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Abstract

Background: Regional National Weather Service (NWS) heat advisory criteria in New York State (NYS) were based
on frequency of heat events estimated by sparse monitoring data. These may not accurately reflect temperatures at
which specific health risks occur in large geographic regions. The objectives of the study were to use spatially resolved
temperature data to characterize health risks related to summertime heat exposure and estimate the temperatures at
which excessive risk of heat-related adverse health occurs in NYS. We also evaluated the need to adjust current heat
advisory threshold and messaging based on threshold temperatures of multiple health outcomes.

Methods: We assessed the effect of multi-day lag exposure for maximum near-surface air temperature (Tmax) and
maximum Heat Index derived from the gridded National Land Data Assimilation System (NLDAS) reanalysis dataset on
emergency department (ED) visits/ hospitalizations for heat stress, dehydration, acute kidney failure (AKF) and
cardiovascular diseases (CVD) using a case-crossover analysis during summers of 2008–2012. We assessed effect
modification using interaction terms and stratified analysis. Thresholds were estimated using piecewise spline
regression.

Results: We observed an increased risk of heat stress (Risk ratio (RR) = 1.366, 95% confidence interval (CI): 1.347,
1.386) and dehydration (RR = 1.024, 95% CI: 1.021, 1.028) for every 1 °C increase in Tmax on the day of exposure.
The highest risk for AKF (RR = 1.017, 95% CI: 1.014, 1.021) and CVD (RR = 1.001, 95% CI: 1.000, 1.002) were at lag 1 and
4 respectively. The increased risk of heat-health effects persists up to 6 days. Rural areas of NYS are at as high a risk of
heat-health effects as urban areas. Heat-health risks start increasing at temperatures much lower than the current NWS
criteria.

Conclusion: Reanalysis data provide refined exposure-response functions for health research, in areas with sparse
monitor observations. Based on this research, rural areas in NYS had similar risk for health effects of heat. Heat
advisories in New York City (NYC) had been reviewed and lowered previously. As such, the current NWS heat
advisory threshold was lowered for the upstate region of New York and surrounding areas. Enhanced outreach
materials were also developed and disseminated to local health departments and the public.
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Introduction
While residents of New York State (NYS) have largely ex-
perienced moderate temperatures during the summers, the
frequency and intensity of hot days and heat events have
been increasing and are projected to continue to rise over
the next several decades [1]. Many studies of health risks
associated with extreme ambient heat exposures have been
conducted in urban areas and rely on assigning exposure
based on distance to a single monitor [2, 3]. Air monitors
are sparsely located and tend to be concentrated in urban
areas. In situ data therefore have limited utility in studying
heat effects over large areas that may include suburban or
rural areas which lack air monitoring stations [4]. The
North American Land Data Assimilation System (NLDAS)
which combines remote sensing, in situ and model data to
provide fine scale temperature metrics at the near surface
level [5, 6], makes it possible to assign more precise data
statewide [7]. The NLDAS has been used to calculate rela-
tive temperature metrics [8]. The application of spatially
resolved finer scale reanalysis data to estimate public health
effects associated with extreme heat is a recent develop-
ment for NYS climate research. This spatially contiguous
temperature dataset allows for the quantification of areal
heterogeneity in health effects related to heat.
Furthermore, the fine scale temperature data allow us

to determine heat-health thresholds for excessive risk
which can better inform initiatives to protect health dur-
ing heat events, such as the National Weather Service
(NWS) heat alert system. Regional NWS forecast offices
issue excessive heat alerts (advisories, watches, and
warnings) based on the maximum heat index forecasts
over 24–72 h [9]. Heat index is a metric that combines
temperature and humidity to estimate conditions most
likely to affect human health. An advisory is issued when
the heat index is forecast to exceed 37.8 °C (100 °F) for 2
h or more for upstate NYS regions [10]. Appropriate
heat warnings may prevent morbidity due to heat expo-
sures. However, current temperature thresholds for heat
advisories and warnings in upstate NYS were established
over 20 years ago and were not based on heat-health as-
sociations. Previous studies have also proposed the con-
sideration of health events and diagnoses for identifying
threshold temperatures [11, 12]. The NLDAS reanalysis
dataset provides the opportunity to conduct heat-health
analysis for all regions of NYS and reassess the criteria
for heat advisories, so they are more relevant to temper-
atures experienced in NYS during the summer.
The aims of this study were to characterize morbidity

risk related to summertime heat exposure using residential
address-based health records for emergency department
(ED) visits / hospitalizations (May through September,
2008–2012) in NYS. We incorporated reanalysis data
(12-km NLDAS products) to define exposure-response
functions for regions where observed data from

air-monitors are unavailable. In addition, we evaluated
current heat advisory criteria in the region and established
heat-health thresholds for excessive risks of morbidity in
order to inform health policy.

Methods
Study design and population
We applied case-crossover analysis to assess the asso-
ciation between temperature and counts of daily hos-
pital admissions and ED visits for heat stress,
dehydration, acute kidney failure (AKF), and cardio-
vascular diseases (CVD) in NYS in the summers of
2008 through 2012.

Health outcomes
Daily summer hospital admissions and ED visits (May –
September) in NYS were acquired from the New York
State Department of Health’s Statewide Planning and Re-
search Cooperative System (SPARCS) inpatient and out-
patient datasets. SPARCS contains billing and medical
abstract information for each hospital inpatient stay and
outpatient (ambulatory surgery, ED, and outpatient ser-
vices) visit in the state; except those at Federal and
Veterans Administration hospitals [13]. Outpatient visits
and ambulatory surgeries were excluded from the CVD
analysis as these were unlikely to arise from acute heat ex-
posures. The New York State Department of Health
(NYSDOH) Institutional Review Board and Data Protec-
tion Review Board approvals were obtained to access indi-
vidually identifiable information such as address, date of
birth, and date of hospital visit. For each outcome, we
combined both hospital admissions and ED visits for data
analyses due to small sample size. In total, four health out-
comes were assessed: heat stress (n = 8703), dehydration
(n = 59,828), AKF (n = 50,008) and CVD (n = 845,927).
The following international classifications of diseases (ICD,
revisions 9) were used for heat stress (ICD-9, 992.0–992.9;
E900.0, E900.9), dehydration (ICD-9, 276.51), AKF (ICD-9,
584.5–584.9), and CVD (ICD-9, 390–398, 401–405, 410–
417, 420–438, 440–448, 451–459). For acute conditions
such as heat stress and dehydration, any recurrences of ED
visits and/or hospitalizations within a 1-week period were
excluded, with recurrences after that period considered as
new events. While for chronic conditions such as AKF and
CVD, recurrences within a 28-day period were excluded.
Residential addresses obtained from hospital admission re-
cords were geocoded at street-level and assigned longitude
and latitude coordinates, using NYS Street Address Map-
ping (SAM) [14], MapMarker® [15], and ArcGIS® [16].

Air temperatures
Reanalysis dataset
The NLDAS dataset integrates a large quantity of obser-
vation- based and model reanalysis data executed at a
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grid surface with ∼14 km (1/8th degree) resolution over
North America. The non-precipitation land-surface for-
cing fields for NLDAS are originally derived from the ana-
lysis fields of the National Centers for Environmental
Prediction (NCEP) North American Regional Reanalysis
(NARR). NARR analysis fields have a 32-km spatial reso-
lution and 3-hourly temporal frequency. The NARR fields
that are used to generate NLDAS meteorological fields are
spatially interpolated to the finer resolution of the NLDAS
1/8th-degree grid and then temporally disaggregated to
the NLDAS hourly frequency [5]. The NLDAS hourly data
used in this study were acquired as part of the mission of
NASA’s Earth Science Division and archived and distrib-
uted by the Goddard Earth Sciences (GES) Data and In-
formation Services Center (DISC). This hourly data
slightly differs from the temperature data typically

reported from an air monitor station which has only mini-
mum and maximum temperature capabilities.
From the NLDAS hourly data, we derived daily max-

imum temperature (Tmax), minimum temperature
(Tmin), and mean temperature (Tmean) data (all in °F),
and a daily maximum heat index (maxHI) product,
which reflect the combined effects of heat and humidity
[8]. For a description of how the maximum heat index
was calculated, please refer to Additional file 1: Appen-
dix A. The NLDAS data consists of 103,936 grid cells
covering the entire U.S., excluding Alaska and Hawaii.
For this study, 1040 grids covering NYS were used (Fig.
1). In the absence of information on the actual place of
exposure, the temperature metrics in this gridded data-
set were assigned based on the grid that included the pa-
tient’s residential address. This dataset was then spatially

Fig. 1 North American Land Data Assimilation System (NLDAS) 12 KM grid displaying maximum temperature (°C) in New York State for
July 21, 2010
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merged with the datasets containing fine particulate
matter (PM2.5) and ozone estimates using the geographic
coordinates of the patients’ residences. Lagged exposure
values were created for all models to assess the immedi-
ate (on admission day, i.e. lag 0) and delayed (exposure
up to 7 days before admission i.e. lag 1–7 respectively)
effects of the temperature metrics on the health out-
comes. The temperature effect at different lags were
modeled separately. Effect of cumulative exposures were
assessed using moving averages for multiple lags. We
also used a distributed lag structure where multiple lags
were included simultaneously in the model.

Monitor dataset
Automated Surface Observing System (ASOS) units are
automated sensor suites that are designed to serve me-
teorological and aviation observing needs [17]. ASOS
systems generate reports at hourly intervals and serve as
a primary climatological observing network in the
United States. We extracted daily temperature data from
32 ASOS units stationed across NYS. We used 100-mile
and 20-mile buffer ranges around the 32 ASOS stations,
to spatially join the heat stress cases (n = 8799) during
the study period (2008–2012) with ASOS stations closest
to each observation.

Air pollution data
Daily estimates of PM2.5 and ozone were derived using
data from the Environmental Protection Agency’s (EPA)
downscaler (DS) model [18]. The DS model fuses output
from a gridded atmospheric model with point air pollu-
tion measurements. It combines air quality monitoring
and modeling data to provide finer-scale predictions of
air pollutant levels at local and community levels [19].
We categorized air pollutant estimates as low and high
exposures using the 25th percentile and 75th percentile
of the data distribution respectively.

Potential effect modifiers
Urban areas are typically warmer than rural areas due to
urban heat island effects. However, we were interested in
evaluating whether rural areas had a consequently lower
risk of heat-health outcomes. The rural-urban commuting
area (RUCA) codes which classify U.S. census tracts using
measures of population density, urbanization, and daily
commuting were used to categorize the rural-urban areas
of NYS [20]. The most recent RUCA codes are based on
data from the 2010 decennial census and the 2006–2010
American Community Survey. New York City (NYC) is by
far the most densely populated, urbanized area in NYS. It
also has a more diverse population with socio-demo-
graphic characteristics that may not represent other urban
populations in NYS. In addition, NYC is serviced by its
own local health department. Therefore, it was deemed

appropriate to conduct a separate analysis for that area.
The rest of NYS was divided into urban and rural census
tracts based on RUCA codes.
We also assessed whether effects of heat vary by

individual and socioeconomic characteristics. The
hospitalization/ED data provided information on age, sex,
race and ethnicity. Age was categorized into 6 categories.
Race and ethnicity information in the medical records was
classified as Hispanic, White Non-Hispanic, Black/Non--
Hispanic and Other. To evaluate whether existing chronic
illness modified effects of heat among cases with a pri-
mary diagnosis code of heat stress and dehydration, we
flagged cases with pre-existing diabetes, chronic kidney
disease, heart failure, other heart disease, hypertension,
chronic liver disease, acute renal disease, acute myocardial
infarction and atherosclerosis in “Other Diagnoses” fields.

Statistical methods
We conducted a case-crossover analysis using a
semi-symmetric bidirectional, time-stratified design to
assess the effect of summertime temperature on hospi-
talizations and ED visits in NYS. This method compares
the temperature metrics on the day of hospital admis-
sion /visit (case/exposure day) with the temperature
metrics, before and/or after (control period), within the
same pre-specified stratum window of time, when the
subject is not hospitalized or in the ED [21]. Since each
case serves as his or her own control on all measured
and unmeasured subject non-time-varying characteris-
tics, confounding factors such as individual demographic
and social factors have been adjusted by design [22]. A
one-month stratum window of exposure was used to
compare cases with the control (referent) period of ±7,
±14, or ± 21 days from case day within the same month,
thereby providing up to four control dates per case. The
season and day of the week variations were controlled
for by restricting the referents to the same day of the
week, month and year as the index day [23]. We con-
trolled for time varying variables such as PM2.5 and
ozone in the model.
The initial analysis was conducted in °Fahrenheit to con-

form to NWS criteria for issuance of heat warning. In this
manuscript, all changes in risk based on temperature are
reported in S.I. units (°C) to allow for comparison with
previous research. Although analyses were carried out for
maximum temperature, minimum temperature, mean
temperature and maximum heat index, we focus on max-
imum heat index which is widely used by the NWS and
heat-health researchers in the United States.

Heat-health associations and effect modification
We initially calculated risk ratios for a 1 °C change in
temperature metric using conditional logistic regression
analysis for each health outcome. Effect modification for
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age, sex, race/ethnicity, rural/urban areas, and month of
exposure were determined a priori based on literature re-
view and assessed using multiplicative interaction terms.
The joint effect of ozone and PM2.5 on heat-health were
also evaluated using interaction terms. There has been
some debate about the adjustment for air pollution when
assessing risk of health effects of heat [24, 25]. Therefore,
we present results with and without adjustment for ozone
and PM2.5. We assessed rural-urban differences in heat
health associations. We assessed effects separately by
NYC, non-NYC urban and non-NYC rural. Finally, we
evaluated effect modification for effects on heat on heat
stress and dehydration in individuals with pre-existing co-
morbidities using a stratified analysis. We conducted a
supplementary analysis using monitor data linked to

health observations using 20- and 100-mile buffer zones
to compare with estimates derived from the spatially con-
tiguous reanalysis data. We repeated the case-crossover
analysis using monitor data and compared results with
those from reanalysis dataset.

Heat-health threshold analysis
To establish regional heat advisory thresholds that are
relevant for heat-health associations in the region, we
used a piecewise linear spline regression to assess the
shape of the temperature-outcome association. Knots
defining slope changes were sequentially selected at
5-degree intervals. We calculated three separate trigger
points as suggested by recent research [11, 26]. The
minimum risk temperature (MRT) for heat stress was

Table 1 Distribution of Hospital Visits and Admissions in New York State (May – September 2008 – 2012)

Variables Heat Stress Dehydration Acute Kidney Failure Cardiovascular Illnessesa

Cases (%) Cases (%) Cases (%) Cases (%)

Number of cases 8,703 (23.29) 59,828 (23.70) 50,008 (23.69) 827,051 (23.49)

Inpatient hospitalizations 1,338 28,938 48,943 614,062

ED cases 7,365 30,890 1,065 212,989

Control days 28,664 (76.71) 192,571 (76.30) 161,089 (76.31) 2,693,862 (76.51)

Case Month

May 755 (8.68) 11,198 (18.72) 8,898 (17.79) 176,141 (21.30)

June 2,243 (25.77) 12,575 (21.02) 10,324 (20.64) 164,132 (19.85)

July 4,009 (46.06) 14,414 (24.09) 11,264 (22.52) 163,281 (19.74)

August 1,278 (14.68) 11,776 (19.68) 10,352 (20.70) 162,873 (19.69)

September 418 (4.80) 9,865 (16.49) 9,170 (18.34) 160,624 (19.42)

Age, years

≤ 4 124 (1.42) 7,078 (11.83) 44 (0.09) 1,946 (0.24)

5 – 24 2,344 (26.93) 8,856 (14.80) 600 (1.20) 15,619 (1.89)

25 – 44 2,310 (26.54) 7,941 (13.27) 2,660 (5.32) 77,147 (9.33)

45 – 64 2,180 (25.05) 11,202 (18.72) 12,320 (24.64) 265,822 (32.14)

65 – 84 1,353 (15.55) 15,918 (26.61) 23,508 (47.01) 347,501 (42.02)

≥ 85 392 (4.50) 8,833 (14.76) 10,876 (21.75) 119,016 (14.39)

Sex

Male 5,106 (58.67) 26,063 (43.56) 25,891 (51.77) 421,710 (50.99)

Female 3,597 (41.33) 33,764 (56.44) 24,117 (48.23) 405,331 (49.01)

Missing - 1 (0.00) - 10 (0.00)

Race/Ethnicity

White, Non-Hispanic 5,288 (60.76) 37,486 (62.66) 30,016 (60.02) 487,602 (58.96)

Hispanic 1,144 (13.14) 7,283 (12.17) 4,928 (9.85) 88,164 (10.66)

Black, Non-Hispanic 1,482 (17.03) 9,193 (15.37) 10,522 (21.04) 160,396 (19.39)

Other 707 (8.12) 5,525 (9.23) 4,371 (8.74) 87,130 (10.54)

Missing/Unknown 82 (0.94) 341 (0.57) 171 (0.34) 3,759 (0.45)

NYC 2,964 (34.06) 21,662 (36.21) 21,665 (43.32) 361,219 (43.68)

Rest of NYS 5,739 (65.94) 38,166 (63.79) 28,343 (56.68) 465,832 (56.32)
aexcludes observations that were coded as outpatient (clinic) services or Ambulatory services
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determined as the lowest temperature at which the
health outcome was observed during the study period.
For all other health outcomes, the MRT was defined as
the lowest temperature above which a consistent in-
crease in the relative risk was observed. The excess risk
temperature (ERT) was defined as the lowest
temperature above the MRT at which the lower bound
of the 95% confidence interval of relative risk of a par-
ticular health outcome was greater than 1. We assessed
the risk ratios at the existing NWS criteria of 37.8 °C
(100 °F) and at the proposed criteria of 35 °C (95 °F).
All statistical analyses were carried out using SAS™

statistical software Version 9.4. (SAS Institute Inc., Cary,
NC, USA) and R. Geographic Information System (GIS)
analysis was carried out using SAS and ArcGIS® [16].

Results
There were 964,466 cases included in this study (Table 1).
The population was predominantly White non-Hispanic
and about 53% were female (Table 1).
There were significant increases in the risk of hospital

visit/ admission for heat stress & dehydration across all
temperature indicators (Fig. 2). We present the risk ratios
between a 1 °C change in Tmax and maxHI for all health
outcomes assessed in this study using the single lag
models. Results from the distributed lag models were in
agreement with the single lag models and are presented in
Additional file 1: Tables S2–S5. We present the risk from a
combined analysis of ED and hospitalization visits. Results
from separate analysis of ED and inpatient hospitalizations
yielded similar results and are presented in Additional file
1: Table S1. The largest estimates between Tmax and heat
stress hospital admissions/visits were on the same-day of
admission (lag 0). There was an increased risk of heat
stress for every 1 °C increase in maximum temperature
(Risk ratio (RR) = 1.366, 95% confidence interval (CI):
1.347, 1.386). The lag effects for heat stress lasted for 6
days. Similarly, the highest magnitude of risk for dehydra-
tion was for same-day exposure (RR = 1.024, 95% CI: 1.021,
1.028). The risk for dehydration was highest at lag 0,
with decreasing magnitude of association as lag day in-
creases. There were significant increases in the risk of
hospital visits/admissions for AKF at all lags (Fig. 2).
However, the highest magnitude of association between
temperature and an increased risk of AKF hospital
visits/admissions was at lag 1. For every 1 °C increase in
Tmax, there was an increased risk of ED visit/
hospitalization for AKF at lag 1 (RR = 1.017, 95% CI:
1.014, 1.021) and CVD at lag 4 (RR = 1.001, 95% CI:
1.000, 1.002). The probability of cardiovascular disease
ED visits/ hospitalizations on the same-day of exposure
(lag 0) was significantly decreased for all temperature
indicators suggesting a lag-effect of temperature. We

present cumulative effects of temperature on all health
outcomes in Additional file 1: Figure S1.

Joint effects and effect modification
We tested if the associations between temperature and the
health outcomes were modified by variables such as age,
sex, race/ethnicity, ozone, PM2.5, rural/urban areas, and
month of exposure by adding a product term between
temperature and each modifier into the model (Table 2
and Additional file 1: Tables S6–S8). The highest risk was
found among the oldest age groups for heat stress, but dif-
ferences were not statistically significant. Females were
less likely to be hospitalized or visit the emergency room
for dehydration-related health issues. Although the high-
est risk of heat stress occurred in the summer months of
June, July and August, the cooler shoulder months of May
and September also show elevated risk of heat stress.
There is a complex relationship between exposures to par-
ticulate matter, ozone and high temperature. The risk of
heat stress with 1 °C change in temperature was highest
on days with low ozone and high PM2.5 and lowest on
days with high ozone and low particulate matter expo-
sures. The risk of heat on heat stress, dehydration and
AKF were lowered when adjusted for particulate matter
and ozone. The effects of one-degree change in
temperature on ED visits/admissions for heat stress (Table
2) were similar in both rural and urban areas in NYS. We
present results of effect modification for other health out-
comes in Additional file 1: Tables S6–S8. Participants with
chronic conditions had an overall lower risk of heat stress
and dehydration than those who did not have comorbidi-
ties (Additional file 1: Figure S2).

Heat-health threshold analysis
We evaluated multiple trigger points for health effects of
heat exposures (Fig. 3). The MRT for each heat-health
association was 10–15 °C lower than its ERT. For max-
imum temperatures, the risk for heat-health outcomes
showed an exponential pattern beyond the MRTs for all
health outcomes. The heat index charts show similar
trends until a heat index of 40 °C (104 °F) with a leveling
or decline in risk at extremely high temperatures. For
heat stress, the ERT was defined at 28.8 °C (83.8 °F) while
the ERTs were between 24 and 26 °C (75.2–78.8 °F) for all
other health outcomes. At the pre-existing NWS thresh-
old of 37.8 °C (100 °F), the risk ratio for heat stress was
3.727 while the risk ratio for other health outcomes
ranged from 1.727 for dehydration, 1.534 for AKF and
1.412 for CVD. In contrast, at a reduced heat advisory cri-
terion of 35 °C (95 °F), the risk ratio for heat stress is 1.927
and ranges from 1.436 for dehydration, 1.329 for AKF and
1.290 for CVD.
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Fig. 2 Risk of hospitalization/emergency room visit associated with a 1°C change in lagged temperatures in New York State (2008–2012)
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Comparison with monitor data
Monitor data were especially sparse in rural areas.
Additional file 1: Figures S3 – S5 show ASOS stations,
gridded data, and the 20- and 100- mile buffers. As is
evident, there is considerable spatial variability in the
gridded data within the 20- and 100- mile buffer zones.
Using a 20-mile buffer, 11.7% of the case population had
to be dropped from the analysis because they were too

far from an air monitor to be assigned a value. Using a
100-mile buffer, all of the case population were included
in the analysis but there was a considerable overlap in buf-
fer zones. We therefore assigned the temperature values
based on the monitor closest to the individual’s address.
As expected, the smaller sample size resulted in wider
confidence intervals in estimates for health effects in rural
areas using a 20-mile buffer. In addition, the risk ratios
were attenuated for both rural and urban areas using the
100 mile buffer (Additional file 1: Tables S9–S12 ).

Discussion
We examined the association between ambient summer
temperatures and ED visits/hospital admissions for mul-
tiple health outcomes using fine-scaled environmental
data over a broad geographic region. There has been a
recent interest in using spatially resolved data to esti-
mate health effects of heat in wider geographical regions
[4, 27]. The use of a spatially contiguous exposure fields al-
lows estimation of heat effects in small cities, rural and sub-
urban areas that lack dense air monitoring networks. In
addition, the case-crossover design minimized bias due to
inter-individual variation and consequent uncontrolled con-
founding in epidemiological studies of heat exposures [22].
The goals of this study were to 1) assess the effect of

heat on health using fine-scale reanalysis data and 2) use
our findings to better inform policies that protect the
health of NYS residents during periods of extreme heat.
Our results show significant risks of heat stress, dehy-
dration, and AKF from lags 0 through 6. We found that
effects of heat can start at moderately high values of
Heat Index much below the current thresholds for NWS
advisories in the area. In its most recent directive for the
Eastern United States region, the NWS has recognized
that emergency department visits due to heat illness may
begin well before NWS thresholds are met, thus fore-
casters have been directed to focus on issuing long-lead
watches along with early, enhanced safety messaging via
Public Information Statements and social media [10].
We observed a positive relationship between summer

high temperatures and acute occurrences of heat stress
and dehydration with lagged effect. The same-day expos-
ure effects that we observed for heat stress and dehydra-
tion are expected due to the direct relationship between
heat and these health outcomes; and are consistent with
literature [28]. We found that significant risk of heat
stress persisted up to 6 days after exposure. We found
an elevated risk of acute renal illness from lag 0, with
the highest risk at lag 1 for renal illness. We observed
only a modest increase in risk of cardiovascular illness at
lags 4–6. These findings are consistent with other stud-
ies of health effects in temperate climate [29, 30].
We also explored the potential effect modification by in-

dividual characteristics such as age, sex, race, ethnicity,

Table 2 Association Between a 1°C Change in Maximum
Temperature and Heat Stress (May – September 2008 –2012)

Demographic Variables and Subgroupsa Risk Ratio (95% CI)

Age, yearsb

4 or younger 1.318 (1.217, 1.427)

5 – 24 1.339 (1.310, 1.369)

25 – 44 1.372 (1.341, 1.403)

45 – 64 1.377 (1.345, 1.409)

65 – 84 1.386 (1.346, 1.427)

85 or older 1.400 (1.330, 1.474)

Sexb

Male 1.363 (1.340, 1.386)

Female 1.370 (1.345, 1.396)

Race/Ethnicityb

White, Non-Hispanic 1.374 (1.351, 1.397)

Black, Non-Hispanic 1.338 (1.304, 1.373)

Hispanic 1.371 (1.330, 1.414)

Other 1.365 (1.315 1.416)

Monthb

May 1.373 (1.329, 1.418)

June 1.370 (1.341, 1.400)

July 1.361 (1.335, 1.388)

August 1.388 (1.340, 1.439)

September 1.326 (1.270, 1.384)

NYC onlyb 1.371 (1.338, 1.405)

Rest of NYSb

Rural NYS 1.373 (1.302, 1.448)

Urban NYS excluding NYC 1.362 (1.337, 1.388)

Low Ozone/ Low PM2.5
c 1.356 (1.334, 1.379)

High Ozone/ Low PM2.5
c 1.287 (1.263, 1.312)

Low Ozone/ High PM2.5
c 1.434 (1.405, 1.463)

High Ozone/ High PM2.5
c 1.361 (1.342, 1.381)

Unadjusted 1.433 (1.418, 1.448)

Adjusted for PM2.5 only 1.367 (1.348, 1.385)

Adjusted for Ozone only 1.400 (1.382, 1.419)

Adjusted for PM2.5 & Ozone 1.366 (1.347, 1.386)
aAbbreviations: RR Risk Ratio, CI confidence interval
bAdjusted for ozone and PM2.5'
c Low ozone= 33.95ppb (25th percentile), high ozone = 52.56ppb (75th

percentile); low PM2.5 = 6.26 μg/m3 (25th percentile), high PM2.5 = 13.06 μg/m3

(75th percentile)
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Fig. 3 Modeled relationship between risk ratio of hospitalization/ ED visit four health outcome and same-day temperature metrics (heat stress &
dehydration)/ lagged temperature metrics (acute kidney failure & CVD) during the summers of 2008 – 2012 in New York State. Specific points
labeled on the curve identify the minimum risk temperature (MRT, purple) and the excess risk temperature (ERT, red), representing different
conceptualizations of trigger points for intervention
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rural/urban areas, and exposure month for all health out-
comes. People aged 25–44 years were more susceptible to
dehydration and heat stress compared to those between
ages 5 and 24 years. The increased risk in the 25–44 group
may be elevated because of subjects in this category have
a higher likelihood of being exposed to heat through occu-
pational and/or recreational exposures. Higher risk among
older adults between 65 and 84 years old may be due to
existing comorbid conditions that may make them more
susceptible to heat stress [31].
The risk of dehydration in the transition months (May

and September) is lower in magnitude than the hotter
months of June, July and August. This may be due to
the infrequency of events during this period. However,
since the risk is still statistically significant, it suggests
that when heat events occur in transition months,
people are less prepared and likely to experience adverse
health outcomes. There have been inconsistent findings
for heat-health risk by gender [32–35]. In this study, we
did not find significant differences between the risk of
heat stress among females and males. But females were
less likely to have dehydration-related ED visit/admis-
sions compared to males. This is consistent with results
from the Center for Disease Control and Preventions’
Environmental Public Health Tracking Program survey,
where males were found to be more affected by adverse
heat-related conditions than females [36]. These differ-
ences may be due to sex differences in sweat threshold,
sweat rate, morphology (more muscle and less fat in men)
and different levels of hormones regulating fluid balance
[32]. They could also reflect the tendency for men to en-
gage in more outdoor work than women, especially in the
construction and agricultural industries [33–35].
Furthermore, we explored the spatial distribution of ef-

fects of temperature on heat-health outcomes in NYS. As
expected, the metropolitan NYC area had the highest risk;
likely due to its geographic location and the Urban Heat
Island effect that results from building materials that re-
tain heat and increased anthropogenic heat production
[37, 38]. Rural areas in the region are perceived to be at
lower risk due to a temperate climate and uncommon
heat events. However, risk ratios for other urban centers
and rural areas in NYS were comparable. We surmise that
with increasing temperatures, a lack of climate mitigation
measures such as access to home air-conditioners and
public cooling centers, may lead to an increase in suscep-
tibility to heat morbidity in these regions [37, 39].
Although we would expect that those with chronic

health conditions may be at a higher risk, we observed
an overall lower risk of hospitalization/ED visit for heat
stress and dehydration in this group. It has been sug-
gested that those with chronic long-standing conditions
are more likely to avoid outdoor exposures during un-
pleasant or extreme weather, thus resulting in a null or

negative correlation with temperature [24, 40]. A
sub-analysis of comorbid conditions among those who
visited the hospital for heat stress and dehydration
during the study period supported this hypothesis
(Additional file 1: Figure S2).
Heat warning systems utilize myriad approaches to

characterize threshold temperatures for adverse effects
of heat and form an important part of regional heat
mitigation and climate adaptation policies [11, 41, 42].
Recognizing that the Excessive Heat Warning / Heat
Advisory criteria should be based on regional climate
variability and the effect of excessive heat on the local
population, the NWS encourages regional offices to
work with health departments and develop criteria based
on scientific evidence derived from local data [43]. The
NYSDOH has therefore worked closely with the local
weather service offices to develop a recommendation to
lower the heat advisory thresholds in our region based
on results of this study. Other efforts in the northeastern
US including NYC where criteria have been changed
based on the predicted number of deaths attributable to
forecast heat events were based on monitoring data from
mostly urban centers [43, 44]. Prior to this study, the
heat advisory threshold for the upstate NY region and
surrounding areas was 37.8 °C (100 °F) or more for two
consecutive hours. However, our research findings have
shown that this criteria for issuing heat advisories may
not be sufficiently protective for public health. The ERT
for heat stress morbidity using the maximum heat index
is 28.8 °C (83 °F) and the MRTs for other health
outcomes in the study were between 24 and 26 °C
(75.2–78.8 °F). We recommended that a conservative
heat advisory threshold of 35 °C (95 °F) be considered for
the general public, as that would capture a high propor-
tion of heat events likely to result in significant morbid-
ity, while avoiding warning fatigue if frequent advisories
were issued at lower temperatures. Based on research
findings and recommendations, four NWS offices
(Albany, NY; Binghamton, NY; Buffalo, NY; and Burling-
ton, VT) changed their heat advisory criteria for New
York, effective on or about June 1st, 2018 to 35 °C (95 °F)
or more for two consecutive hours. Lower advisory criteria
for high risk populations such as outdoor workers, student
athletes and school children are either already in place or
being considered in the region [45–47]. The NWS
heat-advisory threshold for NYC had been lowered previ-
ously [43]. We also recommend that heat awareness mes-
saging be initiated early in the summer as our research
suggests that significant morbidity risks can occur at tem-
peratures lower than the NWS heat advisory thresholds.
Current public health interventions to increase aware-

ness of heat exposure symptoms and provide advice for
staying cool focus on public outreach to urban popula-
tions. Local health departments in rural areas are at the

Adeyeye et al. Environmental Health           (2019) 18:35 Page 10 of 13



forefront of combating climate effects but are challenged
with competing priorities and lack of tools and resources
[48]. Using spatially resolved climate and health data
from this project, NYSDOH has developed tools and
infographics for each county in NYS to aid climate
health surveillance and mitigation efforts [49]. Findings
from this project have also been included in extreme
heat messaging issued by the NYSDOH and dissemi-
nated through public websites and social media.
As with any epidemiologic analysis of administrative

datasets, there are some limitations of our study that
should be considered when interpreting results. We used
hospital administrative data to identify individuals with
the health outcomes assessed. Residential addresses were
used to assign exposure temperatures in lieu of informa-
tion on personal activities including exposure to indoor
temperatures; and may not reflect the point of exposure,
thereby leading to exposure misclassification if the
exposure occurred elsewhere. However, the use of case-
crossover design and same-day of the week selection for
control days help in minimizing the bias introduced. We
also do not know how behavioral adaptation relates to ex-
posure such as access to air conditioning and cooling cen-
ters. Factors of the built environment that increase
temperature such as housing type and socio-economic
factors were not available. Occupational exposures were
also not accounted for in this analysis. In urban areas,
where land cover is predominantly non-vegetated, differ-
ences between the Land Surface Temperature (LST) and
air temperature can be large. LST is the radiative skin
temperature of the surface and is usually higher than air
temperature. Our use of NLDAS air temperature data ob-
viates this complication. NLDAS temperature data give es-
timates of the ambient temperature, derived from air
monitor, remote sensing, and weather model data. The
NLDAS air temperature compares relatively well with
measured monitor data, where available [50]. Systematic
differences exist in the association between temperature
and health outcome based on time and type of
temperature observations; and may consequently translate
into differences in estimated temperature-health effects
[51]. Although the spatial resolution of the NLDAS 1/
8th-degree grid temperature data provides a more accur-
ate measure of exposure than sparse monitoring networks,
the urban scale features such as urban heat island ef-
fects may not be well-captured. Other studies com-
paring health effects using spatially resolved models
with those estimated using monitoring data have
demonstrated a better model fit probably due to bet-
ter estimation of temperature variability in small areas
[4]. Our study only estimated heat risks on morbidity.
Previous studies evaluating heat risks of mortality
have found lower risk ratios and higher threshold
temperatures for mortality [11, 27].

Conclusions
In this project, we demonstrate the application of spatially
resolved climate data in informing climate policy for a large
region comprising urban and rural areas. Future efforts will
be needed to assess health impacts on mortality. Our ef-
forts have led to policy changes around definition and pub-
lic health information on regional heat advisories. We
continue to monitor how a change in heat advisory thresh-
old will impact public health effects of heat in the region.
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