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Abstract

Background: Statistical methods to study the joint effects of environmental factors are of great importance to
understand the impact of correlated exposures that may act synergistically or antagonistically on health
outcomes. This study proposes a family of statistical models under a unified partial-linear single-index (PLSI)
modeling framework, to assess the joint effects of environmental factors for continuous, categorical, time-to-
event, and longitudinal outcomes. All PLSI models consist of a linear combination of exposures into a single
index for practical interpretability of relative direction and importance, and a nonparametric link function for
modeling flexibility.

Methods: We presented PLSI linear regression and PLSI quantile regression for continuous outcome, PLSI
generalized linear regression for categorical outcome, PLSI proportional hazards model for time-to-event
outcome, and PLSI mixed-effects model for longitudinal outcome. These models were demonstrated using a
dataset of 800 subjects from NHANES 2003–2004 survey including 8 environmental factors. Serum triglyceride
concentration was analyzed as a continuous outcome and then dichotomized as a binary outcome. Simulations
were conducted to demonstrate the PLSI proportional hazards model and PLSI mixed-effects model. The
performance of PLSI models was compared with their counterpart parametric models.
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Results: PLSI linear, quantile, and logistic regressions showed similar results that the 8 environmental factors
had both positive and negative associations with triglycerides, with a-Tocopherol having the most positive and
trans-b-carotene having the most negative association. For the time-to-event and longitudinal settings,
simulations showed that PLSI models could correctly identify directions and relative importance for the 8
environmental factors. Compared with parametric models, PLSI models got similar results when the link function
was close to linear, but clearly outperformed in simulations with nonlinear effects.

Conclusions: We presented a unified family of PLSI models to assess the joint effects of exposures on four
commonly-used types of outcomes in environmental research, and demonstrated their modeling flexibility and
effectiveness, especially for studying environmental factors with mixed directional effects and/or nonlinear effects. Our
study has expanded the analytical toolbox for investigating the complex effects of environmental factors. A practical
contribution also included a coherent algorithm for all proposed PLSI models with R codes available.

Keywords: Environmental mixtures, NHANES, Semiparametric model, Triglyceride

Background
Humans are constantly exposed to a mixture of environ-
mental factors that have the potential to affect health
adversely or beneficially, such as chemical contaminants,
air pollutants, dietary factors, and behavioral and socioeco-
nomic characteristics. The exposome, which is defined as
the totality of environmental (non-genetic) exposures from
conception onwards (i.e., environmental factors), has been
proposed to address the complexities related to studying
multiple exposures [1]. It is well acknowledged that single-
exposure-outcome approaches do not allow for the
disentangling of effects of multiple exposures, and miss
the interplay among them [2]. Therefore, quantifying
the complex effects of multiple and simultaneous envir-
onmental exposures on health outcomes has become a
focus of environmental health research [3, 4]. The National
Institute of Environmental Health Sciences (NIEHS) has
been supporting and conducting combined exposure
research, and highlighted this direction as a priority in its
2018–2023 Strategic Plan [5].
Statistical approaches have been proposed to assess

the effects of multiple exposures on health outcomes
from different perspectives, each focusing on distinct
scientific questions [2, 6]. However, several challenges
for statistical modeling are apparent in these investiga-
tions [2]. First, multiple environmental exposures occur
simultaneously, often with complex correlation struc-
tures among them. Second, they may exhibit synergistic
or antagonistic effects on the health outcome, and their
associations with health outcomes can be positive, nega-
tive, or null, which reflect the complex web of physio-
logical relationships and/or “reverse causality” [7, 8].
Third, the relationships between environmental factors
and health outcomes can be non-linear, which pose
challenges to standard parametric regression-based
methods [9]. Fourth, it is well recognized that statistical
methods have different strengths in addressing various
aspects of scientific investigations. For example, from

the methodology perspective, Stafoggia et al. [2] classi-
fied the statistical methods for analysis of environmental
mixtures into dimension reduction, variable selection, or
grouping or clustering. From the view of scientific
questions, Gibson et al. [4] distinguished different study
objectives as: identifying the important components in
the mixtures, studying synergistic effects, or characteriz-
ing the overall effect of the mixtures.
Specifically, in studying the joint effects of environmen-

tal exposures, weighted quantile sum regression (WQS)
[9, 10] and Bayesian kernel machine regression (BKMR)
[11, 12] are two popular modeling approaches. The WQS
method is a parametric method assuming that all expo-
sures are associated with the outcome in one direction in
each run of analysis, and then derives a one-dimensional
weighted sum score of the exposures under the assumed
direction for the estimation of overall effect. BKMR is a
nonparametric method and can handle nonlinear and
complex relationships between exposure mixtures and
outcome. Some measures have been proposed to quantify
the importance and effects of exposure components based
on BKMR results. For example, the posterior inclusion
probability (PIP) characterizes the probability of an expos-
ure being associated with outcome, and change per inter-
quartile range increase quantifies the expected change in
the outcome in association with the change in an exposure
from the 25th to 75th percentile, while other exposures
are fixed to the median. However, the nonparametric
exposure-response function may be difficult to interpret
and its fitting often needs a large sample size [13, 14]. In
addition, WQS and BKMR have been generalized to study
environmental mixtures with several types of outcomes,
such as WQS for longitudinal outcomes [15] and BKMR
for time-to-event outcomes [16]. However, a general mod-
eling framework that can alleviate the above limitations in
environmental health research is still desired [17].
Partial-linear single-index (PLSI) models are a family

of semiparametric models that reside between the
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completely unstructured nonparametric models and
restrictive parametric regression models [18–20]. By
reducing multiple exposures into a single index through
a linear combination of the exposures, the PLSI models
can reduce the “curse of dimensionality” issue and im-
prove modeling efficiency. The application and perform-
ance of single-index linear regression for analysis of
environmental exposures with continuous outcomes has
been evaluated previously (pending publication). Specif-
ically, the PLSI modeling framework allows the associa-
tions between exposures and outcomes to be in the
positive or negative direction, provides explicit and in-
terpretable quantification on the relative direction and
importance of the exposures, and models these effects
with flexibility through a nonparametric link function.
Therefore, PLSI models are able to address the objectives
of identifying important individual exposures, their direc-
tion and magnitude of association with the outcome, and
characterizing the overall effect of multiple exposures or
exposure mixtures, responding well to the key scientific
objectives summarized by Gibson et al. [4]. In recent
years, research on PLSI models has attracted increasing
attention and extended to different types of outcomes,
such as categorical [21–23], time-to-event [24–27] and
longitudinal [28–31] outcomes. Table 1 summarizes the
outcome types of interest and corresponding PLSI models
with key references and their corresponding counterpart
parametric models.
The main goal of this study was to unify the resource

advantages of PLSI models into one general framework
for analyzing environmental factors, and to demonstrate
their values in environmental research for different types
of health outcomes. We exemplified the use of PLSI
models in assessing the associations between correlated
environmental factors with health outcomes using real
and simulated datasets based on National Health and
Nutrition Examination Survey (NHANES) 2003–2004
cycle. Another aim was to develop effective computation
algorithms for the PLSI models and to consolidate these
models using R packages.

Methods
NHANES dataset
To demonstrate the PLSI models, we used the data from
the NHANES 2003–2004 cycle based on the original

paper by Patel et al. [48], which systematically evaluated
the associations of environmental factors with serum
lipid levels. We used serum triglyceride concentrations
as the primary outcome for demonstration and also con-
sidered three demographic variables, age, sex, and race/
ethnicity as potential confounders. Participants with data
on serum triglycerides, environmental factors and con-
founders were included in this study (n = 800). Details
on data pre-processing are provided in Additional file 1:
Figure S1. Subjects provided written informed consent,
and the Institutional Review Board of the National
Center for Health Statistics approved the survey [49].
Table 2 summarizes the final variables included in
analyses, and Fig. 1 shows the correlation matrix of the
final 8 environmental factors and triglycerides. The
dataset is provided as Additional file 2, and the R codes
conducting data cleaning is included in the R markdown
file (Additional file 3).

Notation and PLSI models overview
For notational convention throughout this article, we let
Y denote the outcome, X = (X1,…, X8) denote the 8 ex-
posure variables to be modeled into the “single index”
term, and vector Z represent the confounders (age, sex,
and race/ethnicity). The outcome, continuous triglycer-
ides, and all exposure variables, except for retinol, were
log-transformed, and all exposure variables were stan-
dardized to have mean of zero and standard deviations
of 1 before model fitting.
In contrast to standard generalized linear models

(GLMs) that specify the effects of exposures and con-
founders all linearly as β′X + γ′Z, PLSI models assume the
influence of exposures X through a nonparametric link
function on the single index while modeling other
confounders linearly, i.e. g(β′X) + γ′Z. The single index co-
efficients β′ s characterize the relative direction and im-
portance of each exposure Xi, and γ for the corresponding
linear coefficient vector for confounder vector Z. Because
the link function g(·) is completely nonparametric, to
ensure model identifiability, the l2 norm of β′s (i.e.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β21 þ…þ β28

q
) is set to be 1 with the first component

β1 > 0, which are the commonly used parametrization con-
straints for all PLSI models [22, 36–38]. PLSI models are
not identifiable without these constraints because any

Table 1 Summary of outcome types and corresponding PLSI models and parametric models

Outcome type PLSI models Counterpart models Key references Equation

Continuous PLSI linear regression Linear regression [18, 21, 22, 32–38] (1)

PLSI quantile regression Quantile regression [39–44] (2)

Categorical (binary) PLSI generalized linear (logistic) regression Generalized linear (logistic) regression [18, 22, 36, 38] (3)

Time-to-event PLSI PH model Cox PH model [24–27] (4)

Longitudinal PLSI mixed-effects model Linear mixed-effects model [28, 29, 45–47] (5)
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Table 2 List of analyzed variables from NHANES 2002–2003 dataset

Type Variable name Abbreviations Symbol

Outcome

Triglycerides (mg/dL) TG Y

Environmental factors

a-Tocopherol (ug/dL) a-Tocopherol X1

g-tocopherol (ug/dL) g-tocopherol X2

Retinyl palmitate (ug/dL) Retinyl-palmitate X3

Retinol (ug/dL) Retinol X4

3,3′,4,4′,5-Pentachlorobiphenyl (pncb) Lipid Adj (pg/g) 3,3,4,4,5-pncb X5

Polychlorinated Biphenyl (PCB) 194 Lipid Adj (ng/g) PCB156 X6

2,3,4,6,7,8-hxcdf Lipid Adj (pg/g) 2,3,4,6,7,8-hxcdf X7

trans-b-carotene (ug/dL) trans-b-carotene X8

Confounders

Age (years) Age Z1

Sex (1: male; 2: female) Sex Z2

Race/Ethnicity (1: Non-Hispanic white; 2: Non-Hispanic
black; 3: Mexican American; 4: Other race - Including
multi-racial; 5: Other Hispanic)

Race Z3

Fig. 1 Correlation matrix of Pearson correlation coefficients of 8 factors and triglycerides in NHANES 2002–2003 (N = 800)
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scaling or constant shift can be absorbed by the nonpara-
metric link function.

Continuous outcome: mean regression
The PLSI linear regression model is considered as a
generalization of both standard linear regression and
missing-link function problem in linear modeling [50],
and specified as

Y ¼ g
X8
j¼1

β jX j

 !
þ γ

0
Ζþ ε ð1Þ

The semiparametric PLSI linear regression has the

parametric component
P8

j¼1β jX j and γ′Z for easy linear

representation and interpretation, and the nonparamet-
ric components g(∙) is totally unspecified and represents
the overall effect of single index, which incorporates
potential nonlinearity and interactions among exposures.
When the estimated g(∙) is monotone, the effect of Xj

can be interpreted qualitatively using the sign of βj. If
g(∙) is monotone increasing, then a positive sign for βj
suggests increased conditional expectation of Y at larger
value of Xj, and vice versa for a negative sign. As the
overall scale of β is set, ∣βj∣ can be explained as the
relative importance of Xj affecting the mean of outcome
Y as Xj is perturbed while g(∙) and other variables are
held fixed. We can also intuitively interpret β2j as the

proportion of contribution to the single index by vari-
able Xj because, when (X1, X2,…, X8) are independent, β2j
simply represents Xj ’s variance contribution.
Besides the analysis for the 8 selected exposures, we

also conducted a sensitivity analysis including all 22
environmental factors to investigate the performance of
PLSI linear regression to handle highly correlated
exposures (Additional file 1: Figure S2).

Continuous outcome: quantile regression
Beyond the commonly-considered effects of environ-
mental factors on the mean of a continuous outcome,
sometimes we are interested in the specific relations
cross multiple points of the outcome’s distribution, such
as higher quantiles of triglycerides [51], higher quantiles
of blood pressure [52], low quantiles of birth weight
[53], or lower quantiles of intelligence quotient scores
[54]. Moreover, when the distribution of continuous
outcome deviates from Gaussian, modeling the median
can be more robust than evaluating the mean by
conventional linear regression [55]. For this purpose,
quantile regression (QR), which was originally proposed
by Koenker and Bassett [56] and used as a useful tech-
nique in econometrics [57] and growth curve analysis
[58], enables us to study the associations of environmen-
tal factors with continuous health outcomes as various

quantiles across its distribution. PLSI quantile regression
is a combination of the PLSI technique and QR [42, 43],
and thus we consider it for the analysis of joint effects of
multiple environmental factors on the quantile(s) of
continuous outcome variable.
Given a specific τ ∈ (0, 1), the PLSI quantile regression

for the τth conditional quantile θτ of continuous
outcome Y given environmental factors X and covariates
Z can be specified as

θτ Y jX;Zð Þ ¼ gτ
X8
j¼1

βτjX j

 !
þ γ

0
τZ ð2Þ

Interpretation of coefficients βτ ′ s in the PLSI quantile
regression is similar to that of PLSI linear regression,
with the difference being that the associations are now
with the conditional quantiles of outcome variable θτ(Y|
X, Z) instead of the mean.

Categorical outcome: generalized linear regression
PLSI generalized linear regression can be employed for
categorical outcomes, such as binary, multinomial, or
count variables. Here we considered the binary outcome
of high triglycerides (> 150 mg per deciliter) [59], which
accounted for 30.75% of the 800 subjects. The PLSI
logistic model is specified as

logitðPðY ¼ 1jX;ZÞÞ ¼ g

 X8
j¼1

β jX j

!
þ γ′Z ð3Þ

The interpretation of coefficients is based on the log
odds that response value is ‘1’ conditioning on the
predictors, and βj represents the relative direction and
importance of Xj associated with the log odds of high
triglycerides when scale of β is set and g(∙) and other
variables are held fixed. The logit function can be
adapted accordingly to the type of categorical outcome,
and the model specifications for multinomial and count
outcomes were provided in Additional file 1: Table S1.

Time-to-event outcome: proportional hazards model
The Cox proportional hazards (PH) regression has been
the pivotal model in time-to-event analysis since Sir Cox
proposed it in 1972 [60, 61]. The Cox PH regression
models the hazard function and assumes that covariates
have linear effects on the log hazard function. Combin-
ing PLSI modeling technique and Cox PH regression,
the PLSI PH model is specified as

λ t X;Zjð Þ ¼ λ0 tð Þ exp g
X8
j¼1

β jX j

 !
þ γ

0
Ζ

( )
; ð4Þ

where βj can be explained as the relative effect direction
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and importance of Xj on the log hazard function and g(∙)
characterizes the overall effect of the index.

Longitudinal outcome: mixed-effects model
Longitudinal studies arise frequently in environmental
research, in which outcomes are measured repeatedly over
a period of time with either baseline or time-dependent
environmental factors. As measurements from the same
subject are often correlated, subject-specific random ef-
fects are used to accommodate within-subject dependence
and to explain across-subject heterogeneity. Mixed-effects
models provide a general and flexible framework for mod-
eling longitudinal data, consisting of two modeling com-
ponents: fixed effects and random effects, characterizing
the population mean and individual variation, respectively
[62, 63]. Mixed-effects models in general are amenable to
missing data and can accommodate missing completely at
random or missing at random [62, 64]. Without loss of
generality, we consider a longitudinal study with N
subjects and the ith subject has ni observations over time.
Repeated measures of the outcome are denoted by Yij, ex-
posure vector Xij, covariate vector Zij and observation time
Tij, and then the observed full dataset is {(Yij,Xij,Zij, Tij),
i = 1,…,N, j = 1,…, ni}.
Specifically, the PLSI mixed-effects model with a ran-

dom intercept is specified as

Y i j ¼ g
X8
l¼1

βlXi j l

 !
þ Z

0
i jγþ bi þ ωTi j þ εi j; ð5Þ

where bi represents the subject-specific random inter-
cept and ω represents the time effect on the outcome.
Note that PLSI mixed-effects model can accommodate
additional random effects and other model specifications
of fixed effects and interactions, and the model specifica-
tion for a PLSI mixed-effects model with a random slope
was provided in Additional file 1: Table S1. The index
coefficient βl can be explained as the relative direction
and importance of Xijl as Xijl is perturbed when scale of
β is set and g(∙) and other variables are held fixed, and
g(∙) represents the overall effect of the single index with
the mean of longitudinal outcome.

Simulation settings
Since the NHANES survey dataset does not have time-
to-event outcome nor longitudinal outcome, we con-
ducted simulations to demonstrate the PLSI PH model
and PLSI mixed-effects model. The coefficients for the 8
environmental factors and three confounding variables
were set based on the results from the PLSI linear
regression for continuous triglycerides. We kept the
original direction of these associations and the absolute
rank for each environment factor, and set the effect sizes
in a wider range to be more distinguishable (see details

in Tables 3 and 4). Moreover, we considered the link
function g(.) to be either g(x) = x to facilitate the direct
comparison with the parametric models, or as a quadratic
function g(x) = x2 to mimic the scenario with nonlinear
effects and pair-wise interactions between the exposures

as gðP8
j¼1β jX jÞ ¼ β21X

2
1 þ…þ β28X

2
8 þ 2β1β2X1X2 þ…

þ2β7β8X7X8 , or a more complex function g(x) = 0.2x3 −
x2 + 3x to demonstrate higher-order nonlinear effects and
interactions, such as three-way interactions. Furthermore,
we visualized the interaction effects of two variables by
plotting the stratified effect of one variable when fixing
the other variables at various levels. Time-to-event out-
comes were generated using model (4) with λ0 = 1 in the
identity link function scenario, λ0 = 1/ exp(2) in the quad-
ratic link function scenario and in the cubic polynomial
link function scenario; with a censoring rate as 20% in all
of them. Longitudinal outcomes were generated using
model (5) with tij ranged [1, 6] and ω = 1. The number of
possible observations for each subject was assumed to vary
randomly between 2 and 6. The errors followed a first
order autoregressive process (i.e. AR(1)), with the autocor-
relation as 0.4 and standard deviation as 1.5 to mimic
decreasing dependence with time. All details of data
generation used in these simulations are included in the R
markdown file (Additional file 3).

Performance evaluation
In all analyses, the estimated coefficients for the 8 environ-
mental factors and confounders were reported. Ranks based
on the absolute values of estimated coefficients were pre-
sented to evaluate the relative importance of each environ-
mental factor, and squares of estimated coefficients were
shown to represent the respective proportion of contribu-
tion to the single index. For all models, the standard errors
of coefficient estimates and of the estimated link function
were estimated using 500 runs of bootstrapping samples
and used to construct the 95% confidence intervals (CIs).
We compared the performance of each PLSI model with its
counterpart parametric model. The estimated coefficients
of 8 environmental factors from the parametric counterpart
models were reported in both original values and scaled
values to have l2 norm of 1 for comparison.

Statistical software
All statistical analyses were performed using statistical
software R 3.5.0. R codes for the PLSI models for differ-
ent types of outcomes were developed using ‘gam’,
‘qgam’ or ‘gamm’ function call from ‘mgcv’ or ‘qgam’
package. Linear regression and logistic regression were
fit using ‘glm’ function, and quantile regressions using
‘rq’ function in the ‘quantreg’ package. Cox PH model
was fitted using ‘coxph’ function from ‘survival’ package,
and linear mixed-effects model using ‘lme’ function from
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‘nlme’ package. All descriptive and analytical codes were
provided as an R Markdown document in Additional file 3.

Results
Continuous triglycerides: PLSI mean regression
We applied the PLSI linear regression and multivariable
linear regression to study the associations of the 8
environmental factors with continuous triglycerides, and
summarized the estimates in Fig. 2 (numerical results in
Additional file 1: Table S2). The ranks, estimated coeffi-
cients, and directions were similar between these two
models, and the estimated link function was close to be
linear (Additional file 1: Figure S3). As the estimated link
function was monotone and increasing, the positive esti-
mates indicated a positive association with triglycerides.

Specifically, a-Tocopherol had a β̂1 ¼ 0:612 and 95% CI
of (0.517, 0.707), indicating that a-Tocopherol had the
strongest positive association with triglycerides among
the 8 factors, and made about 37.4% contribution to the
single index; trans-b-carotene had the most negative

association of β̂8 ¼ − 0:383. These results were consist-
ent with original results from Patel’s study, which also
observed a-Tocopherol with the strongest positive and
trans-b-carotene with the strongest negative association
with triglycerides [48]. As the 8 environmental factors
showed both positive and negative associations with
triglycerides, this application highlighted the need of
statistical methods to accommodate both directional effects
for studying multiple environmental exposures. Sensitivity
analysis including all 22 environmental factors (Additional
file 1: Table S3) showed that the conclusions on the
important environmental factors were consistent. The 8

selected environmental factors consistently showed top
ranks among the 22 factors, except for PCB194 which was
highly correlated with other PCBs. When there are many
highly correlated exposures (r > 0.9), we also recommend
using p-values to rank the importance of variables in
addition to the absolute coefficient values, which can be in-
flated by multicollinearity [65].

Continuous triglycerides: PLSI quantile regression
We applied the PLSI quantile regression to study the
associations between 8 exposures and three quartiles
(25th, 50th, and 75th percentiles) of triglycerides and
summarized the main results in Fig. 3 (numerical results
in Additional file 1: Table S4). We observed that the
estimated link functions for all three quartiles were in-
creasing and close to be linear (Additional file 1: Figure
S4), which explained the similarities between the results
of the PLSI quantile regressions and regular quantile re-
gressions. In addition, the 8 environmental factors showed
fairly consistent associations across the three quartiles of
triglycerides. For example, a-Tocopherol was the factor
having the strongest positive association with triglycerides
and trans-b-carotene was the factor having the strongest
negative association with triglycerides at all three quartiles.

Binary triglycerides: PLSI logistic regression
For dichotomized triglycerides, the ranks and estimates
from PLSI logistic regression and multivariable logistic
regression are shown in Fig. 4 (numerical results in
Additional file 1: Table S5), which demonstrated similar
results from these two models. The estimated link func-
tion by PLSI logistic regression was monotone increasing
and close to be linear (Additional file 1: Figure S5).

Fig. 2 Results from PLSI linear regression and multivariable linear regression in NHANES 2002–2003 (d = 8, N = 800). Bars show the estimated
relative importance (absolute value of estimated coefficient) of 8 environmental factors on continuous triglycerides. Red/green color represents
positive/negative effect. Error bars indicate 95% CIs
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Thus, the estimated directions can be interpreted quali-
tatively and the estimated coefficients represented the
relative importance of each exposure on the log odds of
high triglycerides. For example, the estimated coefficient

of a-Tocopherol was β̂1 ¼ 0:584 (95% CI: 0.433–0.735),
which represented that a-Tocopherol had the strongest
positive association with the odds of high triglycerides
among the 8 factors.

Simulated time-to-event outcome: PLSI PH model
We summarize the simulation results from both PLSI
PH model and Cox PH model in Table 3. Under the

identity link function setting, results from the PLSI PH
model and the conventional Cox PH model were very
similar as expected, and both close to the true values.
The PLSI PH model estimated the link function to be
close to the true linear function (Additional file 1: Figure
S6 (a)). Under the quadratic link function setting, results
from the PLSI PH model were still consistent to true
coefficients, but the conventional Cox PH model failed
for most of the environmental factors because the linear
model assumption was insufficient. The PLSI PH model
also captured the U-shape and estimated the link
function close to the true quadratic function (Additional
file 1: Figure S6 (b)). Stratified plots (Additional file 1:

Fig. 3 Results from PLSI quantile regression and multivariable quantile regression in NHANES 2002–2003 (d = 8, N = 800). Bars show the estimated
relative importance (absolute value of estimated coefficient) of 8 environmental factors on three quartiles (25th, 50th, and 75th percentiles) of
triglycerides. Red/green color represents positive/negative effect. Error bars indicate 95% CIs

Fig. 4 Results from PLSI logistic regression and multivariable logistic regression in NHANES 2002–2003 (N = 800). Bars show the estimated relative
importance (absolute value of estimated coefficient) of 8 environmental factors on dichotomized triglycerides. Red/green color represents
positive/negative effect. Error bars indicate 95% CIs
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Figure S7) showed that a-Tocopherol had different
effects on the outcome when trans-b-carotene was set at
its 10th, 50th, and 90th percentiles, indicating the existence
of an interaction between a-Tocopherol and trans-b-
carotene in this scenario. Results for complex polynomial
link function (Additional file 1: Table S6 and Figure S8)
presented good performance in coefficient and link func-
tion estimations, suggesting that PLSI models are able to
handle complex higher-order interactions among environ-
mental factors.

Simulated longitudinal outcome: PLSI mixed-effects
model
The results from PLSI mixed-effects model and linear
mixed-effects model under identify or quadratic link
function are presented in Table 4. Under the identity
link function setting, the PLSI mixed-effects model esti-
mated all coefficients close to the true coefficients with
correct directions, and conventional linear mixed-effects
model also had similar estimations. The estimated link
function by PLSI mixed-effects model was close to the
true linear function (Additional file 1: Figure S9 (a)).
Under the quadratic link function setting, the results
from PLSI mixed-effects model were still consistent;
however, the conventional linear mixed-effects model
clearly showed biased results for some factors like
PCB194. The estimated link function by PLSI mixed-
effects model had a U-shape and was close to the true
quadratic function (Additional file 1: Figure S9 (b)).

Discussion
We presented five PLSI models aiming to provide a unified
family of statistical models to assess the joint effects of
environmental exposures on four types of health outcomes:
continuous, categorical, time-to-event, and longitudinal
outcomes. We demonstrated the flexibility and effectiveness
of this PLSI family for modeling various types of outcomes
using NHANES data supplemented with simulations. One
contribution of this work is that the novel modeling options
under the PLSI framework complement existing methods
and address some common statistical challenges in the ana-
lysis of multiple environmental exposures, such as mixed
directions, interactions, and non-linear effects. Another
contribution is that coherent computation algorithms are
developed for all the PLSI models and implemented using
the existing R packages, which can facilitate direct applica-
tions in practice and reproducible research.
In our analyses of the cross-sectional NHANES studies

for continuous and binary triglycerides by PLSI models,
we found that the 8 environmental factors exhibited
mixed directional associations with the outcome, with a-
Tocopherol having the strongest positive association and
trans-b-carotene having the strongest negative associ-
ation with triglycerides. A-Tocopherol and carotenes are

transported in serum with HDL and LDL, and the level of
serum a-Tocopherol depends on serum lipids [66, 67].
The strong positive association between a-Tocopherol and
triglycerides is expected [48], and the negative association
between b-carotene and triglycerides is supported by pre-
vious studies [68, 69]. Our results were consistent with the
results of previously known and validated environmental
chemical factors correlated with triglycerides [48], clearly
demonstrating the value of PLSI models as a flexible and
useful tool for analyzing complex exposures. Using
additional simulations for time-to-event and longitudinal
outcomes, we showed that the PLSI models could
correctly identify the directions and magnitudes of associ-
ations for these environmental factors in scenarios with
different types of outcomes.
In our NHANES applications of studying triglycerides

continuously and categorically, we estimated that the
link functions of PLSI models were very close to be lin-
ear, which were also reflected by the similar results with
their counterpart parametric models. In general, stand-
ard errors from the PLSI models were larger than those
from their counterpart parametric models, which was
expected as the former are semiparametric models.
We also conducted another sensitivity weighted analysis

incorporating the laboratory subsample C weights from
NHANES 2003–2004 cycle (following general guideline to
use the weights from “least common denominator”) [70],
and the weighted results (Additional file 1: Table S7) were
similar with the results from unweighted models. Note
that most of the PLSI models are readily incorporate
weights in R function codes (Additional file 3).
Interaction among multiple correlated environmental

factors is very common, and it has been long appreci-
ated that the co-exposures may have synergistic
(additive or multiplicative) or antagonistic effects on
health outcomes [71]. For parametric models, it’s
difficult to directly model the interaction effects among
co-exposures if we don’t know the ‘degree of inter-
action’. However, PLSI models can handle the inter-
action easily through the unknown link function as we
evaluated using the simulations. Specifically, in our
simulated time-to-event and longitudinal analyses with
quadratic link function , which reflected both the pair-
wise interactions and non-linear quadratic effects, both
PLSI PH model and PLSI mixed-effects were able to
capture the U-shape link function and correct direction
and importance of the environmental factors, while
parametric models failed in most factors because the
parametric assumptions were no longer satisfied. For
more complex (higher-order) interactions, the flexibility
of the nonparametric link function can incorporate the
effects of these interactions [72]. Therefore, PLSI
models readily accommodate the factors showing non-
linear or interactive effect on the health outcome.
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There are other ways and models using various defini-
tions of weighted sums to model the joint effect for
multiple environmental components. For example, molar
sums were used to show relationships between prenatal
phenol and phthalate exposures and birth outcome [73],
and a potency-weighted sum was used to calculate
phthalates exposures among reproductive-aged women
[74]. The weights for environmental factors can be
calculated from their expected potency relative to a
reference factor, like the common cases in toxicology
[75], or based on their percent contribution to the total
mixture effect, like WQS [9]. PLSI models can be
considered as one of these weighting approaches, and
their advantages from the semiparametric structure are
evident compared with existing methods, especially for
the scenarios when the environmental exposures have
mixed-directional associations and/or a potential high-
degree interaction. Meanwhile, due to the flexibility of
the nonparametric link function, PLSI models can repre-
sent complex joint effects more than additive structures
[76], which is commonly encountered since environmen-
tal exposures may act together in a biological sense via a
shared mechanistic pathway [4]. The ability of handling
various types of outcomes is another important advan-
tage of the proposed PLSI framework. This is important
because, with the accumulation of environmental expos-
ure measurements and development of data collection
methods, time-to-event or longitudinal studies are
desired to explore the associations over time.
In this study, the coherent algorithms for PLSI

models are based on the ‘gam’ and ‘gamm’ functions
from ‘mgcv’ package and ‘qgam’ function from ‘qgam’
package in R, which includes many of the generalized
additive model (GAM) fitting techniques developed by
Simon Wood et al. [77]. The rationale behind the
algorithms is to use ‘gam’, ‘qgam’ or ‘gamm’ call
(usually using penalized regression splines or similar
smoothers) to profile out the smooth model coeffi-
cients and smoothing parameters for estimation of the
link function contained in PLSI model, leaving only a
finite parameter vector to be estimated by a general
purpose optimizer. Based on this algorithm, it is easy
to adapt the models to include multiple single index
terms, parametric terms, and further smoothing. We
have compared the estimates for single index models
among different iterative procedures using existing
packages (e.g., projection pursuit regression with one
term using ‘ppr’ function; ‘sim.est’ function from
‘simest’ package) in various simulations, and they have
similar estimation performance. We finally chose
‘gam’ call series because of its flexibility for covariate
adjustment and ability of modeling various types of
outcomes. This ‘gam’, ‘qgam’, ‘gamm’ call approach
has demonstrated efficient and robust performance in

our numerical studies, and we believe this coherent
algorithm strategy wrapped as a toolbox is beneficial
for practical application.
The PLSI models considered here may not be directly

applicable to extreme high-dimensional settings, for
which we could consider using extensions with adaptive
LASSO [78], smoothly clipped absolute deviation penalty
[79], and smooth-threshold estimating equations [80].
Another future research direction is to extend from the
single index to multiple-index models, such as the pro-
jection pursuit regression [81], so that more complex
data structures and exposure effect patterns can be
captured and modeled.

Conclusions
A family of PLSI models exemplified great value of
identifying important components among environmental
exposures when they demonstrate associations in various
directions and complex non-linear relationships between
the exposures and outcome.
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