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Abstract

Background: Previous studies show that escalations in ambient temperature are among the risk factors for acute
kidney injury (AKI). However, it has not been adequately studied in our location, Seoul, South Korea. In this study,
we aimed to examine the association between ambient temperatures and AKI morbidity using emergency
department (ED) visit data.

Methods: We obtained data on ED visits from the National Emergency Medical Center for 21,656 reported cases of
AKI from 2010 to 2014. Time-stratified case-crossover design analysis based on conditional logistic regression was
used to analyze short-term effects of ambient temperature on AKI after controlling for relevant covariates. The
shape of the exposure–response curve, effect modification by individual demographic characteristics, season, and
comorbidities, as well as lag effects, were investigated.

Results: The odds ratio (OR) per 1 °C increase at lag 0 was 1.0087 (95% confidence interval [CI]: 1.0041–1.0134).
Risks were higher during the warm season (OR = 1.0149; 95% CI: 1.0065–1.0234) than during the cool season
(OR = 1.0059; 95% CI: 1.0003–1.0116) and even higher above 22.3 °C (OR = 1.0235; 95% CI: 1.0230–1.0239).

Conclusions: This study provides evidence that ED visits for AKI were associated with ambient temperature. Early
detection and treatment of patients at risk is important in both clinical and economic concerns related to AKI.

Keywords: Ambient temperature, Acute kidney injury, Emergency department visit, Case-crossover design,
Exposure-response curve

Background
Increasing recognition of climate change and global warm-
ing has led to a growing interest of researchers in assessing
the potential mechanisms by which it may influence health
[1]. The adverse impacts of ambient temperature on health
have been described in numerous epidemiological studies
[2–4], and some studies have reported that escalations in
temperature or heat (waves) are among the risk factors for
acute kidney injury (AKI) [5–10].
AKI is defined as “a sudden episode of kidney failure

or kidney damage that happens within a few hours or a
few days” regardless of the cause [11, 12]. AKI is a

complex and serious health condition, and its occur-
rence is associated with increased risk of chronic kidney
disease (CKD), reduced quality of life, and even death
[13–16]. Therefore, AKI is a critical public health con-
cern. The incidence of AKI is higher than that of acute
lung injury or severe sepsis, and AKI is associated with
adverse clinical outcomes and high medical costs,
including increased mortality, increased hospitalization
periods, and the increased risk of requirement for
chronic dialysis in survivors [17–19]. The prevalence of
AKI has been increasing in South Korea, and this
phenomenon combined with the aging of the population
poses an economic and social burden (Fig. 1).
The primary underlying mechanism for pre-renal AKI

is a series of impairment in renal autoregulation related
to pre-glomerular arteriolar vasodilation, by prostaglan-
din I2 and nitric oxide and post-glomerular arteriolar
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vasoconstriction, by angiotensin II [20, 21]. True hypovol-
emia or a reduction in the effective circulating volume,
such as decreased cardiac output, systemic vasodilation,
or intra-renal vasoconstriction results in impaired renal
autoregulation, leading to decreased glomerular filtration
rate, which is proportional to the level of hypoperfusion
[22, 23]. Dehydration due to exposure to high temperature
may lead to decreased intravascular volume, increased
vascular resistance, or low cardiac output, which eventu-
ally lead to hemodynamically mediated (pre-renal) AKI
[24]. Moreover, acute volume depletion leads to increased
proximal reabsorption, which affects tubulo-glomerular
feedback, resulting in a pre-renal reduction in glomerular
filtration rate [25].
Numerous studies have investigated the association

between ambient temperature and morbidity, particu-
larly renal function. Most of these studies have utilized
hospital admission data to demonstrate that renal
morbidity rates are associated with temperature in-
creases [5, 7, 8, 26, 27]. However, at our location, hos-
pital admissions would not be appropriate for assessing
the acute short-term association in a time transient
study because most admissions are scheduled in Seoul.
Inclusion of scheduled admissions could attenuate ob-
served associations with ambient temperature, due to in-
clusion of admissions for which timing of the event was
not caused by ambient temperature. Therefore, in this

research, emergency department (ED) data for unsched-
uled visits were used as the outcome measure to gain a bet-
ter understanding of the relationship between ambient
temperature and AKI morbidity in Seoul, a city with a
temperate climate with distinct seasons. We performed a
time-stratified case-crossover analysis based on conditional
logistic regression to investigate the association. In
addition, we examined the shape of the associations as well
as lag effects. To our knowledge, this is the first study to
assess the generalizability of the association between ambi-
ent temperature and AKI using ED visit data in Seoul.

Methods
Study location and health outcomes
This study was conducted in Seoul (37.34°N, 126.59°E),
which is the capital and largest metropolis of South Korea
with a population of approximately 10 million [28]. Seoul
spans a land area of 605.25 km2, which is only 0.6% of the
total area of South Korea, but 1/5 of the total population
of South Korea live in Seoul (16,492 person/km2). Seoul
has a temperate climate with distinct seasons and a wide
range of temperatures across the year.
We utilized data on ED visits recorded by the National

Emergency Medical Center (NEMC). The NEMC is a
government-funded national ED control agency, and one
of its roles is to collect data on ED visits to improve the
quality of emergency medical service and health care.

Fig. 1 Prevalence of acute kidney injury (AKI) in South Korea. a Time trend of AKI at the national level in South Korea. b Daily number of AKI-
emergency department (ED) visits in Seoul; analyzed data set. c Rate of ageing individuals among Organization for Economic Co-operation and
Development (OECD) countries above the average. Proportion of the elderly population (age > 65 years) in 2013 when set at 1970 to 1. Data were
obtained from the Institute for Industrial Economics and Trade of Korea. d Medical expenditures due to AKI at national level. Data were obtained
from the Health Insurance Review and Assessment Service of Korea
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The collected data included patient’s information such as
sex, age, type of insurance, level of consciousness, vital
signs, means of transportation, emergency operative pro-
cedures, time variables (visit, discharge, and admission),
critical care requirement, disposition status after the ED
encounter, duration of hospitalization, and final outcomes
(information regarding discharge, transfer, and death) [29].
These data are transferred electronically from the hospitals
to the NEMC via a National Emergency Department
Information System (NEDIS). The agency maintains an ac-
curate assessment system and annually reports the results
to the Ministry of Health and Welfare [29]. The NEDIS
database has been widely used by broad range of epi-
demiological researchers due to its reliability [30]. ED visit
data were obtained from the NEDIS of the NEMC be-
tween January 1, 2010 and December 31, 2014 for this
study. ED visit data were coded and classified according to
the discharge diagnosis using the International Classifica-
tion of Disease 10th Revision (ICD-10). Patients with ICD-
10 code N17 based on the primary and secondary disease
codes were considered to have AKI (Additional file 1:
Table S2). Because the data were based on ED visit inci-
dence, the onset was regarded as acute even in case of
CKD, although it could be regarded as an acute exacerba-
tion of CKD. In this sense, we examined acute renal illness
as a whole. In addition, we stratified the patients with both
CKD (ICD-10 code N18) and AKI (ICD-10 code N17) in
the sensitivity analysis due to the possible discrepancies in
the pathophysiological mechanisms of AKI with pre-
existing CKD (Additional file 1: Figure S1). Patients were
also stratified by sex (male and female), age (< 65 years
and ≥ 65 years), and season (warm and cool) when they
visited the ED. We also analyzed the comorbidities for
AKI, namely, hypertension and diabetes.

Environmental variables
Automated Synoptic Observing System (ASOS) data
from 2010 to 2014 were obtained from the Korean
Meteorological Administration (KMA). ASOS collects
data every minute, including temperatures (°C), relative
humidity (%), and air pressure (hPa), and KMA provides
city-level daily average of these meteorological variables.
Because air pollution has been reported to have a short-
term effect on renal morbidity [31], we also obtained
hourly concentrations of particulate matter with an aero-
dynamic diameter of < 10 μm (PM10) from 27 monitor-
ing sites operated by the Korean National Institute of
Environmental Research. Hourly mean concentrations
across the monitoring sites were calculated by averaging
monitor-specific concentrations, then we calculated the
daily representative concentrations of PM10 by averaging
the 24-h values from all monitoring stations in Seoul.
The data were grouped into two seasons: warm (April–
September) and cool (October–March).

Statistical analysis
We used a time-stratified case-crossover design based on
conditional logistic regression to analyze the short-term
effects of temperature on AKI-ED visits. The case-
crossover design, which is a variant of the case-control
design, is largely used in environmental epidemiology re-
search [32] for evaluating when the outcome is acute and
the exposure is transient [33]. Comparisons were made
between the case day (the day of the case visits ED) and
several control days. In this way, each patient serves as
his/her own control on days other than the case day with
measured and unmeasured potential confounding factors
such as age, sex, smoking status, and other genetic predis-
position. Moreover, these are automatically controlled by
perfect matching. The control days were selected as the
same month and year and matched by day of week for each
case. This time-stratified method of selecting comparison
days avoids bias resulting from time trends in examination
of the environmental exposures. Long-term and seasonal
time trends and day of the week were also controlled by
design [34]. We included potential time-varying con-
founders, which are relative humidity and barometric pres-
sure in the model. We also performed sensitivity analyses
to examine the confounding effects of PM10 (lag 0–1).
To explore the susceptibility of groups to the influence

of temperature, we modelled the interactions between
temperature and each subgroup, namely, age, sex, comor-
bidities (hypertension and diabetes), and season, to deter-
mine whether the effects of temperature differ in these
aspects because the case-crossover design cancelled out
the potential confounding time-invariant variables.
The exposure–response curve of the relationship

between ambient temperature and ED visits was also
explored for both warm and cool seasons. For the nonlin-
ear (J-shaped) relationship of the warm season, we fitted
value for each observations and the penalized spline curve
from conditional logistic model and conducted a piecewise
linear regression analysis to estimate the threshold
temperature [35]. Using a grid search method with a
threshold temperature range of 17 °C–27 °C, we found the
point that produces the minimum Akaike information cri-
terion among the equally spaced grid points, 0.1 °C [36].
The lag effect, lagged by up to 7 days before ED visit, was
also analyzed because many studies found a short latency
of the effect of temperatures on morbidity [37]. The overall
associations are estimated as odds ratios (OR) with 95%
confidence intervals (CI) per 1 °C increase in temperature.
Moreover, we tested for the significant difference between
estimates in each subgroup as shown below [38, 39].
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A significance level of α = 0.05 was adopted for each
test. Statistical analysis was conducted using R software
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version 3.1.0 with the survival package (R Foundation
for Statistical Computing, http://www.R-project.org).

Results
The characteristics of the patients who visited the ED
for AKI during the 5-year study period (2010–2014) are
shown in Table 1. There were 21,656 cases with 73,755
controls, yielding 3 or 4 control days for each patient. Of
these, 12,465 visits (57.56%) were by men, and 13,516
visits (62.41%) were by patients aged 65 years or older.
The number of ED visits due to AKI did not vary by sea-
son (X2 = 0.2, P = 0.6538). The daily mean temperature
was 12.49 °C (standard deviation (SD) ±11.03) for the
overall study period, 21.16 °C (SD ± 5.75) for the warm
season (April–September), and 3.79 °C (SD ± 7.71) for
the cold season (October–March). The daily mean rela-
tive humidity was 60.43% for the overall study period
and was higher for the warm season (65.01%, SD ±
15.20) than that for the cool season (55.84%, SD ± 13.64).
The daily mean concentration of particulate matter (PM)
with aerodynamic diameter less than 10 μm (PM10) was
47.08 μg/m3 (SD ± 27.35) for the overall study period
(Table 2). The concentration of PM10 in Seoul is rela-
tively high in spring and winter and relatively low in
summer and fall. The monthly summary can be found
in Additional file 1: Table S1.
The exposure–response curves between ambient

temperature and AKI-ED visits are shown in Fig. 2. Over-
all, the risk of AKI increases as temperature increases. In
particular, the risk sharply increased during the warm sea-
son. The threshold temperature was found to be at 22.3 °C
from grid searching (Additional file 1: Figure S2), with the
OR increasing above this threshold. The OR above 22.3 °C
during the warm season was 1.0235 (95% confidence
interval [CI]: 1.0230, 1.0239), while the OR below 22.3 °C
was 1.0019 (95% CI: 1.0017, 1.0020).
Figure 3 shows the overall, sex-, age-, comorbidity-, and

season-specific associations between ambient temperature
and AKI from the final model (Additional file 1: Table S2).
We illustrated the OR per 1 °C increase in ambient

temperature for various categories on a single day (lag 0)
because the greatest risk was observed for lag 0
(Additional file 1: Figure S4). There was strong evidence of
associations between temperature and AKI (OR = 1.0087,
P < 0.001). The associations were significant in both sexes
(Fig. 3). However, although the risk estimate is higher
among men (OR = 1.0088, P = 0.004) than among women
(OR = 1.0086, P = 0.014), the difference between the two
groups was not significant (P = 0.959). There were also
significant associations in both age groups. However,
although the association was stronger in those aged ≥ 65
years (OR = 1.0090, P = 0.002) than in those aged < 65 years
(OR = 1.0083, P = 0.027), the difference was not significant
(P = 0.875). By contrast, there was little evidence of associ-
ation with comorbidities. The associations were still posi-
tive but not significant for both comorbid hypertension
(OR = 1.0022, P = 0.633) and comorbid diabetes (OR =
1.0074, P = 0.181). The associations were significant in both
seasons, and the risk estimate was higher during the warm
season (OR = 1.0149, P = 0.001) than the cool season (OR =
1.0059, P = 0.039). In the sensitivity analysis, the effect of
ambient temperature was examined with and without
PM10 in the model, and the temperature effect was robust
to the adjustment of PM10 (Additional file 1: Figure S3).
Figure 4 illustrates the lag patterns for the effect of

temperature on AKI-ED visits during the warm and cool
season. In both seasons, the temperature effect appeared
to be acute and immediate and persisted for a few days.
Thus, all subsequent results shown are for lag 0. Similar
lag patterns were also observed among subgroups by sex
and age (Additional file 1: Figure S4). Within each group,
a noticeable delay is also seen for women and patients
aged < 65 years at lag 03 with an acute effect at lag 0.

Discussion
We observed a considerable increase in the risk of AKI
that was associated with escalations in ambient
temperature over all seasons, and the risk for AKI was
particularly higher during the warm season. In addition,
a noticeable nonlinear relationship with temperature was

Table 1 Demographic characteristics of patients with acute kidney injury who visited the emergency department

Characteristics No. of subjects (%) χ2 p-value

Total 21,656 (100)

Sex Male 12,465 (57.56) 494.97 < 0.0001

Female 9191 (42.44)

Age (years) < 65 8140 (37.59) 1334.6 < 0.0001

≥ 65 13,516 (62.41)

Season Warm 10,861 (50.15) 0.2 0.6538

Cool 10,795 (49.85)

Comorbidities AKI with coexisting hypertension 5245 (24.22)

AKI with coexisting diabetes 3508 (16.20)
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found during the warm season, indicating a severe risk
for AKI associated with ambient temperatures above the
threshold of 22.3 °C. Our findings are in line with those
of previous studies that show evidence supporting a
positive association between high temperatures and the
risk of AKI. Two studies from the US and one from

Australia found that hospital admissions for AKI were
substantially increased during heat wave periods com-
pared with non-heat wave periods [8, 27, 40]. In
addition, a study of temperature effects on AKI hospital
admissions in California reported a 7.4% increase in AKI
admissions associated with each 10 °F (5.56 °C) increase
in daily mean temperature [7], while 8.28% increase in
AKI-ED visits associated with each 10 °F during the
warm season in Seoul of our study. Given that our re-
sults were obtained using individual ED visit data, this
study strengthens the epidemiologic evidence of an acute
adverse effect of ambient temperature on AKI morbidity.
We observed considerable adverse effects of tem-

perature on ED visits due to AKI in both warm and cool
seasons as the temperature increases, but the risk was
greater during the warm season than the cool season and
was even greater above the threshold temperature of

Table 2 Descriptive statistics for environmental variables in
Seoul, South Korea, 2010–2014

Environmental
variables

Mean (SD)

Overall Warm Cool

Mean temperature (°C) 12.49 (11.03) 21.16 (5.75) 3.79 (7.71)

Mean relative
humidity (%)

60.43 (15.15) 65.01 (15.20) 55.84 (13.64)

Mean pressure (hPa) 1005.86 (7.74) 1000.27 (5.40) 1011.48 (5.29)

Mean PM10 (μg/m3) 47.08 (27.35) 42.28 (25.06) 51.91 (28.68)

Fig. 2 Relationship between ambient temperature and risks of emergency department visits due to acute kidney injury in Seoul, South Korea,
between 2010 and 2014 in (a) all seasons, (b) the warm season (April–September), and (c) the cool season (October–March). The dotted lines
indicate 95% confidence intervals (CIs)
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22.3 °C. Many studies have focused on the health effects of
heatwaves or high temperatures [8, 27, 40, 41]. However,
the risk for AKI substantially increased in temperatures
above 22.3 °C in the present study, suggesting that the
threshold temperature is lower than that used in previous
studies. This finding is consistent with that of Kovats et al.
[42] who reported that threshold temperatures of 18 °C for
diseases of the renal system and 21 °C for renal failure.
Additionally, they reported that kidney stones have a con-
siderable effect on hospital admissions for renal disease in
Greater London, UK. This suggests that not only extremely
hot temperatures and heatwaves, but also moderate tem-
peratures affect health. The effects of non-extreme weather
are less focused in the literature. The increased risk of AKI
from outdoor exposures during the warm season places
greater emphasis on the preventive aspects of AKI.
Some studies explored the temporal lag patterns of the

association between temperature and health risks. For the
association of temperature with morbidity, lag days were
reported ranging from the same day [3] to a month [43].
According to Fletcher et al. (2012), the strongest associ-
ation between the mean temperature and AKI hospital ad-
missions occurs at lag 1 (OR = 1.09, 95% CI: 1.07, 1.12),

while significant associations were also observed at lags 0
and 2 (OR = 1.06, 95% CI: 1.04, 1.09 and OR = 1.06, 95%
CI: 1.03, 1.08, respectively). Our result showed more acute
effects of temperature on AKI-ED visits for lag 0 in both
seasons. Similarly, Basu et al. found acute effects of
temperature (lag 0) on ED visits in California, USA [3]. In
Atlanta, USA, Chen et al. also found that increased
temperature had same-day (lag 0) effects on both all renal
diseases and AKI [44].
PM10 was assessed in the model. Associations between

PM and daily mortality [45], cardiovascular hospital ad-
missions in the elderly [46], and infant mortality [47]
have been identified in Korean cities. Furthermore, a
recent longitudinal study among US veterans demon-
strated the associations of PM concentrations with a
higher risk of reducing renal function [31], development
of CKD, and progression to end-stage renal disease [48].
It is biologically plausible that the inflammation and
oxidative stress linked to PM exposure could be an
underlying mechanism for a broader number of disease
outcomes [49], including renal disorders. Nonetheless,
the effect of temperature on AKI was robust with a
potential confounder of air pollutants in our analysis.

Fig. 3 Effects of temperature on emergency department visits for acute kidney injury by subgroups in Seoul, South Korea, from 2010 to 2014. The
overall associations are estimated as odds ratios (ORs) with 95% confidence intervals per 1 °C increase in temperature. Adjusted for relative
humidity, air pressure, and PM10 in the model. Abbreviations: AKI, acute kidney injury; < 65, < 65 years of age; 65+, ≥ 65 years of age; HD,
hypertension disease; DB, diabetes

Fig. 4 Lag structures by season. The effects of ambient temperatures (°C) on acute kidney injury along lag days during the (a) warm season and
(b) cool season
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Moreover, our findings remained statistically significant
after adjusting for PM10. In addition, the fact that the
temperature effect is robust to the adjustment for PM in
our analysis suggests that PM is not solely responsible
for the higher risk of AKI. Toxicity depends on the
components of PM [50], and exposure patterns vary by
seasons due to behavioral changes of individuals [51].
Thus, the adverse effects of PM on AKI need to be
further validated.
Contrary to expectations, the temperature effects of

AKI did not vary substantially across demographic char-
acteristics. The elderly may be more vulnerable due to a
reduction in thermoregulatory abilities, age-related
declines in kidney function, adaptation behaviors, low
self-care abilities, and health comorbidities. However,
although the risk of the elderly was slightly higher among
those aged ≥ 65 years than among those aged < 65 years,
the difference was not statistically significant (P = 0.87).
No significant difference by sex was noted in this study
either (P = 0.96).
On the other hand, we also examined the susceptibility

to ambient temperatures of persons with comorbidities
of prevalent chronic illnesses, particularly hypertension
and diabetes. Although AKI is more prevalent among in-
dividuals who already have hypertension or diabetes
[52], our analysis of temperature-related AKI-ED visits
was not significantly associated with these comorbidities.
Further in-depth studies are required to clarify these
discrepancies.
Even small acute changes in kidney function can result

in both short- and long-term complications. Early diag-
nosis and appropriate treatment of AKI are associated
with an increased survival rate and restore complete
renal function. This results in reduced cost of treatment
[53] because CKD patients require hemo- or peritoneal
dialysis or kidney transplantation. If AKI patients with-
out premorbid CKD survive, then most of them recover
to dialysis independence [54]. Therefore, early diagnosis
and appropriate treatment is crucial to prevent subse-
quent CKD, end-stage renal disease, or death [55] in
AKI patients.
This study furthers our understanding of the associ-

ation between temperature and AKI in Seoul. However,
our study has some limitations, including the possible
misclassification of exposures intrinsic in ecological
studies. The use of ambient rather than personal mea-
surements of temperature may have resulted in bias,
which probably underestimated the association. Also,
differences between indoor and outdoor temperatures
due to air conditioning or heating may affect the associ-
ation between temperature and AKI outcomes. Similar
to other environmental epidemiological studies on AKI
[26], we used the ICD-10 code for the definition of AKI
without knowing whether the standard Kidney Disease

Improving Global Outcomes (KDIGO) criteria were used
for diagnosis. With ICD-codes, diagnosis of AKD could be
incorrectly reported or underreported [56]. We did not
have information on medication, as nephrotoxic medica-
tions contribute to a substantial proportion of AKI. Fur-
ther, there may be other individual factors influencing the
association between air temperature and AKI. Finally, our
study was conducted in a single city; therefore, the findings
may not be applicable to other target populations in other
areas. To explicitly understand the effects of temperature
on AKI, multi-city studies are required.
Undoubtedly, AKI is affected by more complex factors

aside from ambient temperature. However, despite these
limitations, we found convincing evidence supporting
that temperature might be a triggering or exacerbating
factor for AKI. The findings from this study have consid-
erable public health implications because it may help
elucidate the effects of ambient temperature on AKI.

Conclusions
Based on the estimation of the impact of temperature on
ED visits of patients with AKI in Seoul, a considerable
health burden at elevated temperatures was identified for
this population. Projections from global climate models in-
dicate that the variability and extremes of temperature that
may affect AKI are likely to increase in the future. Thus,
the relationship between temperature and AKI needs to be
investigated. Our findings suggest that increases in temper-
atures are a risk factor for AKI. Patient management and
education need to be improved as extreme temperatures
become more prevalent with climate change.

Additional file

Additional file 1: Table S1. Descriptive statistics for environmental
variables by months between 2010 and 2014. Table S2. Effects of
temperature on emergency department visits for acute kidney injury
showing odds ratios, 95% confidence intervals, and p-values. Figure S1.
Effects of temperature on emergency department visits for acute kidney
injury including and excluding the patient with chronic kidney disease.
The overall associations are estimated as odds ratios (OR) with 95%
confidence intervals per 1°C increase in temperature. Considerable
differences are not observed. Abbreviations: AKI, acute kidney injury; CKD,
Chronic Kidney Disease. Figure S2. Threshold point estimation (22.3°C)
using grid search methods during the warm season. The approximate
range of the threshold temperature was between 19°C and 27°C with
grid points 0.1°C. (a) Fitted value from conditional logistic model. (b)
Penalized spline curve for temperature term in the conditional logistic
model. (c) Predicted curve for temperature term. (d) Piecewise linear
regression that minimizes the Akaike information criterion value with β1
= 0.0019 (odds ratio [OR] = 1.0019, 95% confidence interval [CI]: 1.0017,
1.0020), β2 = 0.0232 (OR = 1.0235, 95% CI: 1.0230, 1.0239). Abbreviation:
AIC, Akaike information criterion. Figure S3. Effects of temperature on
emergency department visits for acute kidney injury with and without
adjustment of PM10 in the model by subgroups in Seoul, South Korea,
between 2010–2014. The overall associations are estimated as odds ratios
(OR) with 95% confidence intervals per 1°C increase in temperature.
Adjusted for relative humidity and air pressure in the model.
Abbreviations: AKI, acute kidney injury; < 65, < 65 years of age; 65+, ≥ 65
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years of age; HD, hypertension disease; DB, diabetes. Figure S4. Lag
structure by subgroups. The effects of ambient temperatures (°C) on
acute kidney injury along days of lag in (a) men, (b) women, (c) age
under 65 years, and (d) age above 65 years. (DOCX 109 kb)
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