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Abstract

Background: We previously found additive effects of long- and short-term exposures to fine particulate matter
(PM2.5), ozone (O3), and nitrogen dioxide (NO2) on all-cause mortality rate using a generalized propensity score
(GPS) adjustment approach. The study addressed an important question of how many early deaths were caused by
each exposure. However, the study was computationally expensive, did not capture possible interactions and high-
order nonlinearities, and omitted potential confounders.

Methods: We proposed two new methods and reconducted the analysis using the same cohort of Medicare
beneficiaries in Massachusetts during 2000–2012, which consisted of 1.5 million individuals with 3.8 billion person-
days of follow-up. The first method, weighted least squares (WLS), leveraged large volume of data by aggregating
person-days, which gave equivalent results to the linear probability model (LPM) method in the previous analysis
but significantly reduced computational burden. The second method, m-out-of-n random forests (moonRF),
implemented scaling random forests that captured all possible interactions and nonlinearities in the GPS model. To
minimize confounding bias, we additionally controlled relative humidity and health care utilizations that were not
included previously. Further, we performed low-level analysis by restricting to person-days with exposure levels
below increasingly stringent thresholds.

Results: We found consistent results between LPM/WLS and moonRF: all exposures were positively associated with
mortality rate, even at low levels. For long-term PM2.5 and O3, the effect estimates became larger at lower levels. Long-term
exposure to PM2.5 posed the highest risk: 1 μg/m3 increase in long-term PM2.5 was associated with 1053 (95% confidence
interval [CI]: 984, 1122; based on LPM/WLS methods) or 1058 (95% CI: 988, 1127; based on moonRF method) early deaths
each year among the Medicare population in Massachusetts.

Conclusions: This study provides more rigorous causal evidence between PM2.5, O3, and NO2 exposures and mortality,
even at low levels. The largest effect estimate for long-term PM2.5 suggests that reducing PM2.5 could gain the most
substantial benefits. The consistency between LPM/WLS and moonRF suggests that there were not many interactions
and high-order nonlinearities. In the big data context, the proposed methods will be useful for future scientific work in
estimating causality on an additive scale.
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Introduction
Ambient fine particulate matter (PM2.5), ozone (O3), and
nitrogen dioxide (NO2) are considered leading causes of
death worldwide, largely based on associational studies
using traditional statistical methods [1–6]. However, such
associations do not necessarily indicate causality [7]. Al-
though a growing body of literature has reported the effect
of PM2.5 exposure on mortality using causal modeling ap-
proaches [8–10], few studies so far have examined O3 and
NO2 [11]. Clearly, O3 and NO2 have received less atten-
tion than they deserve; long-term O3 concentration has
not been regulated by the U.S. National Ambient Air
Quality Standards (NAAQS) and the regulations for NO2

has been unchanged for decades [12].
Although epidemiologic researchers often report long-

or short-term effect of an individual air pollutant, there
has been evidence that concurrent air pollution exposures
may confound the health effect among each other [2, 3,
13]. In the case of causal analysis, simultaneous assess-
ment of concurrent air pollutants is necessary as it 1)
accounts for mutual confounding and thus reduces con-
founding bias, and 2) allows for comparing the individual
effects and identifying the component that is responsible
for substantial morbidity and mortality. Indeed, targeting
the most harmful air pollutant and its major emission
sources based on scientific evidence is the key to efficient
and effective air quality regulations [14].
Most air pollution epidemiology studies are conducted

using multiplicative models, such as log-linear or Cox
proportional hazards models [15]. Such models inher-
ently estimate the effect of exposure on multiplicative
scales, which describe the relative change in a health
outcome between different exposure levels. In many cir-
cumstances, however, it is preferable to measure the ab-
solute effect of exposure on the occurrence of outcome
[16]. For example, estimating the additive effect of an air
pollutant exposure on mortality rate would give us the
number of early deaths due to air pollution, which pro-
vides a better sense of the actual size of the health risk
and is precisely the type of evidence that U.S. Environ-
mental Protection Agency prefers [17]. In addition, addi-
tive models make interaction terms (or their absence)
more interpretable, which can help assess effect modifi-
cation and environmental justice [18].
Recently, we used a parametric generalized propensity

score (GPS) adjustment approach to simultaneously esti-
mate causal effects of long- and short-term exposures to
PM2.5, O3, and NO2 on mortality rate among Medicare
beneficiaries in Massachusetts during 2000–2012 [19].
We considered a counting process for analyzing individ-
ual survival data [20]. For each exposure, we estimated
the GPS at the observed exposure level on each person-
day given the other concurrent exposures and all mea-
sured confounders. By modeling the binary outcome of

death with linear probability model (LPM), we estimated
the additive effect of each exposure on mortality rate.
The analysis addressed a critically important question of
how many early deaths were caused by air pollution,
under the assumption that both GPS model and out-
come regression model were correctly specified. How-
ever, the GPS models did not capture potential
interactions and high-order nonlinearities, making the
estimates vulnerable to insufficient confounding control.
Further, the counting process data structure with
person-day representations of follow-up produces a
massive volume of dataset: the whole set of data is com-
prised of 3.8 billion observations which is about 2 TB in
size in the RDS file format, making the analysis compu-
tationally expensive.
Using the same cohort, here we proposed two new

GPS-based approaches with the goals of increasing com-
putational efficiency and model flexibility in assessing the
additive effects of air pollution exposures on mortality.
The first approach leveraged the large volume of data by
aggregating person-days, which gave the equivalent results
to the approach we used in the previous analysis but sig-
nificantly reduced the computational burden. Building
upon the aggregated dataset, the second approach imple-
mented a scaling random forests (RF) method, which in-
creased the flexibility of the GPS model by capturing
interactions and nonlinearities. To minimize confounding
bias, we also controlled additional community-level con-
founders that have been suggested as potential con-
founders. The findings of this analysis will increase the
robustness of the association and the validity of causal in-
terpretation of the relationship between air pollution and
mortality. In the big data context, the proposed ap-
proaches will benefit future scientific work.

Methods
Data sources
Medicare data
We obtained Medicare enrollment records between
January 1, 2000 and December 31, 2012 for beneficiaries
aged 65 years and above residing in Massachusetts from
the Centers for Medicare and Medicaid Services. We
constructed an open cohort with person-day representa-
tions of follow-up in which each individual was followed
from the maximum of January 1, 2000 or the date of en-
rollment until death or censoring, whichever occurred
earlier. For each beneficiary, we extracted their sex, race/
ethnicity, age, Medicaid eligibility, ZIP Code of residence
and its latitude and longitude, year of initial enrollment,
and date of death if occurred during 2000–2012. Age,
Medicaid eligibility, and ZIP Code of residence were up-
dated annually. The outcome of interest is all-cause
mortality.
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Exposure assessment
The daily concentrations of ambient PM2.5, O3, and NO2

at 1 km × 1 km grid cells across the contiguous US were
predicted using geographically weighted regressions that
ensembled predictions from RF, gradient boosting, and
neural network, which integrated multiple data sources
including satellite data, land-use variables, monitoring
data, chemical transport model simulations, etc. 10-fold
cross-validations on held-out monitors indicated good
predictive performance, with mean R2 of 0.86 for daily
PM2.5, 0.86 for daily O3, and 0.79 for daily NO2. Details
are published elsewhere [21–23]. The high-resolution
and well-validated predictions at 1 km × 1 km grid cells
allow us to estimate exposures levels at ZIP Codes with
higher degree of accuracy. Using the ZIP Code polygon
data generated by Environmental Systems Research In-
stitute [24], for each air pollutant we estimated its daily
concentrations in a ZIP Code by averaging the 1 km-
gridded predictions with those centroids fall within the
boundary of that ZIP Code.
We considered six exposures: long- and short-term ex-

posures to PM2.5, O3, and NO2. For each person on each
day, the long-term exposures were defined as annual
moving averages of the daily concentrations in the per-
son’s ZIP Code of residence (lag 0–364), and the short-
term exposures were defined as two-day moving aver-
ages of the daily concentrations in the person’s ZIP Code
of residence (lag 0–1). Following the previous literature,
the analysis for short-term O3 was restricted to person-
days in warm season from April to September [3]. The
analyses for the other exposures were performed over
the entire study period. These exposures were assigned
to each person on each day of follow-up.

Covariates
We made decisions for confounding selection based on
both substantive knowledge and the existing literature
[2, 25]. Individual-level covariates, including sex (male
or female), race (White, Black, or Other), age group
(65–69, 70–74, 75–79, 80–84, or ≥ 85 years), and Me-
dicaid eligibility (as a marker of socioeconomic status),
were obtained from the Medicare enrollment records.
Daily meteorological covariates, including air surface
temperature, dew point temperature, and relative hu-
midity with a resolution of 32 km × 32 km, were ob-
tained from the National Centers for Environmental
Prediction/National Center for Atmospheric Research
datasets, and were matched to each admission based on
the latitude and longitude of the centroid of that per-
son’s ZIP Code of residence [26]. ZIP Code Tabulation
Area (ZCTA)-level socioeconomic and housing charac-
teristics of each year, including median household in-
come, median house value, percent of owner-occupied
homes, percent of population living in poverty, percent

of population below high school education, population
density, percent of Blacks, and percent of Hispanics,
were linearly interpolated between US Census 2000 and
2010 and were extracted from the American Commu-
nity Survey for years after 2010, and were matched to
each admission based on ZCTA to ZIP Code crosswalks
[27]. County-level behavioral factors of each year, in-
cluding percent of ever smokers, lung cancer rate, and
average BMI, were obtained from Behavioral Risk Fac-
tor Surveillance System, and were linked to each admis-
sion based on the ZIP Code of residence [28]. From the
Dartmouth Atlas Project [29], we obtained health care
utilization variables including percent of persons over
age 65 with an annual hemoglobin A1c test, an annual
low-density lipoprotein test, and an annual eye exam in
each hospital catchment area, and linked them to each
admission based on the ZIP Code of residence. The
relative humidity and health care utilization variables
were not included in our previous analysis. Because
they may confound the association, we added them in
the current analysis [30, 31].

GPS methods for causal Modeling
GPS is a powerful tool for confounding control and is
increasingly being used in observational studies [32]. In
this section, we presented three GPS-based approaches
for assessing the additive effects of long- and short-term
exposures to PM2.5, O3, and NO2 on mortality rate. First
we reviewed the LPM approach that was used in the
previous analysis. Then we presented two new ap-
proaches that were developed upon the LPM: weighted
least squares (WLS) and m-out-of-n random forests
(moonRF). Each approach consisted of two stages: a
design stage where GPS were estimated at the observed
exposure levels given all measured confounders, and an
analysis stage where the additive effects of exposures on
mortality rate were estimated conditional upon the esti-
mated GPS [33].

Linear probability model (LPM)
We allowed for time-varying covariates by creating a
counting process data structure in which each record
represents a person-day of follow-up, indexed by i. In
the design stage, for each exposure we constructed the
GPS by fitting a linear regression of the observed expos-
ure level Ti against column vector of covariates Ci:

Ti ¼ C
0
iβþ εi; ð1Þ

where εi~N(0, σ
2) under the normality assumption,

superscript denoted transpose, and β and σ were esti-
mated by ordinal least squares (OLS). The covariate vec-
tor Ci includes the other five exposures, the individual
characteristics (sex, race, 5-year age group, and Medicaid
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eligibility), long- (lag 0–364) and short-term (lag 0–1,
lag 2–6, and lag 7–12) moving averages of meteoro-
logical variables, the community-level socioeconomic
and behavioral variables as mentioned earlier, and calen-
dar year for person-day i. Including the other five expo-
sures controlled for jointly confounded exposures;
including long- and short-term meteorological variables
controlled for confounding of changing weather and cli-
mate; and including calendar year controlled for other
confounding by time trends. For short-term exposures,
we also included calendar month and day of week to
control for seasonal confounding. All the continuous co-
variates were modeled with cubic polynomials to ac-
count for potential nonlinearity. A full list of covariates
is provided in Section 1 of Additional file 1.
Given the observed exposure Ti and covariates Ci, we

estimated the GPS for person-day i according to Hirano
and Imbens [34]:

R̂i ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ̂2

p exp −
1

2σ̂2
Ti − T̂ i
� �2

� �
; ð2Þ

where T̂ i ¼ C
0
iβ̂. Assuming that the GPS regression (Eq.

1) had been correctly specified, R̂i was an estimator of
Ri, which provided a scalar summary of bias introduced
by all measured confounders and therefore could be
used for confounding control through adjustment.
In the analysis stage, for each exposure we fitted an

LPM of binary outcome of death Yi against Ti and Ri:

Y i ¼ α0 þ α1Ti þ α2Ri þ τi; ð3Þ

where α0, α1, and α2 were estimated by OLS given R̂i es-
timated from Eq. 2. Assuming that the GPS model (Eq.
1) and the outcome regression model (Eq. 3) had been
correctly specified, the OLS estimate α̂1 was an unbiased
causal effect estimate, which can be interpreted as the
average difference in mortality rate attributed to each
unit increase in the exposure. Such causal interpretation
comes from the use of GPS and the collapsibility of
LPM, making conditional and marginal estimates nu-
merically the same [35, 36]. Due to the heteroscedastic
nature of LPM’s residuals [37], we constructed a robust
confidence interval (CI) for α̂1 using sandwich standard
error estimates.

Weighted least squares (WLS)
One of the main disadvantages of the LPM method is
the challenge in processing the massive dataset with
person-day representations of follow-up contributed by
the Medicare cohort. Here we proposed the WLS
method to reduce the computational burden. The WLS
aggregated person-days yet retained all the information
after the aggregation. As a result, the WLS gave us the

same effect estimates as the LPM but with a significantly
improved computational efficiency.
In the design stage, we aggregated the person-days

that had the same sex, race, age, Medicaid eligibility, ZIP
Code of residence, and date as a single record and
assigned the numbers of person-days for that record as
weight. This is because the aggregated person-days are
identical in terms of all the exposures and covariates,
therefore can be treated interchangeably in the analysis.
With the aggregated dataset, for each exposure, we fitted
a weighted linear regression of the observed exposure
level against all the covariates, with continuous ones
modeled with cubic polynomials, and estimated the GPS
using Eq. 2. We can show that estimating the WLS re-

gression gave the equivalent estimates β̂ as estimating
Eq. 1 using OLS (Section 2 of Additional file 1).
Person-days with the same exposures, covariates, and

thus the estimated GPS may have different outcomes of
death (0 or 1). In the analysis stage, we calculated the
average outcome for each aggregated person-day group
and assigned it to the person-day in the aggregated data-
set. For each exposure, with the aggregated dataset, we fit-
ted a weighted linear regression of the averaged outcome
against the observed exposure level and the estimated
GPS. Similarly, estimating this WLS regression gave the
equivalent estimates α̂ as estimating Eq. 3 (Section 2 of
Additional file 1). Hence the WLS produced the same
effect estimate α̂1 as the LPM.
In our dataset, because most person-days were identi-

cal in terms of the exposures and confounders and
therefore were dropped after aggregation, the WLS
method saved a lot of storage capacity and significantly
speeded up the computation; the number of person-days
reduced from 3.8 billion to 60 million after data aggrega-
tion and compared with the LPM, the computing time
reduced from 3 weeks to 2 days.

M-out-of-n random forests (moonRF)
RF is a nonparametric learning method for classification
or regression which automatically and thoroughly con-
sider possible nonlinear relationship and interactions.
They build individual decision trees through intensive
resampling and generally yield better predictive perform-
ance than linear regression [38]. In the big data context,
Bickel et al. [39] proposed a m-out-of-n bootstrap
scheme aiming at addressing the computational burden
of standard bootstrapping and proved its consistency.
The m-out-of-n bootstrap proceeds by resampling m ob-
servations out of the original dataset (1, …, n) without
replacement, where m≪ n. The number of m can be as
small as n0.5, much smaller than the typical size of stand-
ard bootstrap samples. Setting the number of bootstrap
samples at 50 to 100 obtains fairly good predictive
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performance, and increasing the number of samples
greater than 100 can lead to negligible improvements
[38]. Here we estimated the GPS with this idea adopted
in the implementation of RF in the design stage of the
analysis. The advantage of moonRF over the LPM and
WLS is that it has more flexibility to capture any pos-
sible interactions and nonlinearities, making the esti-
mates robust to any observed confounding bias [40].
In the design stage, we used the number of person-

days aggregated for each record in the aggregated data-
set as frequency weight and sampled 62,000 person-days
(i.e., N0.5, where N = 3.8 billion) without replacement.
With this sample, we built a tree for each exposure and
made prediction of the exposure for each person-day in
the aggregated dataset. We repeated this routine for 100

times. The final predicted exposure level T̂ j for person-
day j was obtained by averaging the predictions of the
100 trees:

T̂ j ¼ 1
100

X100

l¼1

T̂ jl: ð4Þ

Then applying Eq. 2, we estimated the GPS for each
person-day in the aggregated dataset.
In the analysis stage, following the WLS method, we fit-

ted a weighted regression of the averaged outcome against
the observed exposure level and the estimated GPS using
the aggregated dataset to obtain estimator α̂1 , which, if
both the GPS model and the outcome regression model
were correctly specified, was the causal estimate for the
additive effect of exposure on mortality rate.
To assess the effects of exposures to low levels of am-

bient air pollutants, for each method we reconducted
the analysis but restricted to person-days with exposure
levels below increasingly stringent thresholds, including
those well below the levels set in the current NAAQS
(12 μg·m− 3 for long-term PM2.5, 35 μg·m− 3 for short-
term PM2.5, 70 parts per billion [ppb] for short-term O3,
53 ppb for long-term NO2, and 100 ppb for short-term
NO2; there is no standard for long-term O3).
For each exposure, we estimated annual number of

early deaths and the 95% CI attributed to each unit in-
crease in the exposure by multiplying the additive effect
estimate α̂1 and annual average number of person-days
for the study cohort during 2000–2012.

Sensitivity analyses
We tested the robustness of the main analysis results by
conducting sensitivity analyses with respect to the out-
come model flexibility (by modeling GPS with cubic
polynomial) and the strategy to adjust for seasonality (by
including week-of-year and weekday–weekend dummy
variables). We also tested the robustness of the moonRF

method by increasing bootstrap sample size (up to 620,
000) and the number trees (up to 500).
The computations of this study were performed on the

Research Computing Environment, supported by the In-
stitute for Quantitative Social Science both in the Fac-
ulty of Arts and Sciences at Harvard University. We
used R software (version 3.5.1) [41], “ranger” package
(version 0.12.1) [42], and “biglm” package (version 0.9.1)
[43] to perform the analysis.

Results
Table 1 shows the descriptive statistics of study popula-
tion. There were a total of 1,503,572 Medicare benefi-
ciaries in the study. Among those, 561,193 (37.3%)
deaths occurred. The population consists of more fe-
males (57.5%), mostly whites (92.2%), and mostly aged
65–74 years when entering the cohort (69.0%). 17.0% of
the population enrolled in Medicaid. Table 2 summaries
the exposure levels across all the beneficiaries’ ZIP
Codes of residence during 2000–2012. For each pollu-
tant, the average concentration of long- and short-term
exposures were similar while the short-term exposure
had greater variation. The exposure levels were mostly
below the NAAQS. Descriptive statistics and correlation
coefficients among the exposures and covariates are pro-
vided in Additional file 1.
Figure 1 shows the results of the three methods at ex-

posure levels below increasingly stringent thresholds.
The LPM and WLS methods gave equivalent results and
were generally consistent with moonRF. According to

Table 1 Characteristics of the Medicare population in
Massachusetts for the years 2000–2012

N

Population (%) 1,503,572 (100)

Total person-days 3,874,869,248

Person-days after aggregation 60,708,204

Deaths (%) 561,193 (37.3)

Sex

Female (%) 864,952 (57.5)

Male (%) 638,620 (42.5)

Race

White (%) 1,386,883 (92.2)

Black (%) 51,978 (3.5)

Other (%) 64,711 (4.3)

Age at cohort entry

65–74 (%) 1,037,164 (69.0)

75–84 (%) 335,189 (22.3)

≥ 85 (%) 131,219 (8.7)

Enrollment in Medicaid (%) 255,008 (17.0)
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the LPM/WLS, with the full dataset, each 1 μg·m− 3 in-
crease in long- and short-term exposures to PM2.5 was
associated with increases of 3.5 × 10− 6 (95% CI: 3.3 ×
10− 6, 3.8 × 10− 6) and 3.1 × 10− 7 (95% CI: 2.2 × 10− 7,
3.9 × 10− 7) in the probability of death per person-day,
respectively; each 1 ppb increase in long- and short-term
exposures to O3 was associated with increases of 2.2 ×
10− 7 (95% CI: 0.8 × 10− 7, 3.6 × 10− 7) and 2.4 × 10− 7

(95% CI: 1.9 × 10− 7, 3.0 × 10− 7) in the probability of
death per person-day, respectively; and each 1 ppb in-
crease in long- and short-term exposures to NO2 was as-
sociated with increases of 3.3 × 10− 7 (95% CI: 2.7 × 10− 7,
3.8 × 10− 7) and 5.6 × 10− 7 (95% CI: 5.2 × 10− 7, 6.0 ×
10− 7) in the probability of death per person-day, respect-
ively. The moonRF estimates were consistent with those
of the LPM/WLS on the full dataset. For long-term
PM2.5 and O3, all the methods demonstrated signifi-
cantly larger effects at lower exposure levels. For short-
term O3, the LPM/WLS became less consistent with
moonRF at very low levels. Numerical values are pro-
vided in Section 6 of Additional file 1.
Given the total number of person-days, we estimated

the annual number of early deaths due to each exposure
(Table 3). With the full dataset, we found that long-term
PM2.5 was associated with the greatest number of early
deaths per unit increase in exposure: the annual number
of early deaths associated with 1 μg/m3 increase in long-
term exposure to PM2.5 was 1053 (95% CI: 984, 1122)
using LPM/WLS and was 1058 (95% CI: 988, 1127)
using moonRF. When restricting the analyses to person-
days below the NAAQS, we found greater number of
early deaths due to long-term PM2.5, short-term PM2.5,
and short-term O3.

The effect estimates remained robust when fitting the
outcome regression with GPS modeled by cubic polyno-
mial, including week-of-year and weekday–weekend
dummy variables to adjust for seasonality (Section 7 and
8 of Additional file 1), or increasing the bootstrap sam-
ple size and the number of trees in moonRF (Section 9
of Additional file 1).

Discussion
Building upon the LPM method that we used in the pre-
vious analysis [19], we proposed two new GPS-based
methods, the WLS and moonRF, to estimate the additive
effects of long- and short-term exposures to PM2.5, O3,
and NO2 on mortality rate among Medicare beneficiaries
in Massachusetts, 2000–2012, encompassing over 3.8
billion person-days of follow-up. Compared with the
LPM, the WLS produced identical results but was super-
ior in computational efficiency, whereas the moonRF
was superior in flexibility and bias control. To minimize
confounding bias, we additionally adjusted for relative
humidity and health care utilization variables, which
were not included previously. Our results confirmed pre-
vious evidence that all the exposures were significantly
associated with mortality rate, even at levels below the
current NAAQS. For long-term PM2.5 and O3, the effect
sizes were larger when restricting to person-days with
exposure levels at increasingly stringent thresholds, sug-
gesting that the exposure-response relationships were
nonlinear over full ranges of exposure levels. Using a lin-
ear term for each exposure in the outcome regression
allowed us to estimate the average difference in mortal-
ity rate and further to estimate the number of deaths at-
tributed to a unit increase in the exposure within

Table 2 Summary statistics of air pollution exposures across the ZIP Codes of Medicare beneficiaries’ residence in Massachusetts
during 2000–2012

Long-term PM2.5

(μg·m− 3) a
Short-term PM2.5

(μg·m− 3) b
Long-term O3

(ppb) a
Short-term O3

(ppb) b,c
Long-term NO2

(ppb) a
Short-term NO2

(ppb) b

Mean ± SD 9.0 ± 1.9 8.9 ± 5.4 37.5 ± 3.0 32.6 ± 10.4 20.4 ± 8.3 20.5 ± 11.6

Min 3.3 0.1 25.7 7.9 3.2 0.2

5th
percentile

5.8 3.0 32.2 27.6 8.6 5.3

25th
percentile

7.6 5.2 35.6 36.7 14.1 11.3

Median 9.0 7.5 37.7 43.2 19.2 18.7

75th
percentile

10.1 11.2 39.6 49.6 26.1 27.9

95th
percentile

12.1 19.4 42.1 61.6 35.0 41.6

Max 16.4 65.3 47.1 116.0 64.6 119.0
a Long-term exposure to air pollution was defined as one-year moving average of the exposure level (lag 0–364). b Short-term exposure to air pollution was
defined as two-day moving average of the exposure level (lag 0–1). c Short-term O3 was summarized during the warm season from April 1 to September 30
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different ranges of exposure levels. The additive nature
of the estimand provides a clearer measure of the health
effects of the exposures and is deemed to be of regula-
tory interest [17]. Comparing the annual number of early
deaths associated with each exposure, we found that the
long-term PM2.5 posed the greatest public health con-
cern, suggesting that reducing PM2.5 could potentially
gain the most substantial health benefits.
The general consistency between the parametric

(LPM/WLS) and nonparametric (moonRF) GPS models
is a key finding. Such consistency reduces model de-
pendence while increases the internal validity of the use
of GPS for summarizing measured confounding [33].
Some studies, including both conventional statistical and

causal modeling analyses, rely on the homogeneity as-
sumption that there are no interaction effects among ex-
posures and confounders [2, 3, 5, 8, 11]. In our study,
because the LPM/WLS did not adjust for interactions
while the moonRF adjusted for all possible interactions
and higher-order nonlinearities, the consistency between
the LPM/WLS and moonRF suggests that the homogen-
eity assumption is likely to hold. In addition, it also sug-
gests that modeling continuous covariates with up to
cubic polynomials is sufficient to capture nonlinearities.
For long-term O3, we found larger difference between
the two sets of results at lower levels, which may suggest
that the effect was confounded by complex interactions
when O3 formation was inhibited by lower temperature
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Fig. 1 Probabilities of death (and 95% CIs) attribute to 1 μg·m− 3 increase in PM2.5, 1 ppb increase in O3, or 1 ppb increase in NO2 at levels below
increasingly stringent cutpoints. “Full range” indicates the analysis was performed on the full dataset
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[22]. It is also possible that NO2 was acted as a surrogate
as it was inversely related to O3 for long-term exposures,
and different methods varied in their ability to identify
their effects [44]. However, the lack of supporting evi-
dence requires further studies to address this question.
The additive effect estimates provide evidence of the

causal relationship between major air pollutants and
mortality, which relied on two key assumptions: no un-
measured confounding and positivity [34]. In the obser-
vation setting, these two assumptions must always be
made to make appropriate causal inference of any public
health problems. For the assumption of no unmeasured
confounding, although it is impossible to test whether
there exists any unobserved confounding, comparing the
results with previous literature provide insights into the
validity of this assumption. Using a difference-in-
difference approach, Wang et al. estimated that a unit
increase in annual PM2.5 was associated 1.7% increase in
mortality rate for people ≥65 years old in New Jersey
[10]. Assuming that the baseline mortality was about 5%
for the population, their estimate was equivalent to an
additive increase of 2.3 × 10− 6 in the probability of death
per person-day, which was consistent with our estimates
(3.5 × 10− 6). Such consistency suggests that our long-
term effect estimate of PM2.5 was not significantly con-
founded by time-invariant or slowly varying con-
founders, such as smoking and obesity, since those
confounders had been adjusted by design. Similarly, the
consistency with a national analysis of short-term PM2.5

and NO2 with the use of negative exposure control pro-
vided additional protection against unmeasured con-
founding [11]. For the positivity assumption, we cannot
prove the lack of positivity with the observed data. Con-
sequently, we categorized each exposure by the lower

and upper percentiles and found similar distributions of
the estimated GPS across the exposure groups, which
suggests that the positivity assumption is likely to hold
(Section 10 of Additional file 1). Overall, the consistency
with previous studies and the similarity of categorized
exposure groups increase the validity of no-unmeasured-
confounding and positivity assumptions and, thus, the
likelihood of causal connections between the major air
pollutants and mortality.
The proposed GPS adjustment approaches have sev-

eral advantages. First, the use of GPS allows us to adjust
for a large number of confounders of both long- and
short-term exposures and adequately control for poten-
tial nonlinearities and interactions. Because the objective
of propensity score estimation is to obtain the best pre-
dictive accuracy, we do not need to concern about over-
parameterizing. Second, in the analysis stage, the small
outcome model with only two covariates, the exposure
and the estimated GPS, makes the model fitting and
generating robust CIs substantially efficient. Third, the
use of OLS regression in the analysis stage also provides
a causal interpretation of the exposure coefficient, which
comes from the fact that the conditional and marginal
estimates are numerically the same.
This study also has limitations. First, although air pol-

lution levels were estimated from models with excellent
out-of-sample prediction ability, there is likely measure-
ment error when exposure levels were averaged and
assigned to ZIP Codes, which may attenuate effect esti-
mates [45]. While upward bias is also possible, it relies
on a combination of large exposure error and high ex-
posure correlation with omitted confounders, which we
believe is unlikely [46]. Second, we were not able to ad-
just for the history of chronic diseases because such

Table 3 Annual number of early deaths (and 95% CIs) attribute to 1 μg·m−3 increase in PM2.5, 1 ppb increase in O3, or 1 ppb
increase in NO2

LPM/WLS moonRF

Full-range analysis a Long-term PM2.5 (μg·m
−3) 1053 (984, 1122) 1058 (988, 1127)

Short-term PM2.5 (μg·m
−3) 92 (67, 117) 69 (44, 95)

Long-term O3 (ppb) 66 (24, 107) 48 (6, 90)

Short-term O3 (ppb) 73 (57, 89) 74 (58, 91)

Long-term NO2 (ppb) 97 (80, 113) 102 (86, 119)

Short-term NO2 (ppb) 167 (156, 179) 163 (151, 174)

Below-standard analysis b Long-term PM2.5 (μg·m−3) 1203 (1126, 1280) 1214 (1137, 1292)

Short-term PM2.5 (μg·m−3) 101 (74, 127) 78 (52, 105)

Long-term O3 (ppb) NA NA

Short-term O3 (ppb) 100 (74, 127) 116 (87, 145)

Long-term NO2 (ppb) 97 (80, 113) 102 (85, 119)

Short-term NO2 (ppb) 168 (156, 179) 163 (151, 174)
a Full-range analysis was performed on the full dataset. b Below-standard analysis was performed on person-days with exposure levels below the NAAQS (<
12 μg·m−3 for long-term PM2.5, < 35 μg·m− 3 for short-term PM2.5, < 70 ppb for short-term O3, < 50 ppb for long-term NO2, and < 100 ppb for short-term NO2; there
is no standard for long-term O3)
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information is not available for the Medicare enrollment
records, which may leave residual confounding. Third,
information bias inherent to the lack of individual-level
data, apart from age, sex, race, and Medicaid eligibility,
could be present given that ZIP Code was the finest geo-
graphical unit we could use to link covariates with each
beneficiary.

Conclusions
Considering the internal validity of the design process for
the estimation of GPS and the consistency with previous
literature that use several different strategies to address
confounding, this study provides more rigorous evidence
of the causal relationships between long- and short-term
exposures to PM2.5, O3, and NO2 and mortality, even at
levels below the current NAAQS. The general consistency
between the parametric LPM/WLS and nonparametric
moonRF methods suggests that there were not many
interaction effects among confounders, and that modeling
continuous covariates with up to cubic polynomials was
sufficient to capture nonlinearities. In the big data context,
the proposed GPS-based methods will be useful in esti-
mating causality on an additive scale for the future scien-
tific work.
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