and may be associated
with MRSA [45–47]. Smoking status was self-reported
and categorized into current, former, and never smokers.
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Smoking data was not collected for children under the
age of 12. They are assumed to be never smokers.
Diet data were also included in final adjusted models,

and different micronutrients were considered separately
for Pb and Cd models. A 24-h dietary recall was col-
lected at least once for all eligible participants in 2001–
2004, and at least twice for a subsample of participants
in 2003–2004. The data used in this analysis was from
the first dietary recall only. Total grams of Iron,
Calcium, and Vitamin C were included in the analysis of
Pb as they have previously been shown to affect Pb
absorption, [48, 49] and are likely associated with con-
sumption of a dietary factors that could affect S. aureus
colonization and infection, including diets with in-
creased fiber. Dietary factors associated with Cd expos-
ure and potentially S. aureus carriage are consumption
of green leafy vegetables [50]. Data on individual food
consumption is categorized by United States Depart-
ment of Agriculture (USDA) food codes [51]. These
codes were used to identify all fruits and vegetables
eaten and calculate total grams of fruit and vegetable
consumption. All dietary variables were modeled as
continuous.

Statistical analysis
Statistical analysis was performed using SAS v.9.4 (Carry,
NC). SAS survey procedures were used with 4 year
laboratory weights calculated as recommended in
NHANES analytic guidelines to account for probability
sampling design and clustering [36]. Descriptive statistics
including unadjusted frequencies of socio-demographic
factors, means of dietary intake, and geometric means of
blood Pb and Cd level were calculated. Multivariate lo-
gistic regression was used to evaluate the associations
between blood Pb and Cd level and MRSA and MSSA
colonization. Models were built using a priori knowledge
of associations to avoid use of covariates that are spuri-
ously correlated, and that were identified as confounders
using a direct acyclic graph (DAG). To achieve more
parsimonious models, backwards selection was used to
remove variables that were not significant at the p ≤ 0.02
level. A series of three logistic regression models were
run to examine the association between increasing quar-
tiles of whole blood Pb or Cd as the exposure, and either
MRSA and MSSA as the outcome. Model 1 was
unadjusted for both Pb and Cd. Model 2 adjusted for
significant socio-demographics (age, gender, race, and
income for Pb, and age, gender, and income for Cd), and
Model 3 added smoking and dietary factors (Iron,
Calcium, and Vitamin C to the Pb model, and fruit and
vegetable consumption to the Cd model) to Model 2.
Results are considered statistically significant with a p-
value ≤0.05, or a confidence interval that does not cross
1.00 for odds ratio estimates.

Results
Population levels of exposure based on quartiles (Q) of
blood Pb level were: Q1 = 0.0–0.90 μg/dL, Q2 = 0.91–
1.40 μg/dL, Q3 = 1.41–2.30 μg/dL, Q4 = 2.31–68.9 μg/dL.
Similarly, quartiles of blood Cd level were: Q1 = 0.0–
0.20 μg/L, Q2 = 0.21–0.30 μg/L, Q3 = 0.31–0.50 μg/L, Q4
= 0.51–7.4 μg/L. Descriptive statistics in Table 1 show that
the prevalence of MRSA was 1.2%, and MSSA was 29.3%.
MRSA carriage is highest in those age 70 and above, fe-
males, Non-Hispanic Blacks and Non-Hispanic Whites,
those below 200% FPL, and those who have ever smoked
cigarettes. Prevalence of MRSA was very similar across
levels of education, but slightly higher in those with a high
school diploma only. Carriage of MSSA was highest in
those age 29 and younger, males, Non-Mexican Hispanics,
those with less than a high school diploma, those above
200% FPL, and those who have never smoked cigarettes.
Geometric mean blood Pb and Cd are both highest in
those with MRSA, and lowest in those with MSSA. Mean
Iron, Vitamin C, and fruit and vegetable consumption are
highest in those with MRSA, and mean Calcium con-
sumption is highest in those with MSSA.
Logistic regression results for MRSA (Table 2) show

that the fourth quartile of blood Pb level is associated
with significantly increased odds of MRSA carriage in
the unadjusted model. Although the effect size is similar
in the fully adjusted model, the confidence interval
crosses 1.00. Notably, there is a consistent dose response
relationship with increased odds of MRSA colonization
with increased quartile of blood Pb, across all models of
Pb (p for trend = 0.0258). The unadjusted Cd model sug-
gests increased odds of MRSA colonization with increased
blood Cd level, however, after adjustment for diet, smok-
ing and socio-demographics, the association between Cd
and MRSA appears to be protective, with those in the sec-
ond quartile having significantly reduced odds of MRSA
carriage. Analysis examining MSSA as the outcome
(Table 3) demonstrate marginally decreased odds of
MSSA colonization for those in the highest blood Pb
group (p for trend = 0.0044). Similarly, blood Cd in the
fourth quartile is significantly associated with decreased
odds of MSSA carriage, and shows a dose response effect
across all models (p for trend = <.0001).

Discussion
In this analysis of exposure to Pb and Cd measured as cir-
culating levels of each in whole blood from a large scale,
nationally representative sample of US residents, blood
level of either metal was associated with differences in
nasal carriage of S. aureus. As hypothesized, blood Pb
level was also associated with increased odds of MRSA
colonization, and decreased odds of MSSA colonization in
minimally adjusted models controlling for age, gender,
race and income. At the same time, increasing blood Cd

Eggers et al. Environmental Health  (2018) 17:2 Page 4 of 10



level was associated with decreasing odds of both MRSA
and MSSA colonization. Results of this first investigation
support the idea that individuals with highest general
population levels of heavy metals in blood, may be more
susceptible to antibiotic resistence, and that associations

likely vary by microbiotic diversity, type of metal and their
toxicological properties including metabolism, and that
the complex relationship between antimicrobial resistance
and heavy metal exposure in humans warrants further
exploration.

Table 1 Prevalence of demographic factors by Staphylococcus aureus colonization status

None MSSA MRSA

Demographics n (%) n (%) n (%)

Total 13,220 (69.5) 5198 (29.3) 208 (1.2)

Age ***

1–17 5419 (63.8) 2521 (35.3) 72 (0.9)

18–29 2063 (69.4) 819 (29.7) 19 (0.9)

30–49 2336 (70.8) 855 (28.4) 29 (0.8)

50–69 1919 (71.8) 631 (26.2) 43 (1.9)

70 + 1483 (76.9) 372 (21.0) 45 (2.1)

Sex ***

Male 6211 (66.2) 2794 (32.9) 93 (1.0)

Female 7009 (72.7) 2404 (25.9) 115 (1.4)

Race ***

White 5293 (68.4) 2254 (30.3) 102 (1.3)

Mexican 3334 (71.2) 1287 (28.1) 33 (0.7)

Other Hispanic 471 (64.1) 265 (35.7) 2 (0.2)

Black 3559 (75.3) 1196 (23.3) 64 (1.4)

Other 563 (73.3) 196 (25.8) 7 (0.9)

Education **

< High School Diploma 6063 (66.0) 2753 (32.8) 93 (1.2)

High School Diploma 1971 (72.2) 695 (26.5) 30 (1.3)

> High School Diploma 3317 (70.0) 1239 (28.9) 54 (1.1)

Income *

< 200% FPL 6475 (69.9) 2491 (28.6) 121 (1.5)

≥ 200% FPL 5829 (69.6) 2344 (29.5) 72 (0.9)

Smoking ***

Current Smoker 2105 (75.1) 664 (23.8) 31 (1.1)

Former Smoker 2217 (70.4) 771 (27.5) 57 (2.1)

Never Smoker 8877 (67.4) 3781 (31.7) 120 (0.9)

Metals GM (95% CI) GM (95% CI) GM (95% CI)

Blood Lead ug/dL 1.50 (1.48, 1.52) 1.43 (1.40, 1.45) 1.74 (1.58, 1.93)

Blood Cadmium ug/L 0.30 (0.30, 0.31) 0.27 (0.26, 0.28) 0.31 (0.28, 0.35)

Diet Mean (95% CI) Mean (95% CI) Mean (95% CI)

Iron g 14.89 (14.73, 15.05) 15.52 (15.25, 15.79) 16.13 (14.71, 17.55)

Calcium g 875.25 (864.87, 885.64) 922.35 (905.00, 939.70) 876.08 (792.21, 959.95)

Vitamin C g 97.95 (96.4, 99.86) 94.22 (91.44, 97.00) 112.78 (94.16, 131.40)

Fruits and Vegetables g 372.23 (363.41, 381.04) 340.60 (327.31, 353.89) 410.52 (338.23, 482.81)

*P ≤ 0.05;**P ≤ 0.005; ***P ≤ 0.0005. Data from NHANES 2001–2004, n = 18,626. Percentages are adjusted using survey weights to be representative of the United
States population. Abbreviations: NHANES – National Health and Nutrition Examination Survey; MSSA – Methicillin-susceptible Staphylococcus aureus; MRSA –
Methicillin-resistant Staphylococcus aureus; FPL – Federal Poverty Level; GM – Geometric mean; CI – Confidence interval
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While, to our knowledge, few if any other studies of
MRSA and heavy metal exposures in humans has been
conducted to date, our findings of a dose response effect
between Pb and MRSA with highest quartiles of ex-
posure showing the greatest associations are consistent
with work done in vitro and animal models [26, 28, 52].
Nisanian et al. was able to prospectively show antibiotic
resistance as a result of Pb ingestion in chickens [28].

However, the association between Pb and MRSA in our
study has multiple potential natural histories (Fig. 1) and
further prospective work is needed to establish causality
among human populations. A possible situation is that
individuals were exposed to Pb prior to exposure to S.
aureus, in which case the Pb exposure would reduce
healthy gut microbiota, and fail to protect against the
Pb- and antibiotic-resistant strains, leading to MRSA
colonization, assuming the MRSA was also Pb resistant
(Fig. 1a). At the same time, in this situation, assuming
the antibiotic susceptible S. aureus bacteria (MSSA) is
susceptible to Pb, the prior Pb exposure would likely
protect against MSSA colonization. Alternatively, partic-
ipants may be colonized by S. aureus before Pb exposure
occurs, in which case that exposure selects for increased
anti-microbial resistance and subsequent MRSA colonization
in vivo (Fig. 1b). Otherwise, S. aureus could be exposed to
Pb in the environment, co-selecting for resistance there, and
the participant would then be exposed to both Pb and
MRSA from the same source (Fig. 1c). It is not possible
based on our findings to determine which one of these po-
tential natural histories is most likely, however, this study is a
first step to confirm that environmental exposures to heavy
metals such as Pb may alter bacterial colonization and thus
also have a larger influence on human microbial composition
over time.
While the protective effect of Cd against MRSA did

not support our hypothesis, it is not completely incon-
sistent with previous findings. While some studies have
found that exposure to Cd led to antibiotic resistance in
various bacteria, [25, 27] a study by Calomiris, et al., did
not find an association between Cd and multiple anti-
biotic resistance in Staphylococcus isolated from drink-
ing water [24]. Furthermore, while Cd and antibiotic
resistance are often plasma linked, complex relationships
between the host cells and plasmids can exist regarding
resistance to metals [53]. It is likely that the strains of
MRSA found in this population are not resistant to the
toxic effects of Cd, explaining the protective effect found
against both MRSA and MSSA. In addition, Cd exposure
is linked with covariates contributing to increased
host-resistance factors such as higher consumption of
green-leafy vegetables, which may counter-act and
confound associations between Cd exposure and im-
mune function.
Infectious diseases, including MRSA, affect a dispropor-

tionately high number of people who are economically
and socially disadvantaged at the individual, household,
and neighborhood level [30, 54–58]. The association be-
tween Pb and MRSA colonization may be an important
key to understanding the relationship between socioeco-
nomic status (SES) and increased risk of infection. Be-
cause Pb exposure is often associated with low income, it
is possible that PB exposure explains part of the biological

Table 2 Results of logistic regression with MRSA colonization as
the outcome

Q1 Q2 Q3 Q4

OR OR (95% CI) OR (95% CI) OR (95% CI)

Pb*

Model 1a 1.00 1.44 (0.82, 2.55) 1.59 (0.91, 2.78) 1.82 (1.01, 3.29)

Model 2b 1.00 1.27 (0.71, 2.26) 1.36 (0.65, 2.88) 1.52 (0.66, 3.51)

Model 3c 1.00 1.52 (0.83, 2.76) 1.56 (0.75, 3.24) 1.82 (0.81, 4.10)

Cd

Model 1a 1.00 0.63 (0.38, 1.03) 1.21 (0.71, 2.07) 1.26 (0.85, 1.86)

Model 2d 1.00 0.50 (0.29, 0.86) 0.74 (0.45, 1.23) 0.82 (0.50, 1.35)

Model 3e 1.00 0.41 (0.20, 0.83) 0.60 (0.34, 1.08) 0.60 (0.36, 1.03)

*P for trend ≤0.05. a) Unadjusted; b) Adjusted for age, gender, race, and
income; c) Adjusted for age, gender, race, income, smoking, iron, calcium, and
Vitamin C; d) Adjusted for age, gender, income, and smoking; e) Adjusted for
age, gender, income, smoking, and fruit and vegetable consumption. Data
from NHANES 2001–2004, n = 18,626. Percentages are adjusted using survey
weights to be representative of the United States population. Bold text
indicates that the 95% CI does not cross 1.00, and the finding is considered
significant. Abbreviations: MRSA – Methicillin-resistant Staphylococcus aureus;
Q – Quartile; OR – Odds ratio; CI – Confidence interval; Pb – Lead; Cd
– Cadmium

Table 3 Results of logistic regression with MSSA colonization as
the outcome

Q1 Q2 Q3 Q4

OR OR (95% CI) OR (95% CI) OR (95% CI)

Pb**

Model 1a 1.00 1.01 (0.89, 1.14) 0.96 (0.84, 1.11) 0.79 (0.67, 0.92)

Model 2b 1.00 1.05 (0.93, 1.18) 1.05 (0.91, 1.21) 0.84 (0.69, 1.00)

Model 3c 1.00 1.07 (0.95, 1.21) 1.10 (0.94, 1.28) 0.91 (0.76, 1.09)

Cd***

Model 1a 1.00 0.87 (0.76, 1.00) 0.74 (0.64, 0.85) 0.57 (0.50, 0.66)

Model 2d 1.00 0.96 (0.82, 1.11) 0.88 (0.75, 1.03) 0.67 (0.58, 0.78)

Model 3e 1.00 1.16 (0.95, 1.42) 0.86 (0.66, 1.20) 0.77 (0.60, 0.99)

**P for trend ≤0.005. ***P for trend ≤0.0001. a) Unadjusted; b) Adjusted for
age, gender, race, and income; c) Adjusted for age, gender, race, income,
smoking, iron, calcium, and Vitamin C; d) Adjusted for age, gender, income,
and smoking; e) Adjusted for age, gender, income, smoking, and fruit and
vegetable consumption. Data from NHANES 2001–2004, n = 18,626.
Percentages are adjusted using survey weights to be representative of the
United States population. Bold text indicates that the 95% CI does not cross
1.00, and the finding is considered significant. Abbreviations: MRSA –
Methicillin-resistant Staphylococcus aureus; Q – Quartile; OR – Odds ratio; CI –
Confidence interval; Pb – Lead; Cd – Cadmium
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mechanism linking SES and MRSA, as well as other infec-
tious diseases. Exploration of this relationship via a formal
mediation analysis using prospectively collected longitu-
dinal data may be warranted.
These results considered as a whole suggest that both

Pb and Cd are associated with differences in S. aureus car-
riage. These differences are likely apparent in other bac-
teria within the human microbiota as well. The human
microbiome is becoming increasingly recognized as an
important determinant of health throughout the life
course, and exposure to xenobiotics, including metals, can
influence the balance of our microbial ecosystems [35]. To
date, investigation into the association between Pb and Cd
and the microbiome have been done predominantly in
animal models [59–66]. One study has examined the link
between Pb and the human gut microbiota in children,
and found a significant difference in abundance of Succi-
nivibrionaceae and Gammaproteobacteria with elevated

blood Pb [67]. Although their study is a good first step,
and our findings confirm the association between Pb and
the human nasal microbiota, further investigation with
larger and more diverse samples are needed.
While these findings are an important step in the in-

vestigation between heavy metal exposure and antibiotic
resistance in humans, this study is not without limita-
tions. An important consideration is that these data are
cross-sectional, thus temporal precedence, and therefore
causation, cannot be asserted. Measurement of S. aureus
colonization using only nasal swabs limits the level of
detection, [68, 69] and makes the connection with Pb
and Cd exposure slightly more tenuous as their exposure
mechanisms are primarily through the gastrointestinal
tract. However, individuals colonized by S. aureus are
often colonized at multiple body sites, [68, 70, 71] thus
exposure to Pb and Cd could have occurred at other
body sites, or in the environment. No data were

MSSA MRSA Pb

b

a

c

Fig. 1 Diagram of the Natural Histories of Pb and MRSA Exposure. The natural history of Pb exposure and selection for antibiotic resistance in
Staphylococcus aureus that colonize individuals in this study population could work in several ways. a The individual is exposed to Pb first, and is
then exposed to MRSA and MSSA. The Pb prevents colonization by MSSA, but not MRSA. b The individual is colonized by MRSA and/or MSSA first, and
is then exposed to Pb. The Pb selects for antibiotic resistance by killing MSSA and leaving MRSA behind. c MRSA and/or MSSA is exposed to Pb in the
environment. The Pb exposure selects for antibiotic resistance in the environment. The individual is then exposed to both MRSA and Pb from the
same source. Abbreviations: MRSA – Methicillin-resistant Staphylococcus aureus; MSSA – Methicillin susceptible Staphylococcus aureus; Pb – Lead
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collected on clinical infections by S. aureus, however,
colonization greatly increases risk of infection [32].
These data were also collected over a decade ago, and
population levels of Pb and Cd exposure, and MSSA and
MRSA carriage may have changed in that time. To our
knowledge, no other data measuring these exposures
and outcomes exists on a nationally representative scale
for years after 2004. While these data may not be repre-
sentative of current population estimates, they are still
useful in examining biological associations that may
exist. Residual confounding may be a concern, therefore,
future examination of these associations would benefit
from having more thorough colonization screening in-
cluding multiple body sites, and less reliance on self-
reported data.
Metal half-life in blood is between 28 and 36 days for

Pb, [72] and between 75 and 128 days for Cd [73]. Meas-
uring exposure to Pb and Cd in whole blood may not be
the best measurement of exposure by bacteria in the
microbiota. Because microbial communities are not only
affected by xenobiotic exposure, but can also influence
the metabolism and level of absorption of those xenobi-
otics into the bloodstream, [35] part of the association
found in this study may be due to reverse causality. For
instance, if an individual in this study is colonized by
MRSA in the gut and the nose, it could be that the
MRSA present in the gut is Pb-resistant by efflux of the
Pb from the cell. Colonization by such bacteria would
therefor increase the level of Pb available for absorption
by the human, as it is not being absorbed by these Pb-
resistant bacteria. That higher availability of Pb could
then be reflected in the blood Pb measurement. In such
a case, the blood Pb would be elevated because of the
presence of MRSA, as opposed to increased Pb exposure
increasing risk of MRSA colonization. Furthermore, it is
not clear whether acute or chronic exposures have a
greater influence on the association with S. aureus, as
source and length of S. aureus colonization cannot be
determined. Future studies are needed to determine the
best measurement matrix to measure human microbiota
exposure to xenobiotics.
The results of this analysis could be expanded into

many different future investigations, including the medi-
ation and microbiome analyses previously mentioned.
Because not all metal and antibiotic resistance mecha-
nisms are alike, the association between Pb and Cd in
human populations could be investigated with other
antibiotic resistant bacteria as the outcome of interests.
Likewise, the investigation between other heavy metals
and MRSA, as well as other antibiotic resistant bacteria
could be further developed. Observational studies within
a clinical setting, examining Pb exposure and its associ-
ation with symptomatic MRSA infections and their clin-
ical outcomes is another potential line of inquiry.

Conclusions
To our knowledge, this analysis is among the first to in-
vestigate the association between Pb and Cd exposure
and colonization by MRSA in a human population. Re-
sults suggest that current levels of blood lead in the
population, particularly among those in the highest
quartile of estimated exposures, is associated with differ-
ences in nasal carriage of antibiotic-resistant S. aureus.
The protective effect of Cd against both antibiotic re-
sistant S.auras (MRSA) and antibiotic susceptible
(MSSA) suggests either MRSA may not be resistant to
the toxic effects of Cd, or that this relationship may be
affected by immunomodulation. Reducing Pb exposure
could become a useful strategy for preventing MRSA
colonization and infection.
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