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Abstract

Background: Cycling and other forms of active transportation provide health benefits via increased physical
activity. However, direct evidence of the extent to which these benefits may be offset by exposure and intake of
traffic-related air pollution is limited. The purpose of this study is to measure changes in endothelial function,
measures of oxidative stress and inflammation, and lung function in healthy participants before and after cycling
along a high- and low- traffic route.

Methods: Participants (n = 38) bicycled for 1 h along a Downtown and a Residential designated bicycle route in a
randomized crossover trial. Heart rate, power output, particulate matter air pollution (PM10, PM2.5, and PM1) and
particle number concentration (PNC) were measured. Lung function, endothelial function (reactive hyperemia index,
RHI), C-reactive protein, interleukin-6, and 8-hydroxy-2′-deoxyguanosine were assessed within one hour pre- and
post-trial.

Results: Geometric mean PNC exposures and intakes were higher along the Downtown (exposure = 16,226
particles/cm3; intake = 4.54 × 1010 particles) compared to the Residential route (exposure = 9367 particles/cm3;
intake = 3.13 × 1010 particles). RHI decreased following cycling along the Downtown route and increased on the
Residential route; in mixed linear regression models, the (post-pre) change in RHI was 21% lower following cycling on
the Downtown versus the Residential route (−0.43, 95% CI: -0.79, −0.079) but RHI decreases were not associated with
measured exposure or intake of air pollutants. The differences in RHI by route were larger amongst females and older
participants. No consistent associations were observed for any of the other outcome measures.

Conclusions: Although PNC exposures and intakes were higher along the Downtown route, the lack of association
between air pollutant exposure or intake with RHI and other measures suggests other exposures related to cycling on
the Downtown route may have been influential in the observed differences between routes in RHI.

Trial registration: ClinicalTrials.gov, NCT01708356. Registered 16 October 2012.
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Background
The World Health Organization (WHO) identifies seden-
tary lifestyles as a major risk factor for global mortality
and chronic disease [1]. Only 15% of Canadian adults [2]
meet WHO and Canadian Physical Activity Guidelines of
150 min of moderate-to-vigorous physical activity per
week in bouts of 10 min or more [1, 3]. Cycling is a form

of active transportation that it is relatively accessible to
all socio-economic classes and addresses typical utili-
tarian transportation distances of < 8 km [4, 5]. In
addition to its potential as a strategy to reduce physical
inactivity [6], cycling provides further societal benefit
as a form of transportation that does not produce
harmful emissions [7–10].
Despite the potential benefits of cycling, there are con-

cerns regarding adverse health impacts to cyclists due to
increased inhalation of traffic-related air pollution espe-
cially in urban areas where cyclists often travel in close
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proximity to road traffic [11–13]. Studies have consist-
ently shown the physiological impacts of acute exposure
to particulate matter (PM), linking it with changes in
vascular tone [14–16], cardiovascular morbidity and
mortality [17, 18], oxidative stress [19], pulmonary in-
flammation [20], and stimulation of pulmonary irritant
receptors [21, 22]. However, these studies only serve to
demonstrate the acute health effects of PM exposure in
the home and laboratory, environments that lack elements
present during a cycling trip that may further impact
the effect of PM exposure on health. For instance, in-
creased respiration rates due to physical effort involved
while cycling leads to increased inhalation of polluted
air [23, 24].
While several studies have documented unfavorable

physiological changes, such as to lung function and
heart rate variability [25–27], as well as increases in in-
flammatory biomarkers [28, 29] amongst cyclists ex-
posed to air pollution, few such studies have attempted
to quantify exposure and intake levels of air pollutants
and the resulting effect on acute health measurements.
There is also limited understanding of the health impacts
due to variations in pollution concentrations along cycling
routes. Therefore, this study aims to assess the acute
health impacts of cycling along a low versus a high
traffic route using a randomized crossover design.
This study compares exposure to, and intake of, PM
while cycling, using a number of biochemical and clin-
ical parameters measured before and after traveling
along two routes. Specific measurements were selected
to represent a set of well validated biochemical
markers of inflammation (interleukin-6 [IL-6] and
C-reactive protein [CRP]) and oxidative stress
(8-hydroxy-2′-deoxyguanosine [8-OHdG]), along with
clinical vascular (reactive hyperemia by EndoPAT) and
pulmonary function measures.

Methods
Participants and study design
Healthy adult (ages 19–39) participants were recruited
using advertisements posted to local cycling and univer-
sity bulletin boards and along cycling routes in the city
of Vancouver, Canada. Participants were eligible if they
were non-smokers, not diagnosed with or taking a medi-
cation for any respiratory or cardiovascular condition,
not exposed to environmental tobacco smoke in the
home or otherwise exposed to significant respiratory ex-
posures in the workplace. Participants with seasonal al-
lergies were asked to participate at a time of the year
when they were asymptomatic. Females were tested dur-
ing days 1–8 of their follicular phase, while those using
monocyclic oral contraceptives were tested on days
where they took an active pill to ensure consistent hor-
monal status. Written informed consent was obtained

for each participant after a session given to familiarize
each person with the equipment and protocols, prior to
commencing the first cycling trial. The Health Canada
(certificate #2011–0009) and University of British
Columbia Clinical Research (#H10–00902) Ethics Boards
approved this study. The study was registered with
ClinicalTrials.gov (NCT01708356).
All cycling trials began and ended at the Vancouver

General Hospital in central Vancouver, British Columbia
during May– November 2010 and May– November 2011.
Metro Vancouver has an annual mean particle number
concentration of 18,200 particles/cm3 (pt/cm³) (standard
deviation = 15,900 pt/cm3) (from 2009 and 2010 data)
[30], an annual mean PM2.5 concentration of 4.3 μg/m3 at
the T2:Vancouver- Kitsilano station, and an annual mean
PM10 concentration of 10.5 μg/m3 at the nearest monitor-
ing location (T24: Burnaby North ) [31]. Trials were con-
ducted between 700 and 1600 h, and each participant
completed both trials at the same time of day (+/− 1 h),
scheduled 2 to 6 weeks apart. Two routes were selected
using a recent study that obtained particulate matter ex-
posure measurements from designated bicycle routes in
Vancouver [13], with consideration of nearby land-use cat-
egories in order to select one predominantly residential
use (“Residential”) route and one predominantly commer-
cial or higher density residential (“Downtown”) route. The
mid-point of the Downtown ride (Dunsmuir Street at
Richards Street, 2011 through-traffic counts) had traffic
counts between 7.8 to 9.9 times that of the traffic on a
typical section (Ontario Street at 36th Street, based on
2006 traffic counts) along the Residential Route. Route
order was assigned randomly. The Downtown route
was a 9.7 km loop, and was always traveled in a
counter-clockwise direction, with a section of protected
bike lane that could be repeated if the cyclist was a fas-
ter rider. Most participants repeated the protected bike
lane section, resulting in a total elevation gain of 127 m
over three major uphill segments (with the most signifi-
cant segments being 29 m, 26 m, and 26 m in elevation
gain) [32]. The Residential route was a 12.0 km loop
that was traveled in a clockwise direction for some tri-
als (120 m of elevation gain, from 2 major uphill seg-
ments of 49 m and 26 m), or as an out-and-back ride in
a counter-clockwise direction, to the far south-east cor-
ner of the route before reversing direction (172 m of
elevation gain, over 3 major uphill segments of 41 m,
36 m, and 18 m) [32]. A trailing research assistant (also
on bike) provided wayfinding and timing directions
with the aim of facilitating a 60-min ride, rather than
completing a specific distance. Questionnaires prior to
the beginning of each trial were used to screen for al-
lergy or cold symptoms, to confirm that each partici-
pant had limited alcohol and caffeine consumption, and
to confirm that each participant consumed the same
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meals prior to the trials. Participants were also asked to
travel to the study site using the same method of trans-
portation on both trial days.

Exercise and exposure monitoring
Two bicycles of the same model (KHS, Flite 250, Los
Angeles, USA), one each of small and large frame size,
were used in all trials. A PowerTap Comp (PowerTap,
Madison, WI, USA) wiring set which automatically re-
corded at 3-s intervals during the ride, was installed on
the handlebars of each bicycle to measure power output,
cadence, and heart rate from a chest-worn heart rate strap.
A single PowerTap hub was installed on a wheel that could
be transferred between the two bicycles. A P-trak (Ultrafine
Particle Counter 8525, TSI Inc., Shoreview, MN, USA),
with the tilt sensor removed was mounted into a wire pan-
nier (Swagman Fat Folding Basket, Swagman Racks, Pentic-
ton, BC, CAN) by placing a horizontal bar through the
handle of the monitor and stabilized using elastic cords and
metal bearings, thus allowing the P-trak to remain horizon-
tal despite changing inclines. The P-trak recorded particle
number (0.02–1 μm) concentration (PNC) at one-second
intervals. A GRIMM Dust Monitor (Model 1.108, GRIMM
Technologies, Inc. Douglasville, Georgia, USA) placed into
a separate rear pannier measured PM10, PM2.5, and PM1

concentrations at 6-s intervals. Sampling inlets for both
monitors were secured along the top tube of the bicycle, ex-
tending to the centre of the handlebars. A GPS logger
(DG-100 GPS DataLogger, GlobalSat WorldCom Corpor-
ation, New Taipei City, Taiwan) recorded the location of
the bicycle at 6-s intervals. To align measurements from all
instruments, data collected at intervals longer than 1 s was
applied to the closest one second time point until a new
data point was available, carried for a maximum of 6 s.

Physiological measurements
All measurements were completed within one hour prior
to the beginning of each bicycle ride, and were repeated
approximately 15 min after the cyclists’ return and com-
pleted within 90 min of ride termination. Tests were ad-
ministered in uniform order (endothelial function,
followed by spirometry, followed by bloodwork) before
and after each ride, with exceptions noted and replicated
for a given subject when possible. For a given individual,
tests for the second trial were performed within one
hour of the same time of day as they were performed in
the first trial. Endothelial function was measured using
the EndoPAT 2000 device (Itamar Medical Ltd., Caesarea,
Israel) to measure RHI, following the five-minute occlusion
procedure recommended in the user manual. Lung func-
tion was measured with a KoKo spirometer (nSpire Health,
Longmont, Colorado, USA), following American Thoracic
Society standards [33]. Five milliliters of blood were col-
lected, centrifuged, and frozen prior to analysis for CRP

(Dimension Vista® System Flex® reagent cartridge for
high sensitivity CRP, Siemens Healthcare Diagnostics
Products GmbH 2009), IL-6 (Quantikine® ELISA Hu-
man IL-6 Immunoassay D6050, R&D Systems, Inc.
Minneapolis, MN, USA) and 8-OHdG (Highly Sensitive
8-OHdG Check ELISA method, Japan Institute for the
Control of Aging, Nikken Seil Co. Ltd., Fukuroi, Shizu-
oka, Japan). Increased RHI indicates improved endothe-
lial function and increases in spirometric measures
indicate improved lung function, whereas increases in
any of the blood measures indicate increased oxidative
stress and/or inflammation.
The first 15 participants completed an abbreviated in-

door cycling test after the one-hour ride. Minute ventila-
tion was recorded while cycling indoors at the mean
heart rate recorded during the ride along each outdoor
route. All indoor cycling tests were completed on an ad-
justable Velotron Dynafit Pro cycle ergometer (Racermate
Inc., Seattle WA). The remaining 23 participants com-
pleted a step-wise submaximal exercise test, in increments
of 20 watts every two minutes for females and 30 watts
every two minutes for males. Heart rate using a Polar HR
sensor strap (Polar s810i, Polar Electro, Finland), and mi-
nute ventilation ( _VE ) using a respirometer (Spirolab II,
Medical International Research, Rome, Italy) were re-
corded during the second minute at every resistance level
throughout the heart rate range experienced by each par-
ticipant. Heart rate data from each participant’s submaxi-
mal test results were used to estimate a subject-specific
HR- _VE relationship, which was then used to estimate in-
stantaneous and mean _VE for each outdoor trial for each
participant; _VE was estimated at each data point during
outdoor cycling trials to calculate the total volume of in-
haled air, and therefore PM intake values.

Statistical analysis
Only participants who completed trials on both routes
were included in the data analysis. Out of 76 exposure
trials, 6 trials had missing exposure data. Health mea-
sures were analyzed in the group results only when
complete pairs of pre and post measurements were
available; incomplete pairs were excluded. Data were
analyzed by paired t-tests comparing the two trials
for each participant, and in mixed effects regression
models. Fixed variables (e.g. bivariate variables comparing
the Residential and Downtown routes, or continuous vari-
ables such as air pollution exposure or intake values), and
random variables (participants) were modeled in R [34]
using the lme4 package [35] to predict changes in clinical
measures. Both exposure and pollutant intake were con-
sidered in analyses.
Intake was estimated for each participant by summing

the product of each 1-s pollutant concentration (in pt/cm3
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or μg/m3) by the volume of air inhaled each second de-
rived from the heart rate data (the mean _VE of the entire
trial, converted to L/s). As high correlations were mea-
sured between the PM10, PM2.5, and PM1 measurements,
(Pearson product-moment correlation coefficients of 0.96
to 0.99) only results for the models that include PM2.5 and
PNC concentrations are presented. Pollutant concentra-
tion distributions within each ride were right-skewed and
summarized by the geometric mean (GM). Four
mixed-effects models (with participant included as a ran-
dom effect) were built in order to evaluate the effect of
route differences (model 1), the effects of pollutant expos-
ure (model 2) or intake (model 3) and the effect of pollu-
tant intake while including route in the same model
(model 4):

1) Change in clinical measurement = ß Route + participant.
2) Change in clinical measurement = ß GM exposure +

participant.
3) Change in clinical measurement = ß Pollutant intake +

participant.
4) Change in clinical measurement = ß Route +

ß Pollutant intake + participant

Effect modification was explored by modeling body
mass index (BMI: lower and upper half, stratified at the
median), age (younger half and older half, stratified at
the median), and sex (female or male) variables with the
Route variable scaled to the Residential route.

Results
Mean age of the participants (n = 28 male, 10 female)
was 29 ± 6 years (range 20–39 years), and mean BMI

was 22.8 ± 2.0 kg/m2 (Table 1). Most participants (87%)
used the same method of transportation to arrive at the
study site on both testing days. Three participants re-
ported taking prescribed thyroid or anxiety medications
before completing each of their trials.
Overall mean ride time for all trials along both routes

was 63.9 and 62.9 min on the Downtown and Residential
routes, respectively (range = 56–73 min). Mean concen-
trations of PNC were significantly higher along the
Downtown route (16,870 pt/cm³) compared to the Resi-
dential route (10,840 pt/cm³, Table 2). Higher concentra-
tions of other particle measures were also observed in
trials along the Downtown compared to the Residential
route (Table 2).
Male participants experienced mean _VE of 47.9

(SD = 15.0) L/min during all trials, while female par-
ticipants experienced mean _VE of 40.4 (SD = 11.0) L/
min. Measurements from a subset of 22 cyclists per-
mitted the comparison of estimated _VE ratio during
a cycling trial compared to at rest (Table 3). The
overall mean _VE ratio (cycling: rest) for the group
was 3.5. Cyclists had a higher _VE ratio (3.8) when
cycling along the Residential route compared to the
Downtown route (3.3). The mean volume of air esti-
mated to be inhaled by participants during a single
cycling trial was 2900 L, and ranged from 820 to
4700 L.
Power output was lower along the Downtown route com-

pared to the Residential route (mean difference = 9.9 watts,
95% CI: 18, 1.8 watts). Mean heart rate was also slightly
lower on the Downtown route (mean difference = 4.5 beats
per minute, 95% CI: 8.6, 0.3 beats per minute). These

Table 1 Descriptive data of participants and summary of physiological baseline measurements

Variable Baseline mean [SD] or total Range

Total participants (male, female) 38 (28, 10) –

Age (years) Overall 29 [5.6]; median = 29
Male mean = 29
Female mean = 31

20–39

BMI (kg/m2) 22.8 [2.0];
median = 22.8

18.3–28.0

Systolic BP (mmHg) 117 [9] 90–139

Diastolic BP (mmHg) 67 [6] 52–83

Reactive Hyperemia Index (RHI) 2.02 [0.64] 1.29–4.28

CRP (mg/dL) 0.85 [1.2] 0.11–7.7

IL-6 (pg/mL) 3.6 [4.3] 0.023–16

8-OHdG (ng/mL) 0.20 [0.12] 0.012–0.73

# participants whose first trial was along
the Downtown route

17 –

Morning test (session end by 12:30 pm) 23 –

Cold Questionnaire score (≥ 3 probable viral infections) 0.4 [0.9] 0–3
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differences could be attributed to the higher number of
stops and intersections along the Downtown route.
Figure 1 displays the relationship between the spatial

patterns in exposure (Fig. 1a), ventilation (Fig. 1b) and
intake (Fig. 1c) for the 22 participants (as quintiles of
each variable within each trial, normalized across all par-
ticipants) with complete heart rate and minute ventilation
profiles. The highest exposures occur at the northwest
corner of the Downtown route and along the northern
portion of the Residential route. For ventilation, however,
the highest levels occur when cycling uphill, in a number
of locations (for example, when cycling over the western-
most bridge leading away from the central business dis-
trict and in the southeast segment of the Residential
route). Intake values are highest, as expected, in locations
with both high PNC and high ventilation, for example at
the northern section of the westernmost bridge and in the
middle of the northern segment of the Residential route.
Given that the overall mean _VE ratio (cycling: rest) for the
group was 3.5 and can therefore lead to 3.5-fold variation
in intake for the same level of exposure, these results
illustrate the importance of considering both _VE and
exposure.
Paired t-tests indicated no changes in lung function after

cycling along either route, with the exception of the forced
expiratory flow (FEF25-75) measurement, which increased
after cycling along the Downtown route.
Endothelial function increased by mean RHI of 0.25

after cycling along the Residential route, and decreased
by mean RHI of 0.18 after cycling along the Downtown
route. There was a difference in the change (post - pre) in
RHI between the Residential compared to the Downtown
route (−0.39, 95% CI: -0.77, −0.017, Table 4), suggesting a
route-dependent impact on the level of improvement in
endothelial function following cycling. Minor changes to
blood biomarkers were observed when comparing post-
pre measures along both routes, with small net increases
in IL-6 and 8-OHdG after cycling the Downtown route
compared to the Residential route (Table 4).
There were some indications of small increases in IL-6

associated with exposure to PNC and PM2.5 while cyc-
ling (Table 5), although confidence intervals crossed
zero. Similarly, there were indications of associations be-
tween PNC exposure and a small decrease in FVC
(Table 5). Exposure to PM2.5 appeared to contribute to a
reduction in FEV1, but was not seen in association with
PNC exposure (Table 5). RHI decreases were associated
with cycling along the downtown route in models where
only route was considered (Table 6, model 1) as well as
in models including pollutant intake (Table 6, model 4),
whereas estimates for pollutant intake showed no evi-
dence of association with RHI (Table 6, model 3 and
model 4). This suggests that the observed associations

between route and RHI were independent of pollutant
exposure or intake. The decrease of 0.43 units for cyc-
ling on the Downtown route was equivalent to a 21% de-
crease (based on mean pre-cycling RHI of 2.0 across all
participants) in RHI. Other endpoints showed no associ-
ations with pollutant intake or route (Table 6).
Effect modification for RHI change by route (model 1)

was analyzed by sex and age, dichotomized at the me-
dian (≤ 28 versus > 29 years), shown in Fig. 2. The ef-
fect of route on RHI change was larger amongst
females (ß = −0.81, 95% CI: -1.6, −0.0048) compared
to males (ß = −0.29, 95% CI: -0.66, 0.081). Similarly,
the effect of route was larger amongst the older half
of the participants (ß = −0.75, 95% CI: -1.3, −0.18) com-
pared to younger half of the participants (ß = −0.11, 95%
CI: -0.50, 0.28). There was no evidence of effect modifica-
tion by BMI.

Discussion
This study compared exposure and intake levels of air
pollutants while cycling along low versus high traffic
routes, and measured acute health impacts of cycling
along these routes. Mean exposure and intake levels of
air pollutants were observed to be higher along the high
traffic (Downtown) route. Improvements in endothelial
function were observed after cycling along the low traffic
Residential route, while cycling along the Downtown
route led to a mean decrease in endothelial function
measures. These decreases were larger amongst females
and older participants. No consistent changes in lung
function or in blood biomarkers of systemic inflamma-
tion and oxidative stress were observed after cycling ei-
ther route in this study.
The lack of agreement between measures of endothe-

lial function and blood biomarkers of oxidative stress
and inflammation in this study, despite the higher mea-
sured levels of air pollutants along the high traffic route,
suggests that there are other factors besides air pollution
which may have affected endothelial function. Few stud-
ies have evaluated the effects of air pollution on endo-
thelial function and blood biomarkers concurrently, and
these few studies have reported conflicting results on the
effect of air pollutant exposure on endothelial function
[36–41]. Consistent with the findings of this study, most
of these studies found non-significant changes to the
biomarkers of CRP [36, 42], IL-6 [28, 29, 36, 41, 42], and
8-OHdG [43] at different levels of PM exposure.
It is possible that the observed improvement in endo-

thelial function when cycling the Residential route was
due to higher physical activity intensity as indicated by
the higher measured power output for this route. Cy-
clists encountered more frequent stopping conditions
(e.g. traffic lights, intersections) along the Downtown
route, leading to lower mean workloads and opportunities
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Fig. 1 Quintiles for each individual cycling trial (of the 22 participants with complete heart rate and minute ventilation profiles), normalized
across all participants, of the locations of highest and lowest a PNC levels, b Ventilation, c Intake (PNC x Ventilation). The start location is
indicated by a diamond and arrows indicate the direction of travel (the Residential route was travelled in both directions)
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for heart rates to decrease during these intermittent rest
periods. The total ride time was nearly the same for both
routes, differing by only one minute, for an overall mean
ride time of 63.4 min.
Other potential influencing factors may include the

differences in noise levels and cyclist stress or anxiety
levels along these two routes. Noise has been shown to
impact measures of cardiovascular disease. For instance,
mean daytime sound pressure levels in excess of 60 dbA
slightly increased the risk for ischemic heart diseases
[44], while we have reported an association between long
term exposure to primarily traffic-related noise and cor-
onary heart disease mortality in Vancouver [45]. The low
traffic environment and higher green space exposure of
the Residential route may have impacted stress and anx-
iety levels [46], and measures of blood pressure while
cycling this route [46]. A study conducted in London
comparing the effects on respiratory function after walk-
ing along high vs. low traffic routes concluded that ex-
posure to higher pollution levels negated any potential
health benefits from walking [47]. Future research
should explore how route characteristics such as these
may play a role in affecting measured health variables. In
addition, it would be valuable to understand how long

the acute effects of these exposures may persist and to
evaluate the potential for more longer-term impacts of
repeatedly traveling on high versus low traffic routes on
cyclists’ health. Such research may help inform both
urban design more generally (e.g. a potential need to
separate cyclist infrastructure and routes from sources
of air pollution and noise) as well as the design and loca-
tion of cycling routes specifically (e.g. a potential benefit
of greenness).
The overall magnitude of exposures encountered along

the two routes in our study (Downtown route mean =
16,870 pt/cm³; Residential route mean = 10,840 pt/cm³)
were somewhat lower than measured on other studies of
cyclist exposures, although the contrast between the
routes was of similar relative magnitude. Jarjour et al.
found no changes in lung function after comparing cyc-
ling along high (mean concentration = 19,945 pt/cm³)
and low (13,517 pt/cm³) traffic routes in Berkeley, USA
[48]. Strak et al. measured respiratory symptoms, exhaled
nitric oxide and lung function changes after cycling high
(44,090 pt/cm³) and low (27,813 pt/cm³) traffic routes in
Utrecht, The Netherlands. PNC levels were associated
with post-pre ride decreases in peak expiratory flow (PEF),
but not with any of the other measures [26]. The overall

Table 4 Clinical measurement summary by route (Downtown and Residential) of post- and pre- cycling clinical measurements

Variable Downtown route Residential route Δ Downtown - Δ Residential

Change (post-pre)
Mean [Δ Downtown]
(95% CI)

Change (post-pre)
Mean [Δ Residential]
(95% CI)

Mean difference (95% CI)

Endothelial Function- EndoPAT™

RHI −0.18 (−0.46, 0.11) 0.25 (0.03, 0.47) −0.39 (−0.77, −0.017)

Spirometry (unit)

FVC (mL) 46 (−3.8, 97) 21 (−84, 130) 28 (−77, 134)

FEV1 (mL) 46 (6.6, 86) 49 (−11, 110) −0.81 (−62, 64)

FEF25–75 (mL/s) 110 (23, 190) 82 (−59, 220) 0.024 (−0.13, 0.18)

Blood Measures (unit)

CRP (μg/dL) 8.8 (−12, 29) 6.6 (−30, 43) 2.4 (−44, 49)

IL-6 (pg/ml) 0.55 (−0.59, 1.68) −0.61 (−1.8, 0.57) 1.13 (−0.82, 3.1)

8-OHdG (ng/ml) −0.00045 (−0.040, 0.040) −0.031 (−0.071, 0.0082) 0.029 (−0.023, 0.081)

Paired spirometry data was missing for 2 participants and paired endothelial function data missing for 4

Table 5 Mixed effects (model 2) coefficients of subclinical health measure, modeled using the GM concentration of PNC or PM2.5

exposures for each trial

Outcome measurement GM of PNC ß-coefficient 95% CI GM of PM2.5 ß-coefficient 95% CI

RHI 0.066 −0.22, 0.35 −0.051 −0.25, 0.15

FEV1 (mL) −4.1 −53, 45 −32 −66, 3.0

FVC (mL) −63 − 145, 19 −41 −102, 19

CRP (μg/dL) 8.7 −14, 32 2.2 −14, 19

IL-6 (pg/mL) 0.78 −0.45, 2.0 0.64 −0.20, 1.5

8-OHdG (ng/mL) 0.027 −0.013, 0.067 0.010 −0.019, 0.039

ß-coefficient values are presented for an interquartile range change in PNC (7637 pt/cm³) or PM2.5 (4.7 μg/m3) exposure
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absence of impacts on respiratory health endpoints was
consistent with our findings, especially considering the
overall higher exposure levels and larger differences
between routes in the Dutch study. Similarly, Zuurbier et
al., in a similar route comparison study (high traffic:
48,939 pt/cm³, low traffic: 39,576 pt/cm³) in Arnhem, The
Netherlands reported an association between PNC expos-
ure with decreased PEF and increased airway resistance,
but no changes in other lung function parameters or ex-
haled nitric oxide [49]. In some cases these differences in
particle counts may be due to different particle size limits
of the instruments used to measure PNC; while we used
the P-trak 8525 (range of 20 nm to 1 μm), other studies
used models of mobile condensation particle counters
with a broader range of 10 nm to > 1 μm [49].
Although we did not identify other cyclist studies with

measures of endothelial function, in the study conducted
in Arnhem, a weak positive association was observed be-
tween PNC and CRP levels but results for other bio-
markers (IL-6/8/10, tumor necrosis factor-alpha, Clara
cell protein 16, blood cell counts and blood coagulation
markers) were null [50]. Weichenthal et al., reported as-
sociations between PNC exposures during cycling with
FEF25–75 and exhaled nitric oxide, although the com-
parisons included a clean indoor (1162 pt/cm³) cycling
trial in addition to cycling on high (19,747 pt/cm³) and
low (10,882 pt/cm³) traffic routes in Ottawa, Canada
[27]. This study also reported associations between
PNC exposure with measures of heart rate variability,
similar to a study in Dublin, Ireland where cyclist ex-
posures were compared to those of other commuting
modes [25].

This study included participants of a variety of fitness
levels, which may have resulted in the inconsistent mag-
nitude or direction of the blood biomarker results. There
is evidence that stress-associated biomarkers may re-
spond in dissimilar ways due to effect modification by
fitness level [51, 52]. Study limitations include the use
of a small sample size, which limits power to detect any
differences. Because we did not measure the maximal
aerobic capacity (V˙O2max) of the participants, we
were unable to objectively quantify the fitness level of
participants, which prevented us from adjusting for this
variable. Furthermore, it is possible that only individ-
uals who are frequent cyclists with interests in the topic
of air pollution chose to participate in this study, limit-
ing generalizability of the results to people who cycle
less frequently or for leisure, or to cyclists outside the
study age group of 19–39 years including those that
may live with chronic health conditions or that take
medications excluded by this study protocol. In
addition, RHI is a surrogate measure of vascular function
and while generally consistent with other predictive mea-
sures of cardiovascular risk [53], it is susceptible to effects
of increased sympathetic activation due to environmental
discomfort and not directly comparable to other measures
of vascular function such as flow-mediated dilation [54,
55]. Further, RHI was measured immediately following ex-
ercise and we were therefore not able to assess how expos-
ure impacts may have affected the various measures in the
hours following the conclusion of our testing and it is un-
certain how long the effects we observed with RHI would
continue to persist following exposures and cycling
activity.

Fig. 2 Effect modification of RHI by variables including sex, BMI, and age. BMI and age were stratified by those above and below the median
level (BMI: 22.8 kg/m2, age: 29 years)
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Conclusions
Given the individual benefit of improving physical fitness
and the societal reward of reducing healthcare costs as-
sociated with improved fitness and air quality [8, 56], the
estimated benefits due to cycling outweigh the associ-
ated risks [57–59]. From this perspective it is advisable
to support cycling in the conditions described along ei-
ther of these route types. Cycling either route provides
the benefit of physical activity, and neither route was
found to conclusively lead to adverse measures of the
surrogate health endpoints that were measured in this
study. With regard to heterogeneity between route types,
there may be advantages to cycling along routes that re-
quire additional effort or that have lower air pollution
levels. A better understanding of other potential health
influencing factors while cycling is needed to inform
public health messages to cyclists in selecting routes
with the most beneficial features, as well as to inform
planning and policy when designing cycling routes.
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