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Abstract

Background: Increasing evidence suggests that welding fume exposure is associated with systemic inflammation.
Although celluar metabolites may be associated with inflammation, there is limited information on metabolomic
changes during welding fume exposure. Such changes may play an important role in the occurrence, development,
and prevention of metal-associated diseases. We aim to investigate human metabolomics changes pre- and post-
welding fume exposure.

Methods: This study included 52 boilermakers totally. We collected plasma samples pre- and post-shift welding
fume exposure and prepared samples using the automated MicroLab STAR® system. Metabolite concentrations
were measured using ultra performance liquid chromatography - tandem mass spectrometer (UPLC-MS/MS)
methods. Two-way analysis of variance was used to test the significance of metabolite changes with false discovery
rate correction.

Results: Analysis detected several metabolic changes after welding fume exposure, mainly involved in the lipid
pathway [glucocorticoid class (cortisol, corticosterone, and cortisone), acylcarnitine class, and DiHOME species (9,10-
DiHOME and 12,13-DiHOME)], amino acid utilization (isoleucine, proline and phenylalanine), and S-(3-hydroxypropyl)
mercapturic acid (3-HPMA). These compounds are all associated with inflammation according to previous studies.
Further, additive interaction effects linked smoking and 3-HPMA levels. In the metabolite set enrichment analysis for
diseases, the top two disease-associated metabolite pathways were systemic inflammation-related diseases including
rheumatoid arthritis and systemic lupus erythematosus.

Conclusions: This global metabolomics study shows evidence that metabolite changes during welding fume exposure
are closely associated with systemic inflammation. The altered metabolites detected may be potential health monitoring
biomarkers for boilermakers, especially for inflammation-related disease prevention.
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Background
Welding fumes comprise a wide range of non-metals
and metals with varying toxic effects [1–3]. Epidemio-
logical studies have demonstrated welding fume
exposure is associated with various disease, including
pulmonary disease, lung inflammation, cardiovascular
disease, and cancer [4, 5]. An improved understanding
of possible adverse health effects of exposure to welding
fumes, as well as their underlying mechanisms, is
important for risk assessment and the development of
prevention strategies that will impact a large population
of workers [6].
Metabolomics has been increasingly recognized as a

powerful functional tool to understand complex biological
machinery and to develop new biomarkers for environ-
mental biomonitoring that can help prevent and treat
environmental-associated diseases [7]. Metabolomics is
based on comprehensive analysis of the endogenous
low-molecular-weight biomolecules (typically < 1000 Da)
[8] within a cell, tissue, or biofluid (e.g., plasma or urine)
that are associated with different human metabolic
processes [7]. Metabolomics applications are expanding in
the field of occupational health as a fast and reproducible
approach that directly reflects biological events related to
exposure [9–12]. Therefore, monitoring disturbances of
the metabolome is now more sensitive, easily accessible,
less expensive, and more accurate [13].
Despite the availability of such applications, limited re-

search has focused on systemic metabolomics alterations
of welding fume exposure. Using the well-established
occupational cohort of boilermaker construction workers,
we interrogated biochemical profiles manifested in human
plasma samples originating from boilermakers with
occupational exposure to metal fumes, with the aim of
characterizing metabolic migration from pre-exposure to
post-exposure. We identified metabolite changes during
welding fume exposure and further explored their poten-
tial biological functions in boilermakers.

Methods
Study design and data collection
We recruited 52 boilermakers at an apprentice welding
school (Union Local 29, Quincy, MA) totally. All partici-
pants were selected from the well-characterized occupa-
tional cohort of boilermaker construction workers in
eastern Massachusetts during 2010–2011, as previously
described [12, 14]. Peripheral blood samples were col-
lected from all subjects before (pre-) and immediately
after (post-) a ~ 5-h welding workshop.
According to the welding time, blood sample were

drawn in two batches to control the circadian variation
[15]. Twenty-nine samples (batch 1) were collected in
the morning (pre-) and afternoon (post-) while 23 sam-
ples (batch 2) were collected in the afternoon (pre-) and

evening (post-) (Table 1). We provided the boilermakers
with breakfast, lunch and dinner to control for nutrient
intake as a confounder. Samples within each batch were
collected in the same time over the same day. Same
blood drawers and handling method were used for all
samples.

Sample accessioning
Following receipt, samples were inventoried and main-
tained at –80 °C. Each sample was accessioned into the
Metabolon Laboratory Information Management System
(LIMS) and was assigned by LIMS a unique identifier that
was associated with the original source identifier only.
This identifier was used to track all sample handling,
tasks, results, etc. LIMS tracked all samples and derived
aliquots. All portions of any sample were automatically
assigned their own unique identifiers by LIMS when a
new task was created, and the relationship of these sam-
ples was also tracked.

Table 1 Demographic characteristics of the study population

Characteristic Mean ± SD or N

Sample size 52a

Sample collecting time

Morning and afternoon 29

Afternoon and evening 23

Age (years) 40.91 ± 12.22

Welding time (hours/month) 33.06 ± 25.51

BMI (kg/m2) 28.43 ± 5.41

Weight (kg) 89.53 ± 17.89

Height (m) 1.77 ± 0.08

Gender

Male 50

Female 1

Race

Caucasian 43

African American 4

Asian 2

Hispanic 2

Current smoker

Yes 21

No 30

Medical history

Diabetes 4

High blood pressure 5

Irregular heart arrhythmia 2

High cholesterol hyperlipidemia 7
aBaseline information of one sample was missing
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The purpose of Metabolon LIMS was to enable fully
auditable laboratory automation through a secure, easy to
use, and highly specialized system. The scope of Metabo-
lon LIMS encompasses sample accessioning, sample prep-
aration, instrumental analysis, reporting, and advanced
data analysis. All subsequent software systems were
grounded in LIMS data structures. It has been modified to
leverage and interface with in-house information extrac-
tion and data visualization systems, as well as third-party
instrumentation and data analysis software.

Sample preparation
Samples were prepared using the automated MicroLab
STAR system from Hamilton Company. Several recovery
standards were added before the first step of the extrac-
tion process for QC purposes. To remove protein, dissoci-
ate small molecules bound to protein or trapped in the
precipitated protein matrix, and to recover chemically di-
verse metabolites, proteins were precipitated with metha-
nol under vigorous shaking for 2 min (Glen Mills
GenoGrinder 2000) and then centrifuged. The resulting
extract was divided into five fractions: two for analysis by
two separate reverse-phase (RP)/ultra-performance liquid
chromatography (UPLC)-MS/MS methods with positive
ion-mode electrospray ionization (ESI); one for analysis by
RP/UPLC-MS/MS with negative ion-mode ESI; one for
analysis by HILIC/UPLC-MS/MS with negative ion-mode
ESI; and one reserved for backup. Samples were placed
briefly on a TurboVap (Zymark) to remove organic solv-
ent. Sample extracts were stored overnight under nitrogen
before preparation for analysis.

Instrument variability control
Instrument variability was determined by calculating the
median relative standard deviation (RSD) of internal stan-
dards that were added to each sample prior to injection
into mass spectrometers (RSD = 4%). Overall process vari-
ability was determined by calculating median RSD for all
endogenous metabolites (i.e., non-instrument standards)
present in 100% of pooled matrix samples (RSD = 8%).
RSD values met Metabolon’s acceptance criteria. More
details are provided in the Additional file 1.

Pathway enrichment analysis
To test the statistical significance of pathways, we per-
formed a pathway enrichment analysis based on the

hypergeometric test: Pðx ¼ kÞ ¼ ðKk ÞðN−K
n−k Þ

N
n

, where N is the

total number of metabolites, n is the total number of
significant metabolites, K is the number of metabolites
in this pathway and k is number of significant metabo-
lites in this pathway.

Metabolite set enrichment analysis for disease
To identify and interpret patterns of human metabolite
concentration changes with potential diseases, metabolite
set enrichment analysis (MSEA) was used based on Meta-
boAnalyst [16]. We used the library of disease-associated
metabolite sets in blood, which contained 416 metabolite
sets reported in human blood.
P-values for pathway enrichment analysis and MSEA

were adjusted by false discovery rate (FDR q-value)
correction.

Statistical analysis
In demographic descriptions, mean ± standard deviation
(SD) or frequencies (n) were used to describe continuous
variables or categorical variables. We followed these data
preprocessing steps: normalization to volume extracted,
imputation of missing values with the minimum observed
value for each compound [17], and logarithmic transform-
ation. Change of each metabolite during welding day was
calculated as fold change value (FC): FC ¼ 1

n

Pn
i¼1

post‐exposurei
pre‐exposurei

, where i represented different subjects. To test

the difference of metabolites during exposure and take
circadian variation into account, we used two-way analysis
of variance (ANOVA) with interaction which included the
welding exposure factor and circadian factor. In the re-
sults, we reported only the ANOVA results for the expos-
ure effects.
Statistical analyses were performed using R version

3.3.0 (The R Foundation). P values were two-sided and
FDR correction was calculated to consider multiple
comparisons. FDR-q < 0.05 was considered statistically
significant.

Results
Demographic descriptions of the study population
This study included paired samples (pre-exposure vs.
post-exposure) of 52 boilermakers totally. In summary,
they had an average age of 40.9 ± 12.2 years, ranging
from 21 to 63 years; and an average BMI of 28.43 ±
5.41 kg/m2, ranging from 18 to 39 kg/m2. Only one indi-
vidual was female, 42.0% were current smokers, and 83%
were Caucasians (Table 1). No participants reported
metal fever during the welding workshop.

Metabolite alteration summary
We detected 693 known compounds in 8 metabolite super-
pathways and 77 subpathways (Additional file 2: Table S1).
After quality control, imputation, normalization, and log
transformation, we used two-way ANOVA to identify
differences between pre-exposure and post-exposure
groups. In summary, we identified 113 metabolites were
significantly altered—78 were significantly up-regulated
after exposure, while 35 were significantly down-regulated.
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Hierarchical clustering could distinguish between pre- and
post-exposure workers (Fig. 1). For the circadian variation,
65 metabolites were significantly altered, including 41
up-regulated and 24 down-regulated compounds. However,
no metabolites passed FDR correction for the interaction of
exposure and circadian effects.

Pathway enrichment analysis results
We identified 7 of 8 superpathways significantly enriched
during the welding exposure, including lipid, amino acid,

xenobiotics, carbohydrate, cofactors and vitamins, nucleo-
tide, and energy pathways. For the subpathways, 14 of 41
pathways were significant with q < 0.05, such as lysolipid,
phospholipid metabolism, fatty acid metabolism (acyl car-
nitine) and steroid pathways (Table 2).

Several classes of significant metabolite alterations
In the lipid pathway, post-exposure welders exhibited
significant decreases in steroid hormones that were mainly
involved in the glucocorticoid class [cortisol (FC = 0.58; q =

Fig. 1 Heatmap of 113 significantly altered metabolites, hierarchically clustered for compounds (row) and samples (column). Batch information,
smoking status, and exposure group are labeled at the top
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5.50 × 10− 10), cortisone (FC = 0.67; q = 2.43 × 10− 8), and
corticosterone (FC = 0.35; q = 1.53 × 10− 6)] (Fig. 2a). In
addition, the post-exposure group showed significant de-
creases in the acylcarnitine class [hexanoylcarnitine (FC =
0.81; q = 0.020), decanoylcarnitine (FC = 0.61; q = 8.75 ×
10− 5), octanoylcarnitine (FC = 0.62; q = 3.49 × 10− 4), and
laurylcarnitine (FC = 0.68; q = 0.001)] (Fig. 2b). Conversely,
the post-exposure group had significantly higher levels of
9,10-DiHOME (FC = 1.87; q = 4.93 × 10− 5) and
12,13-DiHOME (FC = 1.91; q = 1.50 × 10− 4) (Fig. 2c).
In addition to the changes outlined above in the lipid

pathway, the post-exposure group also exhibited a num-
ber of changes relating to complex lipid homeostasis.
There were significant increases in lysolipids (10 of 24),
phospholipids (8 of 33) and diacylglycerol (5 of 19) clas-
ses which may be related to increased utilization of the
fatty acid pool.
Significant increases were observed in amino acid

pathway profiles in the post-exposure group, including
isoleucine (FC = 1.19, q = 0.008) and proline (FC = 1.18,
q = 0.005). Phenylalanine also showed marginally signifi-
cance (FC = 1.10, q = 0.079). Derivatives from these
amino acids also significantly increased in the N-acetyl

group, such as N-acetylglutamate, N-acetylleucine and
N-acetylisoleucine, revealing high amino acid utilization.
Further, post-exposure samples had 2.16-fold increased

levels of S-(3-hydroxypropyl) mercapturic acid (3-HPMA)
(q = 0.032) (Fig. 3a). Considering that 3-HPMA could also
be affected through tobacco smoke [18–20], we performed
a stratification analysis by smoking status and found
3-HPMA was significantly increased in the smoking group
(FC = 15.04; P = 5.74 × 10− 7) compared to the non-smoking
group (FC= 1.09; P = 0.325) (Fig. 3b). Using two-way
ANOVA for welding exposure and smoking status, additive
interaction effects were also found between smoking and
welding fume exposure (Pinteraction = 7.56 × 10− 10).
To exclude the potential physiological confounding

caused by sex differences, we performed a sensitivity
analysis using only the male workers (n = 50). The sig-
nificance of the altered metabolites remained (Additional
file 2: Table S2).

Metabolite set enrichment analysis (MSEA) for disease
Upon analysis of pre- and post-exposure compounds,
MSEA for disease-associated pathways in blood showed
39 significant pathways, including rheumatoid arthritis

Table 2 Significant superpathways and subpathways in pathway enrichment analysis

Pathway Number Different Percentage (%) Upa Downa P FDR-q

Superpathway

Lipid 321 61 19 37 24 2.18E-56 1.75E-55

Amino acid 158 22 13.92 19 3 7.37E-19 2.95E-18

Xenobiotics 97 10 8.77 10 0 9.41E-09 2.51E-08

Carbohydrate 21 8 38.09 7 1 4.04E-07 8.08E-07

Cofactors and vitamins 20 5 25 0 5 1.07E-04 1.71E-04

Nucleotide 30 4 13.33 2 2 6.76E-04 9.01E-04

Energy 9 2 22.22 2 0 2.64E-02 3.02E-02

Subpathway

Lysolipid 24 10 41.67 10 0 1.91E-07 7.84E-06

Phospholipid Metabolism 33 8 24.24 8 0 4.47E-06 9.17E-05

Fatty Acid Metabolism (Acyl Carnitine) 23 7 30.43 0 7 2.14E-05 1.75E-04

Food Component/Plant 31 7 22.58 7 0 2.14E-05 1.75E-04

Phenylalanine and Tyrosine Metabolism 29 7 24.14 6 1 2.14E-05 1.75E-04

Polyunsaturated Fatty Acid (n3 and n6) 13 6 46.15 1 5 1.02E-04 6.94E-04

Diacylglycerol 19 5 26.32 5 0 4.79E-04 2.80E-03

Fatty Acid, Monohydroxy 14 4 28.57 2 2 2.24E-03 8.35E-03

Hemoglobin and Porphyrin Metabolism 5 4 80.00 0 4 2.24E-03 8.35E-03

Leucine, Isoleucine and Valine Metabolism 24 4 16.67 3 1 2.24E-03 8.35E-03

Steroid 36 4 11.11 0 4 2.24E-03 8.35E-03

Endocannabinoid 5 3 60.00 0 3 1.04E-02 3.05E-02

Fructose, Mannose and Galactose Metabolism 4 3 75.00 2 1 1.04E-02 3.05E-02

Pentose Metabolism 6 3 50.00 3 0 1.04E-02 3.05E-02
aUp indicates higher level in the post-exposure group; down indicates lower level in the post-exposure group
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(RA), systemic lupus erythematosus (SLE), and gluco-
corticoid resistance (Fig. 4, Additional file 2: Table S3).

Discussion
Recently, studies have reported the relationship between
welding fume exposure and inflammation. In this study,
we investigated the global metabolomics profiling in hu-
man plasma for the first time. Our results revealed some
different metabolite classes between exposure groups that
were mainly in the lipid pathway (steroid hormones, acyl-
carnitine class, DiHOME species), amino acid utilization,
and 3-HPMA. Interestingly, according to the previous
studies [21–26]. These altered compounds showed a close

relationship with inflammation, which may indicate an in-
flammatory mechanism of welding fume exposed boiler-
makers at the metabolomics level.
We observed significant decreases of glucocorticoid

class including cortisol, cortisone and corticosterone as
well as their hormone derivatives during welding fume
exposure. Glucocorticoids, which belong to the steroid
hormones family, are a class involved in regulating glucose
metabolism, immunosuppressive, and anti-inflammatory
responses in the body [26, 27]. Glucocorticoids are the
most effective anti-inflammatory therapy for many
chronic inflammatory and immune diseases [25]. Various
evidence showed cortisol, cortisone and corticosterone
played important roles in the inflammation [28–31]. Thus,
monitoring the reductions of the glucocorticoid levels
could provide evidence for relevant pulmonary and
cardiovascular diseases.
We found significant decreases in the acylcarnitine class

after exposure to welding fumes. The acylcarnitine class of
metabolites often tracks with free fatty acids, as they are
formed when fatty acids conjugate with carnitine. As
important lipid biomarkers reflective of acyl-CoA status,
acylcarnitines possess bioactive and inflammatory proper-
ties. Acylcarnitines have been reported as a marker of
incomplete fatty acid β-oxidation and mitochondrial
dysfunction [32]. In addition, alteration of acylcarnitines
has an activating effect in many proinflammatory signaling
pathways, and thus the compounds might have the
potential to activate inflammation [24]. Acylcarnitines are
also in insulin-resistance development, linking to muscle
oxidative stress and inflammation [33]. Additionally, in-
flammatory bowel disease patients also have significantly
lower acylcarnitine levels [34]. These results provide new
evidence for an association with inflammatory diseases.
9,10-DiHOME and 12,13-DiHOME are derived from

linoleate through epoxidation and hydration reactions and
are thought to participate in mediating inflammatory re-
sponses [23]. They have been implicated in inflammatory
disorders, such as adult respiratory distress syndrome
[35], asthma [36], and may be endogenous regulators of
vascular permeability and inflammation [37]. Their in-
creased levels following welding fume exposure may pro-
vide new evidence for the association between DiHOME
levels and systemic inflammatory responses [38].
Metabolic changes associated with inflammatory pro-

cesses and immune responses can modify protein and
amino acid requirements [39]. Such changes are usually
considered the consequence of an increase in the produc-
tion of cytokines that change protein metabolism. During
the immunological stress process, amino acids are redis-
tributed away from protein production towards tissues
involved in inflammation and immune response [39]. We
found that some groups of amino acids increased after
exposure to welding fumes, which was consistent with a

Fig. 2 Pre- and post-welding fume exposure levels of (a) the
glucocorticoid class of cortisol, cortisone, and corticosterone; (b)
acylcarnitine species; and (c) DiHOME species 9,10-DiHOME and
12,13-DiHOME. Data are expressed as mean ± standard error of
mean (SEM). **FDR q-value < 0.001
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report that utilization of some amino acids increases dur-
ing chronic inflammation [21].
3-HPMA is regarded as one of the main metabolites of

acrolein, which is a toxic by-product of unsaturated al-
dehyde [40]. It is also a reliable biomarker to estimate
acrolein concentration [41]. Acrolein exposure can occur
through several mechanisms, including welding, particu-
larly when the work involves painted materials and/or
anticorrosive primers [42]. Main endogenous sources of
acrolein are degradation of amino acids and polyamines,
which may constitute a significant source of acrolein in
situations of oxidative stress and inflammation [40].
Nevertheless, 3-HPMA levels are positively associated
with cigarette smoking [19, 43]. We also found additive
interactions between 3-HPMA and smoking that provide
new evidence for further investigation of welding fume
exposure and smoking-induced disease.

MSEA for disease linked metabolites with altered expres-
sion in the post exposure samples to different sets showed
associations with various diseases. Of them, the top two
disease-associated metabolite pathways were systemic
inflammation-related diseases RA and SLE; the interaction
was related to decreased cortisol and cortisone from steroid
hormones. Several studies have reported that exposure to
welding fumes containing metal is associated with systemic
inflammation [44–46]. Cortisol and cortisone production
are related to chronic inflammatory diseases, including RA
and SLE [47], while welding fumes have also been reported
as risk factors for RA [48, 49] and SLE [50]. Further,
C-reactive protein (CRP) is considered a strong marker for
systemic inflammation [51], and positive correlations are
found within CRP and cortisol [52]. These results provide
new evidence for an association between welding fumes
and systemic inflammation at the metabolomics level.

Fig. 4 MetaboAnalyst metabolite set enrichment analysis of disease-associated metabolite sets in blood. Figure shows –log10(p) values for the top
20 significant pathways

Fig. 3 a Pre- and post-welding fume exposure levels of 3-HPMA. Data are expressed as mean ± SEM. b Interaction plot of 3-HPMA levels and
smoking status for pre- and post-welding fume exposure groups. Psmoking indicates t-test P-value of 3-HPMA within the smoking subgroup, while
Pnon-smoking indicates P-value within the non-smoking subgroup. Two-way analysis of variance was used based on log-transformed data. Pinteraction
indicates P-value of interaction effects
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We found several specific metabolites associated with
inflammation, which may be potential health monitoring
biomarkers for boilermakers, especially for
inflammation-related diseases. Thus, health care products
to boost immunity (e.g. vitamins) or anti-inflammatory
could be useful in the boilermakers at risk to prevent the
systemic inflammation and its consequences diseases.
However, we also recognize some limitations in the

study. Firstly, though we considered circadian variation,
this only reflected the differences between individuals at
different collecting times, but not within individual vari-
ation. Secondly, we lacked important inflammation associ-
ated markers (e.g. CRP, white blood cell count, interleukin
6) to verify the relationship between metabolites and
inflammation. Further studies are needed to validate the
associations.

Conclusions
In summary, this global metabolomics study shows the
altered compounds including steroid hormones, acylcarni-
tine and DiHOME levels during welding fume exposure
are associated with systemic inflammatory processes. The
identified significant altered metabolites may be potential
biomarkers for exposure-related inflammatory diseases
among the boilermakers.
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