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Abstract

Background: There is increasing interest in examining the consequences of simultaneous exposures to chemical
mixtures. However, a consensus or recommendations on how to appropriately select the statistical approach analyzing
the health effects of mixture exposures which best aligns with study goals has not been well established. We recognize
the limitations that existing methods have in effectively reducing data dimension and detecting interaction effects
when analyzing chemical mixture exposures collected in high dimensional datasets with varying degrees of variable
intercorrelations. In this research, we aim to examine the performance of a two-step statistical approach in addressing
the analytical challenges of chemical mixture exposures using two simulated data sets, and an existing data set from
the Navajo Birth Cohort Study as a representative case study.

Methods: We propose to use a two-step approach: a robust variable selection step using the random forest approach
followed by adaptive lasso methods that incorporate both dimensionality reduction and quantification of the degree
of association between the chemical exposures and the outcome of interest, including interaction terms. We compared
the proposed method with other approaches including (1) single step adaptive lasso; and (2) two-step Classification and
regression trees (CART) followed by adaptive lasso method.

Results: Utilizing simulated data sets and applying the method to a real-life dataset from the Navajo Birth Cohort Study,
we have demonstrated good performance of the proposed two-step approach. Results from the simulation datasets
indicated the effectiveness of variable dimension reduction and reliable identification of a parsimonious model compared
to other methods: single-step adaptive lasso or two-step CART followed by adaptive lasso method.

Conclusions: Our proposed two-step approach provides a robust way of analyzing the effects of high-throughput chemical
mixture exposures on health outcomes by combining the strengths of variable selection and adaptive shrinkage strategies.
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Background
Environmental chemical exposures often occur in mixtures
and to our knowledge there is no consensus or established
recommendations on how to appropriately select the statis-
tical approach which best aligns with study goals assessing
the health effects of mixture exposures [1–3]. The analytical

challenges of complex mixtures are multifold. First, as
humans are routinely exposed to multiple chemicals simul-
taneously or sequentially, high dimensionality of environ-
mental chemical exposure data is common. Second, the
toxicity of individual chemicals may depend on their interac-
tions with other chemicals. Third, the nonlinear dose-re-
sponse relationship is not commonly considered due to the
difficult interpretation of multidimensional interactions.
Fourth, statistical methods which appropriately incorporate
the multicollinearity among chemicals have not been exten-
sively investigated. Lastly, with the existence of multiple
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metal exposures along with the interactions among them,
the statistical power for identification of the interaction ef-
fects is often low considering the large number of pairwise
interactions.
To accommodate the analytical challenges in evaluating

the health effects of the complex multiple interacting
chemical mixture exposures, we propose to use a two-step
approach: a robust variable selection step using the random
forest approach followed by adaptive lasso methods. We
expect this two-step approach incorporates both
dimensionality reduction and quantification of the degree
of association between the chemical exposures and the out-
come of interest, including interaction terms. We will apply
the proposed approach to analyze a high-dimensional data
set from an ongoing study in our program: the Navajo
Birth Cohort Study (NBCS). The NBCS is a prospective ep-
idemiologic study designed to investigate the relationship
between abandoned uranium mine (AUM)-related metal
exposures, birth outcomes, and early developmental delays
on the Navajo Nation. Previous studies have reported evi-
dence on the link between AUM-related metal exposures
and health outcomes [4, 5]. The issue is of particular
concern on the Navajo Nation where more than 500
AUMs remain as a legacy of Cold War mining [6]. Expos-
ure of community members to metal mixtures in AUM
waste may contribute to diseases including hypertension,
diabetes, and kidney disease [4, 5, 7]; arsenic and cadmium
may damage the kidneys [8]; arsenic exposure may lead to
retention of DNA damage by inhibiting DNA repair or
directly causing DNA damage through oxidative damage
[9, 10]; while the children’s exposures do not necessarily
depend on the parents’ exposure in communities residing
near abandoned mines, the parents’ exposure to toxic
metals may have adverse effects on children’s health and
developmental outcomes [11–13]. Considering the proxim-
ity of Navajo community members to AUMs, it is of im-
portance to systematically investigate the health impact of
simultaneous exposures to multiple metals.
The objective of this study is to utilize and test the per-

formance of the proposed two-step statistical approach to
address the analytical challenge in chemical mixture expos-
ure studies, specifically, the high dimensional interacting
complex chemical mixtures. We will compare the perform-
ance of the proposed approach to other methods using
multiple simulated data sets. We will also apply this
approach to examine the relationship between exposures to
environmental metal mixtures and biomarkers of oxidative
stress in the NBCS participants.

Motivation
While there is increasing interest in examining the simul-
taneous exposures to chemical mixtures and rising con-
cerns on the limited statistical approaches for handling
chemical mixtures, it is our view that there is no consensus

on the state-of-the-art statistical practices to analyze those
data, or evaluation and recommendations of approach per-
formance relative to dataset characteristics.

Review of existing statistical approaches and their
limitations
Recognizing the importance and analytical challenges in de-
termining the health effects of complex mixture exposures,
the National Institute of Environmental Health Sciences
(NIEHS) convened a workshop with a special focus on the
statistical approaches (“Statistical Approaches for Assessing
Health Effects of Environmental Chemical Mixtures in Epi-
demiology Studies”) [1], which brought together multidis-
ciplinary experts including epidemiologists, statisticians,
and toxicologists. Participants applied various statistical
methods to two simulated data sets assuming certain
exposure–response relationships and one real-world data
set containing human health data and relevant mixtures,
and compared the analysis results at the workshop. The
meeting organizers shared the lessons learned from learned
the innovative workshop [1] and reported the observed
considerable variability across different methods for the
given datasets. The analysis results from many methods
were more divergent and less aligned with the truth for the
more complex simulated dataset provided by the workshop.
The ability to detect interaction effects between exposures
largely differed among the various approaches. The conclu-
sion of the workshop is that there is no consensus on the
state-of-the-art statistical methods for appropriate analysis
of chemical mixtures as pointed out by the organizing com-
mittee and NIEHS scientists [1].
The statistical methods presented at the workshop can

be classified into four major categories: 1) Classic linear
regression; 2) Classification and prediction; 3) Variable
selection and shrinkage strategies; 4) Exposure-response
surface estimation [1]. While a fraction of the methods
(21%) were Bayesian approaches, the majority of the pre-
sented methods were frequentist approaches. Each individ-
ual approach has its own limitations in determining the
relationship between health outcomes with environmental
chemical mixture exposures while appropriately accounting
for issues such as multicollinearity, high dimensionality,
interactions and non-linear dose response relationships.
It is worth noting that in order to overcome the limita-

tion of individual single approaches, a few of the presented
abstracts at the workshop employed combinations of two
or more methods including 1) graphical visualization plus
structural equation models; 2) a four-step procedure
combining: screening, data transformation/combination,
variable selection and model verification; 3) a two-step
procedure of using prioritization of interactions followed by
least absolute shrinkage and selection operator (lasso)
approach: 4) principal component analysis plus
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regression strategies; 5) tree-based screening such as
CART with a lasso approach. There are some limita-
tions in the methods utilized in the combination ap-
proaches. First, screening based on correlations does
not account for the interaction effects between expo-
sures on the outcome variable [14]; second, regular
regression approaches do not handle multicollinearity
effectively [15, 16]; third, prioritizing based on inter-
action effects may bias the estimation of main effects
[17]; fourth, the principal component regression coef-
ficients are difficult to interpret, and therefore do not
separate out the most important exposures [18, 19].
We note that tree-based and lasso approaches have

been demonstrated to have appealing features that
allow handling the analytical challenges of the chemical
mixture data as presented in the workshop, and these
methods are also increasingly employed in the field of
high dimensional data analysis [20–25]. Motivated by a
recent report which used combined CART and variable
selection methods to analyze multiple pollutants and
their interactions [3], we propose to use an improved
two-step procedure of combining the random forest
(RF) [25, 26] with adaptive lasso [27] approaches. The
RF is used for reducing the dimensions of the multiple
metal exposures in the first step, and the adaptive lasso
approach is used in the second step for quantifying the
association between the exposures and the outcome, in-
cluding interaction terms. We expect that the proposed
approach will overcome the limitations of CART (e.g.
overfitting) and regular lasso approaches (e.g. bias in
coefficient estimates). The RF method is a machine
learning approach which effectively handles datasets
with many more variables than subjects, captures non-
linear relationships between predictor variables, effect-
ively handles missing values, and produces more robust
results that are insensitive to outlier effects [28]. The
adaptive lasso method is a modified version of lasso
developed by Zou [27] that enjoys a very nice oracle
property, i.e., it performs as well as if the true under-
lying model was given in advance.

Motivating dataset from the NBCS
The Navajo Nation in the Four Corners region of the
southwestern US covers a land area equivalent to the
state of West Virginia, ~ 27,000 sq. mi. It is the largest
US reservation, covering parts of Arizona, New Mexico
and Utah, and the largest single-affiliation Native
American tribe in the country [29]. The 2010 U.S.
census reported 47% of the enrolled Navajo tribal
population, or approximately 160,000 Navajos living on
the Navajo Nation. The population is young with a me-
dian age of 28 years, and underemployed with a 55.9%
reported unemployment rate, and an average household
income of $27,389 (https://www.discovernavajo.com/

fact-sheet.aspx). The NBCS was initiated to address
Navajo community concerns about how chronic envir-
onmental exposure to uranium mine waste affects hu-
man health. The waste legacy from the Cold War
mining includes a mixture of metals co-located geo-
logically with the uranium and left behind, along with
residual uranium, after extraction of the target uran-
ium. The research team led by the University of New
Mexico (UNM) Health Sciences Center Community
Environmental Health Program included partnerships
with Navajo Nation Department of Health, Navajo Area
Indian Health Service (NAIHS), Southwest Research In-
formation Center and the US Centers for Disease Con-
trol and Prevention Agency for Toxic Substances and
Disease Registry (CDC/ATSDR) National Center for
Environmental Health (NCEH). Written informed con-
sent was obtained from all study participants and the
study protocol approved by the University of New
Mexico Institutional Review Board (HRPO 11–310) and
the Navajo Nation Human Research Review Board
(NNR 11.323).
In 2013, NBCS began recruiting pregnant women

between 14 and 45 years of age who had lived on the
Navajo Nation for at least 5 years, were willing to de-
liver at a participating NAIHS hospital, and have their
child followed-up for 1 year postnatally. The NBCS
has enrolled over six hundred pregnant women, and
blood and urine samples were collected from each of
the participant at the time of enrollment. The bio-
monitoring exposure data are comprised of metal ex-
posures measured in three types of samples (blood,
serum, and urine) from all NBCS participants when
they enrolled. Metals were measured by the Centers
for Disease Control and Prevention (CDC) Division of
Laboratory Sciences. The biomonitoring metal expos-
ure data have gone through the following strict qual-
ity control procedures: (1) The small proportion of
duplicate analyses were averaged. Duplicates were
highly concordant; (2) Urine measures were appropri-
ately corrected for creatinine; (3) Concentrations for
metals below the limit of detection (LOD) were im-
puted by LOD/√2; and (4) In order to reduce bias
and data dimension, 11 metals with more than 40%
missing values (due to below LOD or other non-LOD
reasons) were excluded from analysis. The excluded
metals include: Ethyl Mercury in Blood (BHGE), Me-
thyl Mercury in Blood (BHGM), Inorganic Mercury in
Blood (IHG), Arsenic (V) acid in Urine (UAS5),
Arsenobetaine in Urine (UASB), Arsenocholine in
Urine (UASC), Beryllium in Urine (UBE), Mercury in
Urine (UHG), Monomethylarsinic Acid in Urine
(UMMA), Platinum in Urine (UPT), Trimethylarsine
in Urine (UTMO). These metals were excluded be-
cause their small variation will explain only a small
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proportion of the variation in the outcome variable,
which may induce noise and limit the performance of
statistical inference. The metal measurements were
collected from the following matrices: blood (5
metals), serum (3 metals), and urine (16 metals). The
list of metals analyzed in the NBCS along with their
abbreviations is included in Table 1.
The primary health outcome is the biomarker of oxidative

stress, which is considered an important component of vari-
ous diseases [30–35]. The oxidative stress outcome was
measured by the ratio of 8-iso-PGF2α to prostaglandinF2α
biomarkers, which has been established as a valid biomarker
to distinguish enzymatic versus chemical lipid peroxidation
[36, 37]. A subset of the maternal enrollment urine samples
was selected for oxidative stress analysis, the basis of this in-
vestigation. The enrollment protocol prioritized recruitment
of women during their 1st trimester but an open enrollment
process was used, allowing women to enroll at any time dur-
ing their pregnancy. We randomly selected 132 participants
with 66 participants each from the two groups with serum
zinc concentrations above and below the World Health
Organization (WHO) level of sufficiency of 70 μg/dL.
In our recently published article which focused on

hypothesis-driven restricted set of analysis [38], we have
investigated the contributions of uranium, total arsenic,
arsenous (III) acid (arsenite, AsIII), dimethylarsinic acid
(DMA), and zinc to the oxidative stress biomarker out-
come. For this investigation, we have broadened the ex-
posure suite to include metals detected in more than 60%
of the samples described as above. The characteristics of
the study population were described in the Additional file 1:
Table S4 of our previous publication [38] and are shown
in Additional file 1: Table S1. In addition to the metals, we
also included other demographic variables (age, cere-
monial tobacco usage, employment, enrollment trimester
and BMI) previously shown to be linked to the oxidative
stress outcome [38]. The outcome variable oxidative stress
biomarker is significantly different among ceremonial to-
bacco users vs non-users and among moms enrolled at
different trimesters [38]. The correlations between the
metals are described in Additional file 1: Figure S1. The
maximum correlation is found to be 0.76. To conduct a
fair comparison among metals that have different magni-
tudes of exposures, we first performed log transformation
to reduce the skewness of the variable distributions, and
then performed standardization using z score transform-
ation in the statistical modeling. The distributions of the
metals before and after standardization are described in
boxplots (Additional file 1: Figure S2).

Methods
Overview
We propose to examine a two-step procedure of com-
bining the random forest (RF) [25, 26] with adaptive

lasso [27] approach for analyzing the chemical mixture
data. We evaluated the performance of the proposed
two-step method, using simulated datasets (dataset #1
provided by the NIEHS workshop, and datasets that we
simulated to represent a larger number of correlated ex-
posure variables with varying correlations) and a real-life
dataset from the NBCS. We compared the proposed
method with other approaches including (1) single step

Table 1 List of metals with their abbreviations analyzed in the
NBCS study

Abbreviations Description of metal analytes in NBCS

BCD Cadmium - Blood

BHGE Ethyl Mercury - Blood

BHGM Methyl Mercury - Blood

BMN Manganese - Blood

BPB Lead - Blood

BSE Selenium - Blood

IHG Inorganic Mercury - Blood

THG Mercury Total - Blood

SCU Copper - Serum

SSE Selenium - Serum

SZN Zinc - Serum

UAS3 Arsenous (III) acid - Urine

UAS5 Arsenic (V) acid - Urine

UASB Arsenobetaine - Urine

UASC Arsenocholine - Urine

UBA Barium - Urine

UBE Beryllium - Urine

UCD Cadmium - Urine

UCO Cobalt - Urine

UCS Cesium - Urine

UDMA Dimethylarsinic Acid - Urine

UHG Mercury - Urine

UIO Iodine - Urine

UMMA Monomethylarsinic Acid - Urine

UMN Manganese - Urine

UMO Molybdenum - Urine

UPB Lead - Urine

UPT Platinum - Urine

USB Antimony - Urine

USN Tin - Urine

USR Strontium - Urine

UTAS Arsenic Total - Urine

UTL Thallium - Urine

UTMO Trimethylarsine - Urine

UTU Tungsten - Urine

UUR Uranium - Urine
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adaptive lasso; and (2) two-step with CART followed by
the adaptive lasso approach which was reported previ-
ously [3] and was also widely utilized in the NIEHS
workshop.

Classification and regression trees (CART)
Classification and regression trees are machine-learning
methods for constructing prediction models from data,
obtained by recursively partitioning the data space and
fitting a simple prediction model within each partition
[39]. For continuous dependent variables, the prediction
error for regression trees is estimated by the squared
difference between the observed and predicted values,
which can be used to select the variables with the most
predictability.

Random Forest (RF)
The Random Forest method is an ensemble-based ap-
proach which grows many trees. Each tree is built using
a recursive portioning method to split the feature space,
spanned by all predictor variables, into groups of sub-
jects with similar association patterns between the pre-
dictor variables and the outcome variable. Specifically,
each tree is grown using a randomly drawn bootstrap
sample of the data. Based on a randomly selected subset
of the variables, a criterion based on mean square error
is used to split the tree nodes. Prediction is made by
averaging over an ensemble of trees. We used the vari-
able importance (VIMP) measure to pre-select import-
ant variables into the second stage analysis. VIMP is a
measure of how important a variable is, which estimates
the change in prediction error if that variable is elimi-
nated from analysis. A larger VIMP value corresponds
to better predictability of a variable.

Adaptive lasso (alasso)
The lasso method proposed by Tibshirani [40] shrinks
many coefficients towards zero by imposing an L1 norm
penalty, which has been extensively studied in performing
variable selection. Lasso estimates of unknown parameter
Beta are defined as

β̂lasso ¼ argminβ∥y‐
Xp

j¼1
x jβ j∥

2 þ λ
Xp

j¼1
β j

���
���; ð1Þ

Where y denotes the outcome variable, xj, j = 1,… , p
represents the p number of exposure variables, and λ is
a nonnegative regularization parameter that can be de-
termined by cross validation.
Although lasso is often successful, it has some limita-

tions for certain situations. First, lasso produces biased
estimates for the large coefficients. Second, in the exist-
ence of multiple highly correlated variables, lasso tends
to arbitrarily pick only one or a few of them and shrinks
the rest to zero. Adaptive lasso is a modified version of

lasso that was developed by Zou [27] to address the limi-
tations of lasso. Using a flexible weighting scheme, the
adaptive lasso applies different amounts of shrinkages to
different coefficients, whereas lasso applies the same
penalty to every regression coefficient which may induce
potential bias. Adaptive lasso combines the good fea-
tures of both subset selection and ridge regression,
which appears to perform well in the existence of
multicollinearity.
Adaptive lasso penalizes the weighted L1-norm of the

regression coefficients, and the coefficient estimates are
defined as:

βalasso ¼ argminβ∥y‐
Xp

j¼1
x jβ j∥

2 þ λ
Xp

j¼1
wj β j

���
���;

ð2Þ

where w is a weighing vector with wj ¼ jβ̂initialj j
−γ
. Zou

[27] suggested a two-dimensional cross-validation to
tune the adaptive lasso and find the optimal pair of (γ,
λ), and suggested constructing the adaptive weights

using initial β estimates by β̂ðolsÞ or β̂ðridgeÞ when multi-

collinearity is a concern. Their simulation results have
demonstrated that the adaptive lasso compares favorably
with other sparse modeling techniques.

Performance evaluation
We compared the performance among three methods:
(1) single step adaptive lasso; (2) two-step with CART
followed by adaptive lasso approach; and (3) two-step
with RF followed by adaptive lasso approach. For each of
the methods, we fit two models with one including all
the main effects for the exposure variables and another
one including additionally all pairwise interaction terms
between the exposure variables.
A number of performance metrics including R2, Ad-

justed R2, mean squared error (MSE), and mean squared
prediction error (MSPE) were calculated to measure the
performance of the three methods (each with or without
the interaction terms) in analyzing the health effects of
metal mixtures. We also performed 10-fold cross valid-
ation to calculate the prediction performance measures.
Specifically, we randomly and equally divided the datasets
into 10 parts. Then, for each iteration we used the
remaining 9 parts as the training set to build a model, and
evaluated the model prediction error on the remaining
part. The prediction error of each partition was then com-
bined to produce the 10-fold cross-validation estimates of
prediction error.

MSPE is calculated as:
PK

k¼1
nk
n MSPEk ¼

PK
k¼1

nk
n

P
i∈Ck

ðyi−ŷiÞ
2

nk
, where C1, C2,… , CK denote the K parti-

tions of the data each with size of nk.
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Software
All statistical analyses and simulations were performed
using statistical software R 3.4.2. Adaptive lasso models
were fit using the glmnet package, and Random Forest
model selection was performed using the randomFor-
estSRC package within the R.

Results
Simulation data set 1: NIEHS workshop dataset
We applied the proposed method to the simulated dataset
#1 provided by the NIEHS workshop (https://www.niehs.
nih.gov/about/events/pastmtg/2015/statistical/). These syn-
thetic data can be viewed as the results of a prospective epi-
demiologic cohort study, which consists of correlated
exposure variables X = (X1, X2,… , X7), a potential con-
founder variable (Z), and a continuous outcome variable
(Y) resulting from a biologically-based dose response func-
tion of the exposure variables, plus the effects of confound-
ing variables and normally distributed random noise. The
simulation was set such that exposures X1 and X2 contrib-
uted positively to the outcome with X1 twice as potent as
X2; X4 and X5 contributed negatively to the outcome with
X5 4.5 times as potent as X4; and X7 contributed positively
to the outcome. N = 500 samples were included in the syn-
thetic dataset.
The selected covariates and model performance of the

three methods, modeling the main effects of exposure
variables are shown in Fig. 1, Table 2, and Additional file
1: Table S2. Figure 1 is a forest plot describing the re-
gression coefficients modeling the relationship between
exposure variables and outcome (boxes) and their 95%
confidence intervals (CI) (lines) using the three methods

which are color coded as indicated in the legends. The
single step adaptive lasso method identified a positive
association between X1 and X7 and the outcome, and a
negative association between X4 and X5 with the out-
come with X5 4.1 times as potent as X4. Two variables,
X2 and X3, are included in the final selected model, but
the coefficients are not statistically significantly different
from zero. The RF followed by adaptive lasso method
identified X1, X5 and X7 to be significantly associated
with the outcome, where the coefficient estimates are
similar to those identified using the single step adaptive
lasso approach. While X2 and X4 which have the smaller
magnitude of association effects were not identified, the
total variance explained by the selected model is close to
the more complex model by the single step adaptive
lasso method (adjusted R2 are 91.9 and 92.2%, respect-
ively). The MSPE are about the same (9.47 vs. 9.55). The
CART followed by adaptive lasso method properly iden-
tified the association of X1 and X7, which accounts for
only 81% of the total outcome variance. Adjusted R2 is
about 10% less compared to other two methods, and the
MSPE is much larger.
The selected covariates and model performance of the

three methods, modeling the main and pairwise inter-
action effects of exposure variables, are shown in Fig. 2,
Table 3, and Additional file 1: Table S3. The single step
adaptive lasso method properly identified the synergistic
interaction between X4 and X5, and the antagonistic in-
teractions between X4 and X7, and X5 and X7. Adjusted
R2 was increased slightly from 92.2 to 94.5%. The
two-step RF followed by the adaptive lasso method prop-
erly identified a different interaction: the synergistic

Fig. 1 Simulated Data from the NIEHS Workshop (No Interaction). The forest plot describing the regression coefficients (boxes) and their 95%
confidence intervals (lines) for modeling the relationship between exposure variables and outcome using three methods: (a) single step adaptive
lasso (green); (b) two-step with CART followed by adaptive lasso approach (blue); and (c) two-step with RF followed by adaptive lasso approach
(red). The numbers on X axis represent the magnitude of the regression coefficients. True nonzero effects were labeled on for variables on the Y
axis in parentheses
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interaction between X1 and X7. The adjusted R2 was
increased from 91.9 to 93.4%, which is slightly smaller
than that using the single-step adaptive lasso method.
Similarly, the MPSE for the models including the inter-
action terms decreased for both the single-step adaptive
lasso and two-step RF + adaptive lasso method, where
the two-step approach yields a slightly higher MSPE.
One explanation is that the relatively small effect of X4

on the outcome was not preselected to be an important
predictor variable using the RF method, therefore inter-
action terms between X4 and other variables were not
detected. The two-step CART followed by adaptive lasso
method failed to identify any of the pre-specified inter-
action effects in the simulation setting, and the adjusted

R2 for the model including interaction terms improved
by a few percentage while the MSPE remained high.
The major findings from the application to the simula-

tion dataset by NIEHS are that while the two-step ap-
proach identified less presumed association effects and
interaction effects, it discovered a more parsimonious
model which had a comparable performance compared
to the single step approach. While RF is a tool that can
effectively identify important variables and perform data
dimension reduction, it may not help much in analysis of
small dimension datasets such as the one provided in the
workshop.

Simulation data set 2: correlated dataset with variables
that mimic real-life exposure profile
We simulated another dataset which consists of a larger
number (m =20) of correlated exposure variables X
= (X1, X2,… , X20), and a continuous outcome variable
(Y) resulting from the linear combination of the main ef-
fects and interaction effects of a subset of the exposure
variables, plus normally distributed random noise. N =
500 samples were simulated. The simulation was set to
include the positive association effects of exposures X1,
X2, X12 and X15, negative effects of X9 and X16, as well as
a synergistic interaction between X1 and X12. We assume
a correlation of r = 0.1 among variables (X1, X2, … , X15)

Table 2 Performance Evaluation for Each Approach for NIEHS
Dataset a (No Interaction)

Adaptive lasso CART+ Adaptive lasso RF+ Adaptive lasso

R2 92.3% 81.5% 91.9%

Adjusted R2 92.2% 81.4% 91.9%

MSE 9.080 21.73 9.50

MSE.CV 9.082 21.72 9.076

MSPE.CV 9.47 22.00 9.55
aThe dataset includes 500 samples and 8 predictor variables with Pearson’s
correlations ranging from −0.13 to 0.89. MSE Mean square error, MSE. CV Cross
validation, MSPE Mean square predictive error

Fig. 2 Simulated Data from the NIEHS Workshop (Including Pairwise Interaction Terms). The forest plot describing the regression coefficients
(boxes) and their 95% confidence intervals (lines) for modeling the relationship between exposure variables and outcome using three methods:
(a) single step adaptive lasso (green); (b) two-step with CART followed by adaptive lasso approach (blue); and (c) two-step with RF followed by
adaptive lasso approach (red). The numbers on X axis represent the magnitude of the regression coefficients. True nonzero effects were labeled
for variables on the Y axis in parentheses
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and a correlation of r =0.05 among variables (X16, X17,
… , X20) . The true model coefficients and those identi-
fied using the three methods with the main effects
model are shown in Fig. 3 and Additional file 1: Table
S4, their model performance measures are shown in
Table 4. The corresponding results of models including
pairwise interaction effects are shown in Fig. 4 and
Table 5, and Additional file 1: Table S5. The two-step
RF + Adaptive lasso method correctly identified the main
effects of the non-zero coefficients and shrunk the rest
to zero. While the single-step adaptive lasso method de-
tected the true association effects for (X1, X2, X9, X12,
X15, and X16), it also falsely detected null effects for X3

and X7. The two-step CART+adaptive lasso method
falsely detected null effects for X3 and X7, and also failed
to detect the true effects of X9 and X15, yielding poorer
performance (small adjusted R2 and larger MSPE). The
performance for single-step adaptive lasso and two-step
RF + adaptive lasso is similar as measured by comparable
adjusted R2 and smaller MSPE using cross validation.
Again, the two-step RF + adaptive lasso approach yielded
a parsimonious model with less complexity. Adding pair-
wise interaction terms to the two-step RF + adaptive
lasso method in addition detected the interaction effects
between X1 and X12. While several null interaction ef-
fects were falsely detected in all three models which may
result from the complex correlation structure among the
multiple exposure variables, the false detection rate is
the lowest for our proposed two-step approach.
To determine the model performance with varying de-

grees of correlations among predictor variables, we have
performed simulation with various increasing correla-
tions among predictor variables (r =0.3, 0.5, 0.7, and
0.8), where same number of variables (m = 20) and sam-
ples (N = 500) were simulated as previously described in
the simulation data set 2. For each of the correlation set-
tings, we have compared the estimated regression coeffi-
cients with the true simulation coefficients and provided

Table 3 Performance Evaluation for Each Approach for NIEHS
Dataset a (Including Interaction Terms)

Adaptive lasso CART+ Adaptive lasso RF+ Adaptive lasso

R2 94.7% 83.4% 93.6%

Adjusted R2 94.5% 83.1% 93.4%

MSE 6.20 19.56 7.56

MSE.CV 6.10 19.34 7.50

MSPE.CV 7.11 20.76 8.14
a The dataset includes 500 samples and 8 predictor variables with Pearson’s
correlations ranging from − 0.13 to 0.89. The pairwise interaction terms among
the predictor variables were included in the modeling

Fig. 3 Analysis of Local Simulated Dataset (No Interaction). The forest plot describing the regression coefficients (boxes) and their 95%
confidence intervals (lines) for modeling the relationship between exposure variables and outcome using three methods: (a) single step adaptive
lasso (green); (b) two-step with CART followed by adaptive lasso approach (blue); and (c) two-step with RF followed by adaptive lasso approach
(red). The black boxes indicate the true parameter coefficients used in the simulation. True nonzero covariates were set to include: main effects of
X1, X2, X9, X12, X15, X16, and interaction effects between X1 and X12. The numbers on X axis represent the magnitude of the
regression coefficients
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model performance comparison tables for the three
methods: single step adaptive lasso, CART+adaptive lasso,
and RF + adaptive lasso, each modeling with or without
interaction effects. These results were summarized in
Additional file 1: Figures S3, S4 and Tables S6, S7 for r
=0.3; Additional file 1: Figures S5, S6 and Tables S8, S9 for
r =0.5; Additional file 1: Figures S7, S8 and Tables S10,
S11 for r = 0.7; and Additional file 1: Figures S9, S10 and
Tables S12, S13 for r = 0.8. The results from these add-
itional simulations with increasing correlations among the
predictor variables suggest the following: single step adap-
tive lasso approaches tend to estimate a model that in-
cludes the true model variables as a subset [41], i.e. it
identifies more variables than the true model. The RF ap-
proach in the first step performs effective screening and
dimension reduction that retains a subset of variables with
either linear or nonlinear relationships with the outcome
of interest. Our proposed two-step approach is more likely
to detect a parsimonious or sparse model that is closer to
the true model, which in the meantime have prediction
performances better than or as well as the single step ap-
proaches. Improved results are consistently observed for
simulated datasets with modest to moderately large corre-
lated predictor variables (r < 0.8). However, when the cor-
relations are extremely large (e.g. r > 0.8), none of the
three approaches performs very well, with each falsely in-
cluding a subset of true null covariates into the final
model. In such cases, pre-filtering the data prior to ana-
lysis by removing one variable from the highly correlated
pairs based on biological inputs may help improve the
model performance. This is worthy for further investiga-
tion, but it is beyond the current research.

Application to the NBCS
The comparison results of applying the three methods to
analysis of the effects of the metal mixture exposures on
the oxidative stress biomarker collected in the NBCS are
shown in Fig. 5, Table 6, and Additional file 1: Table S14
(without interaction), and Fig. 6, Table 7, and Additional
file 1: Table S15 (with interaction). Potential confounding
variables such as smoking, pregnancy trimester, and age at
interview were evaluated and appropriately adjusted for in

the model. The proposed two-step RF + adaptive lasso
method yielded a model with the largest adjusted R2 and
smaller MSPE using cross validation for the main effects
modeling (Table 6). We observed positive associations be-
tween oxidative stress biomarkers and exposures to
cesium and dimethylarsinic acid in urine, and negative as-
sociations for exposures to barium and thallium in urine
(Fig. 5). For the models including pairwise interaction
terms, the proposed two-step RF + adaptive lasso method
detected the main effects of barium, cesium, and thallium
in urine, interactions between zinc in serum and cobalt in
urine, between zinc in serum and cesium in urine, and be-
tween arsenous (III) acid and thallium in urine in relation
to the oxidative stress outcome. Our proposed two-step
method yielded the smallest MSPE. The single-step adap-
tive lasso yielded a model with largest adjusted R2 and in-
cluded more interaction effects terms than other models.
However, this may illustrate a possible overfitting which
has caused the larger MSPE using cross validation. In this
application to the NBCS dataset, the two-step CART +
adaptive lasso method also had poorer performance
(smaller adjusted R2 and larger MSPE) compared to the
other two methods.

Discussion
We proposed to use a two-step approach combining the
Random Forest (RF) and adaptive lasso methods to
analyze the relationship between mixtures of metal ex-
posures and health outcomes which incorporates detec-
tion of the interaction effects in addition to main effects.
This work aims to improve the model performance of a
two-step with CART and lasso approach previously re-
ported by others [3]. The CART method is a single tree
method, which has some known limitations. First, trees
tend to be non-robust, i.e. a small change in the training
dataset can result in a big change in the tree and its pre-
dictions. Second, the CART algorithm yields locally opti-
mal trees which does not guarantee globally optimal
trees. Third, CART may suffer from the overfitting prob-
lem by generating an overly-complex tree which does
not generalize well to independent test data.
The RF method utilized in the first step provides more

robust results than CART because of the two random-
nesses included in the algorithm (bootstrapped samples
for training each tree and a randomly chosen subset of
candidates for splitting candidates), and use of “out-of--
bag” predictions to evaluate model performance. After
the RF is applied to reduce the data dimension, we
utilize the adaptive lasso approach in the second step to
perform additional variable selection and shrinkage. It
was reported previously that standard lasso approaches
tend to estimate a model that includes the true model
variables as a subset [41], and often times the selected
model covariates are not stable due to correlations

Table 4 Performance Evaluation for Each Approach for Local
Simulated Dataset a (No Interaction)

Adaptive lasso CART+ Adaptive lasso RF+ Adaptive lasso

R2 30.0% 28.2% 29.2%

Adjusted R2 28.9% 27.3% 28.3%

MSE 1.012 1.039 1.025

MSE.CV 1.003 1.038 1.017

MSPE.CV 1.095 1.088 1.078
a The dataset includes 500 samples and 20 predictor variables with Pearson’s
correlations ranging from − 0.13 to 0.22
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Fig. 4 Analysis of Local Simulated Dataset (With Interaction). The forest plot describing the regression coefficients (boxes) and their 95%
confidence intervals (lines) for modeling the relationship between exposure variables and outcome using three methods: (a) single step adaptive
lasso (green); (b) two-step with CART followed by adaptive lasso approach (blue); and (c) two-step with RF followed by adaptive lasso approach

(red). The black boxes indicate the true parameter coefficients (β̂) used in the simulation. True nonzero covariates were set to include: main
effects of X1, X2, X9, X12, X15, X16, and interaction effects between X1 and X12. The numbers on X axis represent the magnitude of the
regression coefficients
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among a large number of predictor variables. We have
observed similar results in our simulations, i.e., the lasso
identifies more variables than the true model. Our
two-step approach utilizes RF approach in the first step
to select variables associated with the outcome that have
either linear or nonlinear relationships. This step aims to
largely reduces the data dimensionality especially when
interaction effects are necessary to be considered in the
model, as illustrated in our motivating data. After the
pre-filtering of variables in the first step, the adaptive
lasso approach in the second step is more likely to iden-
tify a parsimonious or sparse model that has prediction
performances better than or as well as the single step
approaches. Our two-step approach provides a flexible
weighted penalty to the coefficients and overcomes the

limitations of lasso in generating biased estimates for
large coefficients or when multicollinearity among vari-
ables exist. This proposed two-step approach provides
an effective way of analyzing metal-mixture exposures
and their impact on health outcomes by combining vari-
able selection and adaptive shrinkage strategies.
Using hypothetical datasets and an application to a

real-life dataset from the Navajo Birth Cohort Study, we
observed that the proposed two-step method performs
effective variable dimension reduction and identifies a
parsimonious model that outperforms or performs as
well as the other comparison methods (single-step ap-
proach and two-step CART + adaptive lasso) by main-
taining comparable adjusted R2 and mean squared
prediction errors from cross validation.
There are some limitations of this modeling ap-

proach. While the RF method provides the utility to
select important variables, which accounts for the
nonlinear relationship between exposure and outcome
variables, the final model as determined in the second
step using the adaptive lasso approach only captures
the linear relationship between the outcome and exposure
variables (independent metals or interacting metals). In
the cases when excessive correlations exist among a group
of predictor variables, lasso approaches may only select
one variable from that group and provide biased estimates
of the effects. We will explore an alternative elastic net

Table 5 Performance Evaluation of Each Approach for Analysis
of Local Simulated Dataset a (With Interaction)

Adaptive lasso CART+ Adaptive lasso RF+ Adaptive lasso

R2 33.6% 31.6% 32.6%

Adjusted R2 31.0% 29.4% 30.7%

MSE 0.961 0.990 0.975

MSE.CV 0.926 0.990 0.967

MSPE.CV 1.206 1.096 1.099
aThe dataset includes 500 samples and 20 predictor variables with Pearson’s
correlations ranging from − 0.13 to 0.22. The pairwise interaction terms among
the predictor variables were included in the modeling

Fig. 5 Association analyses of the metal exposures and oxidative stress biomarkers collected in the NBCS (No Interaction). The forest plot
describing the regression coefficients (boxes) and their 95% confidence intervals (lines) for modeling the relationship between exposure variables
and outcome using three methods: (a) single step adaptive lasso (green); (b) two-step with CART followed by adaptive lasso approach (blue); and
(c) two-step with RF followed by adaptive lasso approach (red). The numbers on X axis represent the magnitude of the regression coefficients
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[42] approach in our future work, which is a penalized
regression approach using a combination of lasso [40]
and ridge [43] penalty and is expected to perform
variable selection and handle correlated predictors at
the same time. The elastic net approach overcomes
the limitation of lasso by encouraging grouping ef-
fects, which tend to select groups of highly correlated
variables into the model. How to model the complex
nonlinear relationships between exposure and out-
come variables or the joint effects of multiple expo-
sures on the outcome remains a big analytic
challenge. While all three methods we compared pro-
vide some power in detecting the true interaction ef-
fects, they also falsely detected some null interaction
effects probably due to the large number of inter-
action effect terms or the complex correlation pat-
terns among multiple exposure variables. Statistical
methods with improved power as well as the ability
to control false discoveries need further development.
We acknowledge that examining the model perfor-
mances using specific simulated datasets have some
limitations as compared to running a simulation study
which repeats simulations thousands of times under
multiple different scenarios. In this investigation, we
focused on using simulation datasets and real NBCS
dataset to evaluate the performance of our proposed
approach, and to provide general recommendations of

our approach along with its strengths and limitations.
We will explore more comprehensive simulation stud-
ies in future work. This exploratory analysis evaluat-
ing the relationship between the mixture metal
exposures and oxidative biomarker analysis is consist-
ent with our previous recently published article in
this population [38], but expands those findings. That
initial evaluation which focused on hypothesis-driven
analyses of uranium, arsenic, and zinc, we have found
a positive association between Arsenic and increased
levels of an oxidative stress biomarker and no evidence of
association between Uranium and the oxidative stress bio-
marker. Zinc was not found to be directly related to the
oxidative stress biomarker, but modified the relationship
between arsenic and the oxidative stress biomarker [38],
which is similar to our current findings. Additionally, we
have discovered the associations between oxidative stress
biomarkers and other metals exposures (cesium, barium,
dimethylarsinic acid, thallium, interaction between zinc
and cobalt, interaction between zinc and cesium). Some of
the findings are supported by previous literature while
others are not directly mentioned or implicated in litera-
ture and warrant further investigation. Components of our
findings on the associations between oxidative stress bio-
markers and exposures to cesium, dimethylarsinic acid,
barium, and thallium in the NBCS are supported by previ-
ous literature reports [44–47] in human and animal
models. There is experimental evidence that oxidative
stress can be induced either by redox-cycling metals such
as barium or thallium through directly generating free radi-
cals, or indirectly by non-redox cycling metals such as ar-
senic, lead or mercury [44, 45]. A recent study in the
general Spanish population has reported an association be-
tween elevated oxidative stress and barium [48]. Hanzel et
al. 2005 reported a link between thallium and oxidative
stress through glutathione (GSH) metabolism and peroxide
detoxification [46]. A recent study on plants reported that
cesium exposure reduced plant growth via activating the
defense mechanism against oxidative stress [47]. In a previ-
ous mouse model, cesium induced renal and liver damage
through oxidative stress [49]. We also identified the inter-
action effects between zinc and cobalt and between zinc
and cesium, which are implicated by previous experimental
studies and require further validation. It is surprising that
we identified positive associations with oxidative stress for
dimethylarsinic acid and cesium, but opposite negative as-
sociations for barium and thallium. These previous reports
did not consider the complexity of exposures examined in
the NBCS, but the consistency of their findings with our
results underscore the complexity of the exposure-re-
sponse relationship between metal-mixture exposures and
this important biological pathway. Considering the limited
research conducted in human populations, these results
suggest that future research should be conducted in order

Table 6 Performance Evaluation of each approach used in
analyses of NBCS a (No Interaction)

Adaptive lasso CART+ Adaptive lasso RF+ Adaptive lasso

R2 37.0% 21.5% 36.7%

Adjusted R2 32.2% 15.5% 32.6%

MSE 0.0048 0.0061 0.0049

MSE.CV 0.0047 0.0061 0.0047

MSPE.CV 0.0078 0.0078 0.0062
aThe dataset includes 132 samples and 30 predictor variables including 25
metals and 5 demographic variables (age, smoking, employment, trimester
and BMI). The Pearson’s correlations between the metals range from −0.32
to 0.76

Table 7 Performance Evaluation of each approach used in
analyses of NBCSb (With Interaction)

Adaptive lasso CART+ Adaptive lasso RF+ Adaptive lasso

R2 65.5% 43.4% 56.01%

Adjusted R2 52. 6% 32.1% 43.7%

MSE 0.0027 0.0044 0.0034

MSE.CV 0.0023 0.0041 0.0035

MSPE.CV 0.0107 0.011 0.0088
b The dataset includes 132 samples and 30 predictor variables including 25
metals and 5 demographic variables (age, smoking, employment, trimester
and BMI). The Pearson’s correlations between the metals range from − 0.32 to
0.76. The pairwise interaction terms among the metal exposure variables were
included in the modeling
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to clearly understand the role of metal-mixture exposures
in oxidative stress, the DNA damage process, and complex
biological mechanisms underlying the adverse human
health.

Conclusions
There is no consensus as to how to appropriately
analyze the health effects of metal mixture exposures, or
recommendations on selection of approaches that best

Fig. 6 Association analyses of the metal exposures and oxidative stress biomarkers collected in the NBCS (With Interaction). The forest plot
describing the regression coefficients (boxes) and their 95% confidence intervals (lines) for modeling the relationship between exposure variables
and outcome using three methods: (a) single step adaptive lasso (green); (b) two-step with CART followed by adaptive lasso approach (blue); and
(c) two-step with RF followed by adaptive lasso approach (red). The numbers on X axis represent the magnitude of the regression coefficients
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characterize study data. In an effort to address this chal-
lenge we proposed to use a two-step approach combining
the strengths of random forest and adaptive lasso methods
which incorporated detection of interaction effects in
addition to main effects. This method was demonstrated to
have favorable performance overall and extensive improve-
ment in the ability to identify complex interaction effects
between exposures using simulation example datasets and
an application to data from the Navajo Birth Cohort Study.
In summary, the major findings and recommendations of
using our approach include the following:

The RF + adaptive lasso two-step approach adds the
following to existing methodology

� The RF screening step performs effective dimension
reduction that retains variables with either linear or
nonlinear relationships with the outcome of interest

� Overcomes the limitation that standard lasso
approaches identify unstable models with multiple
interaction terms which yield similar prediction
utility

� Addresses the overfitting problem where standard
approaches tend to estimate a model that includes
more covariates than just the true nonzero
covariates

� Provides a parsimonious or sparse model that is
closer to the true model which in the meantime has
prediction performances better than or as well as
the single step approaches

This two-step approach is appropriate under the
following conditions

� When datasets consist of 10–50 predictor variables
� When estimation of the interaction effects and

quantification of the effect sizes are of interest
� When modest to moderately large correlations (r <

0.8) exist among the predictor variables

Limitations that still need to be addressed

� No approach performs well when extremely large
correlations among predictor variables exist, and it
is recommended to remove one variable from the
highly correlated pairs based on biological inputs
prior to analysis

� The identified interaction effects reflect statistical
interactions only, and proper interpretation of the
biological or toxicological impact requires content
expertise

� There is increasing interest in detection of nonlinear
and nonadditive relationships between metal
mixtures and health outcomes or biomarkers, but

there are relatively few statistical methods available.
The Bayesian kernel machine regression (BKMR) is
one approach to estimate the joint health effects of
mixture exposures that can accommodate nonlinear
relationships [50].

� There are limited statistical methods for analyses of
chemical mixture data from more complex designs
(e.g. time series or longitudinal data). The BKMR
approach [50] can handle repeated measures, and the
more recently developed Bayesian varying coefficient
kernel machine regression (BVCKMR) is designed to
estimate the mixture effects on outcome trajectories
[51]. These two approaches characterize the
exposure-response surface and provide visualizations
of the interaction effects between mixture compo-
nents for longitudinal data. Quantification of the evi-
dence of interaction effects among mixtures on the
outcome trajectories remains an analytical challenge.

Additional file

Additional file 1: Table S1. Summary statistics for oxidative stress
prostaglandin ratio biomarker by demographic characteristics. Figure S1.
Correlation matrix among metals in the NBCS dataset. The pairwise
correlation between the metals as measured by the Pearson’s r between
log transformed metal exposures are shown in the figure below, color
coded by the magnitude of the correlation. Figure S2. Distribution of
the metals in the NBCS dataset before and after standardization are
described and compared using boxplots. Table S2. Simulated Data from
the NIEHS Workshop (No Interaction). Table S3. Simulated Data from the
NIEHS Workshop (Including Pairwise Interaction Terms). Table S4.
Analysis of Local Simulated Dataset 2 (No Interaction). Table S5. Analysis
of Local Simulated Dataset 2 (With Interaction). Figure S3. Analysis of
Local Simulated Dataset (No Interaction, rho=0.3). Table S6. Performance
Evaluation for Each Approach for Simulated Dataset (No Interaction,
rho=0.3). Figure S4. Analysis of Local Simulated Dataset (With Interaction,
rho=0.3). Table S7. Performance Evaluation of Each Approach for
Analysis of Local Simulated Dataset (With Interaction, rho=0.3). Figure S5.
Analysis of Local Simulated Dataset (No Interaction, rho=0.5). Table S8.
Performance Evaluation for Each Approach for Simulated Dataset (No
Interaction, rho=0.5). Figure S6. Analysis of Local Simulated Dataset (With
Interaction, rho=0.5). Table S9. Performance Evaluation of Each Approach
for Analysis of Local Simulated Dataset (With Interaction, rho=0.5). Figure
S7. Analysis of Local Simulated Dataset (No Interaction, rho=0.7). Table
S10. Performance Evaluation for Each Approach for Simulated Dataset
(No Interaction, rho=0.7). Figure S8. Analysis of Local Simulated Dataset
(With Interaction, rho=0.7). Table S11. Performance Evaluation of Each
Approach for Analysis of Local Simulated Dataset (With Interaction,
rho=0.7). Figure S9. Analysis of Local Simulated Dataset (No Interaction,
rho=0.8). Table S12. Performance Evaluation for Each Approach for
Simulated Dataset (No Interaction, rho=0.8). Figure S10. Analysis of Local
Simulated Dataset (With Interaction, rho=0.8). Table S13. Performance
Evaluation of Each Approach for Analysis of Local Simulated Dataset
(With Interaction, rho=0.8). Table S14. Association analyses of the metal
exposures and oxidative stress biomarkers collected in the NBCS study
(No Interaction). Table S15. Association analyses of the metal exposures
and oxidative stress biomarkers collected in the NBCS study (With
Interaction). (DOCX 4536 kb)
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