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Abstract

Background: Bisphenol A (BPA) is an industrial chemical mostly used in the manufacture of plastics, resins and
thermal paper. Several studies have reported adverse health effects with BPA exposures, namely metabolic disorders
and altered neurodevelopment in children, among others. The aim of this study was to explore BPA exposure, its
socio-demographic and life-style related determinants, and its association with neurodevelopmental outcomes in
early school age children from Poland.

Methods: A total of 250 urine samples of 7 year-old children from the Polish Mother and Child Cohort Study
(REPRO_PL) were analyzed for BPA concentrations using high performance liquid chromatography with online
sample clean-up coupled to tandem mass spectrometry (online-SPE-LC-MS/MS). Socio-demographic and lifestyle-
related data was collected by questionnaires or additional biomarker measurements. Emotional and behavioral
symptoms in children were assessed using mother-reported Strengths and Difficulties Questionnaire (SDQ).
Cognitive and psychomotor development was evaluated by Polish adaptation of the Intelligence and Development
Scales (IDS) performed by trained psychologists.

Results: Urinary BPA concentrations and back-calculated daily intakes (medians of 1.8 μg/l and 46.3 ng/kg bw/day,
respectively) were similar to other European studies. Urinary cotinine levels and body mass index, together with
maternal educational level and socio-economic status, were the main determinants of BPA levels in Polish children.
After adjusting for confounding factors, BPA has been found to be positively associated with emotional symptoms
(β: 0.14, 95% CI: 0.022; 0.27). Cognitive and psychomotor development were not found to be related to BPA levels.
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Conclusions: This study represents the first report of BPA levels and their determinants in school age children in
Poland. The exposure level was found to be related to child emotional condition, which can have long-term
consequences including social functioning and scholastic achievements. Further monitoring of this population in
terms of overall chemical exposure is required.
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Background
Bisphenol A (BPA) is an organic compound mostly used
in the manufacture of plastics, resins and thermal paper
since the decade of the 60s [1]. There has been a wide-
spread application of BPA in many daily use products,
including food contact materials (e.g. reusable bottles,
containers for beverages and food), toys, packaging,
paints and water pipes, and medical devices [2]. Humans
are therefore exposed to BPA through ingestion of con-
taminated foods and drinks, inhalation and dermal con-
tact. Once in the human body, BPA is mainly
metabolized in the liver. BPA glucuronide is the major
metabolite along other minor metabolites, including
BPA sulfate. The urinary elimination half-life of BPA in
humans is estimated to be around 5 h [3].
Bisphenol A has been classified as toxic for human

reproduction and identified as an endocrine disrupting
chemical (EDC) for human health and the environment
[1]. In 2019, the General Court of the EU confirmed that
BPA must be listed as a “substance of very high concern”
for its hormonal disrupting properties on the human
body, upholding a previous decision by the European
Chemicals Agency. Consequently, BPA has been already
banned or restricted in the EU for some products, such
as baby bottles (banned since 2011), toys (migration
limit of 0.04 mg/l), plastic bottles and food packaging
(banned since 2018 in products for babies and children
under the age of three, and for the rest, migration limit
of 0.05 mg/kg), and more recently, in thermal paper
(since 2020, limit of 0.02%) [4]. In any case, BPA is still
allowed to be used in the domain of plastics all over Eur-
ope, including Poland.
As in the case of other EDCs, there is particular con-

cern that fetuses, infants or children are more vulnerable
to these exposures compared to adults [5]. BPA may
interact with a variety of hormonal systems that affect
growth, metabolism, and neurodevelopment. The exist-
ing studies, including several reviews, have concluded
that BPA exposure might be related to neuro-behavioral
problems in children [6–11]. However, the results from
the existing publications are not fully consistent. The
reason lies in methodological differences such as differ-
ent exposure time (prenatal vs infancy vs childhood), ex-
posure level, use of variety of tools for measuring
neurodevelopmental domains and controlling for con-
founding variables. Sex-specific directions of the

associations cannot be excluded either. The postulated
mechanism of BPA effects, even at low doses, is complex
and not fully understood. BPA interference with hormo-
nal and genomic regulation is, however, pointed out.
BPA can bind not only to nuclear and membrane estro-
gen receptors but also to thyroid, glucocorticoid and
peroxisome proliferator-activated receptors, and it can
also interact with steroidogenic enzymes [7, 9–11]. The
developing brain is a key target for this compound and
thus both prenatal and childhood are sensitive periods
of exposure.
The worldwide prevalence of mental disorders in

children and adolescents was estimated by Polanczyk
et al. in a publication from 2015 [12]. The overall
prevalence was reported to be 13.4% (95% CI: 11.3–
15.9). Specific mental disorders such as anxiety, de-
pressive disorders or Attention-Deficit/Hyperactivity
Disorders (ADHD) had a prevalence of 6.5% (95% CI:
4.7–9.1), 2.6% (95% CI 1.7–3.9) and 3.4% (95% CI
2.6–4.5), respectively [12]. These psychiatric condi-
tions along with altered children’s intellectual poten-
tial can impact children’s well-being, scholastic
achievement, and social functioning later in life [12].
Children may have higher BPA exposures compared to

adults [13]. This can be related to developmentally ap-
propriate differences in diet, behavior, physiology, anat-
omy, and toxicokinetics. In 2015, within the European
framework project DEMOCOPHES, urinary BPA levels
were analyzed through a harmonized protocol in
mothers and children [14]. Overall, for BPA, the urinary
concentrations were similar among both age groups
[15]. Although only six countries were selected for the
BPA assessment, the results showed few geographical
differences [16]. Among the analyzed countries, Slovenia
showed the highest BPA levels in children. In addition,
this study showed that maximum daily BPA intakes were
above the temporary tolerable daily intake (t-TDI) of
4 μg/kg bw/d derived by EFSA [17] in a small subset of
children [16]. However, to date there are no or limited
available studies on the levels of BPA in Poland, particu-
larly for what concerns children’s exposure and its
health consequences. Ongoing European Human Bio-
monitoring Initiative (project HBM4EU, 2017–2021)
give the potential for comparison of exposure levels in
European countries (including Poland) based on the
standard protocol [18].
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Commercial production of BPA in Poland began in
1978, in the Southern village Kędzierzyn-Koźle. The
plant was one of the first BPA process technologies
in the world [19]. BPA production in Poland is
about 12,000 tons/year, although another report esti-
mated a BPA production of 20,000 tons in 2013 [19,
20]. Some Polish scientists have claimed to perform
a nation-wide biomonitoring in Poland in order to
evaluate the health risks posed by BPA exposure
[20]. Other European countries, such as France,
Sweden or Germany, have proposed to restrict the
use of BPA and investigate more in depth the poten-
tial risks of this compound and other similar bisphe-
nols in the environment [4]. The present study is
therefore devoted to contribute to fill this gap by the
analysis of BPA in urine samples, collected from 250
children from the Polish Mother and Child Cohort
(REPRO_PL) study [21]. In addition, we aim to ex-
plore the associations of BPA levels and neurodeve-
lopmental outcomes, following previous assessments
on this cohort and other environmental exposures
such as phthalates [22].
The aims of this study is to characterize the levels and

socio-demographic and lifestyle-related determinants of
BPA exposure in children from Poland, to calculate their
estimated daily intakes, and to explore the associations
with neurodevelopmental outcomes including emotional
and behavioral symptoms as well as cognitive and psy-
chomotor development.

Methods
Study population and sampling
The study is based on the Polish Mother and Child Co-
hort (REPRO_PL), which is described in detail in previ-
ous publications [21, 23, 24]. Briefly, the study
comprised three phases covering the prenatal period
(phase I: 2007–2011), child examination at the age of 1
and 2 years (phase II: 2008–2013), and child examination
at the age of 7 years (phase III: 2014–2019). The RE-
PRO_PL is aimed to assess the impact of a variety of en-
vironmental and lifestyle related factors on pregnancy
outcomes and children’s health. For this purpose, a sam-
ple of the Polish population was selected, sampling preg-
nant women (and their children) from several regions,
including big cities with more than 500 thousand of in-
habitants as well as small villages and towns. Out of 407
children who were followed-up until the age of 7 years,
spot urine samples from 250 children (61%) collected
the day of examination (in the period 2014–15) were
randomly selected for the analysis of BPA. Details of that
procedure have been published previously [21, 22, 25].
Written informed consent was obtained from the par-
ents of each child before the study, which was approved

by the Ethical Committee of the Nofer Institute of Occu-
pational Medicine, Lodz, Poland (Decision No. 22/2014).

Analysis of Bisphenol A and creatinine
Urine analyses were performed to measure concentra-
tions of BPA as total BPA after enzymatic hydrolyses
[26]. The analytical procedure has been described in de-
tail elsewhere [27, 28]. Quality control materials (con-
sisting of four pooled urine samples with different but
known concentrations of BPA) were included in each
batch of samples. The limit of quantification (LOQ,
based on a signal-to-noise ratio of 9) was 0.1 μg/l. The
laboratory successfully obtained consecutive certificates
for BPA analyses in urine of the external quality assess-
ment Scheme G-Equas (www.g-equas.de) also qualified
for BPA analyses within the pan-European HBM Project
HBM4EU (www.HBM4EU.eu).
Urinary creatinine was determined with a working

range of 0.05–5.00 g creatinine/l by contract analysis in
an accredited laboratory at the Nofer Institute of Occu-
pational Medicine (NIOM), Lodz, Poland (Cary 60 UV-
Vis spectrometer Agilent Technologies; MS Spektrum,
Poland) [29].

Socio-demographic and lifestyle-related variables
The following socio-demographic information was ob-
tained by questionnaire filled out by mothers at child
examination: place of residence (rural, urban; defined
using a threshold of 10 thousand of inhabitants); house-
hold status (single parenthood, parents living together);
number of siblings (none, 1, 2 or more); socio-economic
status (SES) of the family (least affluent, affluent and
most affluent; defined using a subjective assessment of
the mothers with four possible answers: very poor or
poor, good and very good, respectively); parental educa-
tional level (years of completed education: ≤9, 10–12, >
12); parental occupational activity (yes, no); child sex
and age (exact age based on date of examination and
date of birth). Parental age was calculated for date at
child birth. Data concerning breastfeeding (no: < 2
weeks, short: 2 weeks – 6 months, long: > 6 months) was
collected after delivery and at follow-up examinations.
Information on children’s passive smoking at the age of
7 years was extracted from cotinine levels in urine ana-
lysed by LC-ESI-MS/MS method in an accredited la-
boratory at NIOM [30, 31] (LOQ was 0.7 μg/l). A cut-off
value of 2.1 μg/l for child environmental tobacco smoke
exposure (ETS) was selected based on the analysis that
was done on the Polish children at similar age as in the
current study [31]. Child height and weight were mea-
sured at the age of 7 years by trained staff based on
standard protocols [21]. Body mass index (BMI) categor-
ies (underweight boys < 13.95 kg/m2, girls < 13.80 kg/m2;
recommended weight boys 13.96–18.64 kg/m2, girls
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13.81–18.19 kg/m2; overweight-obesity boys > 18.65 kg/
m2, girls > 18.20 kg/m2) were based on Polish reference
data BMI z-scores at the age of 7 years [32]. Considering
that in Poland children can start school education when
they are 6 or 7 years old (which can potentially impact
their exposure level and neurodevelopmental outcomes)
that information was included in the models evaluating
the association of BPA with neurodevelopmental out-
comes. Additional variables considered in the models in-
cluded mother-reported traumatic events experienced by
the child (yes/no), prenatal exposure to tobacco constit-
uents (based on cotinine levels in saliva collected from
the mothers during the pregnancy period and measured
by LC-ESI-MS/MS method in an accredited laboratory
at NIOM, with LOQ 0.4 μg/l [33], and child birth weight
and gestational age (based on data from medical
records).

Neurodevelopmental assessments
Child emotional and behavioral symptoms were assessed
by the Strengths and Difficulties Questionnaires (SDQ)
(www.sdqinfo.com, parent reported) filled in by the
mothers at the time as the child examination was per-
formed [34]. The 25 items in the SDQ constitute of five
scales (conduct problems, hyperactivity/inattention
problems, emotional symptoms, peer relationship prob-
lems and prosocial behavior) of five items each. For each
of the five scales the score ranges from 0 to 10 if all
items are completed. These scores were scaled up pro-
rata if at least 3 items were completed. All sub-scale
scores excluding prosocial behavior were summed as
total difficulties score (range from 0 to 40) to assess the
total behavioral problems. Validated, scale specific cut-
offs were used to classify children with the symptoms
within the borderline or clinical range and within the
clinical range only [34]. In addition to the five scales,
two amalgamated scales, namely externalizing and in-
ternalizing scores, were calculated. Both scores range
from 0 to 20. In the case of externalizing scores, conduct
and hyperactivity/inattention problems are summed,
while for internalizing scores, emotional symptoms and
peer relationship problems are combined [35, 36].
Child cognition and psychomotor development was

assessed with a Polish adaptation of the Intelligence and
Development Scales (IDS) for Children aged 5–10 years,
performed by trained and certified psychologists [37]. In
the current study, the general intellectual ability (fluid
and crystallized intelligence) as well as cognition and
mathematical, language and psychomotor skills were
evaluated. Reliability for fluid and crystallized
intelligence equals 0.94, and for the full scale, 0.96. A
more detailed explanation on the neurodevelopmental
assessments performed on the REPRO_PL children is
found elsewhere [22].

Daily intake and cumulative risk assessment
Daily intake (DI) of BPA was calculated from urinary
levels according to the following equation [16, 38]:

DI ¼ BPAcreatinine�CErate

Fue�bw

where DI is the daily BPA intake (in μg/kg bw/day);
BPAcreatinine is the creatinine-adjusted BPA concentra-
tion (in μg BPA/g creatinine); CErate is the child individ-
ual body height and gender based reference values for
urinary creatinine excretion rate (in g/day) [39]; Fue is
the urinary excretion fraction for total BPA (sum of glu-
curonide, sulfate, and free BPA), assumed to be 1 [27];
and bw is the body weight for each child (in kg).

Data analysis
Data analysis and graphics were performed using the
statistical software R [40] and ggplot package [41]. For
descriptive analysis, medians and geometric means (GM)
with 95% confidence intervals (CI) of BPA were used.
Percentile 95 and maximum values were also reported in
the tables. Statistical differences in the covariates be-
tween children included or not included in the study
were tested for significance using the Chi-square test
(Supplementary Material). Two different multivariate
linear regression analyses were used: on the one hand, to
assess the association of socio-demographic covariates
(independent variables) with BPA concentrations
(dependent variable); on the other, to assess the relation-
ship between neurodevelopmental outcomes (SDQ and
IDS scores, dependent variables) with the BPA levels
controlling for socio-demographic and subject character-
istics (independent variables). Before inclusion in the
models, BPA concentrations were transformed into the
natural logarithm and standardized (centred at zero and
scaled to two standard deviations) [42].
The first model (aimed to explore the associations of

socio-demographic and lifestyle determinants on the
levels of BPA) included the following covariates: sex,
BMI, place of residence, urinary cotinine levels, SES, ma-
ternal educational level and occupational status.
For the second set of models (aimed to assess the rela-

tionships between emotional and behavioral symptoms
(SDQ) and cognitive and psychomotor development of
children (IDS) and BPA levels, controlling for socio-
demographic characteristics) multivariate linear regres-
sion was used. In addition, other regression models were
applied for SDQ: on the one hand, Poisson and negative
binomial regression, and on the other, logistic regression
for SDQ symptoms dichotomized (both for children
within the borderline or clinical range grouped together
and compared with children within normal range; and
children within clinical range only compared with
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children within normal range and borderline). The SDQ
models were adjusted by children’s sex, age, maternal
educational level, socio-economic status, household sta-
tus, number of siblings, cotinine levels at age 7 and in
the 1st trimester of pregnancy, and maternal age, while
the IDS model were adjusted by the aforementioned var-
iables (except age at examination, since the test is
already standardized for age) in addition to the exam-
iner. All the models underwent sensitivity analysis, in-
cluding (e.g. birth weight and gestational age) or
excluding (e.g. cotinine levels in pregnancy) certain vari-
ables. In addition, we explored the sex differences in the
aforementioned associations by adding an interactive
term between the sex and the BPA levels. The models
were also checked for homoscedasticity/linearity, good-
ness of fit and independence of predictors using diag-
nostic plots, the variance inflation factor and the Jarque
Bera test, respectively. The final models were selected by
both AIC (Akaike Information Criteria) and BIC (Bayes-
ian Information Criteria). Type 1 error was set to 0.05.

Results
The characteristics of the population are described in
Tables 1 and S1. Detailed description of the study popu-
lation is presented in our previous publications [22, 25].
Except for age at examination (7.2 ± 0.23 years vs. 7.5 ±
1.1 years; p < 0.05), no differences were found between
the subset of children included and not included in the
BPA analysis. This analysis included almost similar pro-
portion of boys and girls. Parental’s educational level
was high (65% of the mothers and 42% of the fathers de-
clared university degree), mostly represented in the
higher SES (78 and 20% of the population indicated af-
fluent and most affluent levels, respectively), and de-
clared high occupational activity (89% of the mothers
and 98% of the fathers). Only 10% of the children were
not breastfed (or less than 2 weeks), 32% less than 6
months and 58% of the children longer than 6months.
About 40% of the children were exposed to ETS. Six
percent of the children were classified as underweight
and 17% were overweight or obese.
Neurodevelopmental outcomes, including emotional

and behavioral symptoms (SDQ) and cognitive and psy-
chomotor development (IDS) of children, are presented
in Table 2 and described in detail in a precedent publi-
cation [22]. Briefly, about 25% of the children were clas-
sified within borderline/clinical range of conduct
problems, emotional symptoms and hyperactivity/in-
attention scales (Table 2). Peer relationship problems
were noted among 18% of the studied population
whereas for a 7% of the children the scores for prosocial
behavior scales were within borderline and clinical
range. Intellectual efficiency and psychomotor skills were
within the normal range.

Urinary BPA was determined in all of the studied 7-
year old children from the Polish REPRO_PL cohort
(n = 250), with BPA below the LOQ in only one sample.
The concentrations ranged between <LOQ (treated as
LOQ/2, i.e. 0.05 μg/l) and 53.1 μg/l, with a median of
1.8 μg/l (GM of 1.9 μg/l) and a 95th percentile of
10.7 μg/l (Table 3). Creatinine-adjusted concentrations
ranged between 0.081 μg/g creatinine and 92.5 μg/g cre-
atinine, with a median level of 2.6 μg/g creatinine (Table
3). Table 4 shows an international comparison of urinary
BPA levels reported from different studies.
Figure 1 shows the univariate associations of several

socio-demographic and lifestyle-related determinants on
the levels of BPA in studied children. Specifically, BPA
concentrations were higher among children exposed to
ETS (Fig. 1). Maternal educational level and SES were

Table 1 Characteristics of the study population (Poland, 2014–
15, n = 250)

N (%)

Sex of the child

Female 134 (54)

Male 116 (46)

Child age at examinationa 7.2 ± 0.23

BMI groups

Underweight 15 (6)

Recommended weight 192 (77)

Overweight/Obese 43 (17)

Place of residence at 7 yr

Urban 216 (86)

Rural 34 (14)

Urinary cotinine levels at 7 yr

< 2.1 ng/ml 148 (59)

> 2.1 ng/ml 101 (41)

Maternal age at delivery

< 30 years 155 (62)

> 30 years 95 (38)

Socioeconomic status of the family at 7 yr

Most affluent (Very good) 50 (20)

Affluent (Good) 195 (78)

Least affluent (Poor or very poor) 5 (2)

Maternal educational level at 7 yr
(years of completed education)

≤ 9 5 (2)

10–12 83 (33)

> 12 162 (65)

Maternal occupational status at 7 yr

No 28 (11)

Yes 219 (89)
a Mean ± SD

Garí et al. Environmental Health           (2021) 20:95 Page 5 of 14



inversely associated to BPA concentrations in children,
with highest BPA levels among children whose mothers
had low educational levels or those belonging to the
least affluent socio-economic status (Fig. 1). The concen-
trations of BPA were significantly lower (p-value < 0.05,
Fig. 1) in children with underweight. Figure 2 shows a
more detailed distribution of the BPA levels by z-score
BMI groups. Specifically, BPA concentrations are wide-
spread within children in the healthy weight group. Chil-
dren classified as overweighted and obese usually ranged
in the highest BPA levels, while BPA in underweighted
children was within the low range (Fig. 2). Creatinine-
adjusted BPA concentrations for each BMI group are
found in Table S2 (Supporting Information). Other
sociodemographic determinants, such as children’s sex,
number of siblings, place of residence or maternal age
did not show any significant difference with the levels of
BPA (Fig. 1). Multivariate regression models confirmed
some of the aforementioned trends (Fig. S1). Specifically,
children whose urinary cotinine levels were higher than

2.1 ng/ml showed higher BPA levels, and also under-
weight was inversely related to BPA concentrations, be-
ing both variables statistically significant at a 10%
confidence level (p-value < 0.1; Fig. S1).
Figures 3 and 4 show the results for the association of

BPA exposure with children’s a) emotional and behav-
ioral outcomes and b) intelligence, cognition, mathemat-
ical, language and psychomotor skills considered as
continuous variables (SDQ and IDS, respectively). After
controlling for sociodemographic and lifestyle-related
factors, BPA was found to be positively associated with
emotional symptoms (β: 0.14, 95% CI: 0.021; 0.27). The
other scales, namely conduct problems, hyperactivity/in-
attention problems and peer relationships problems, to-
gether with the prosocial behavior, as well as the total
difficulties score, were not found to be significantly asso-
ciated with the BPA concentrations in 7-year old chil-
dren (Fig. 3). When the symptoms were dichotomized
(within borderline/clinical range vs. normal range or
clinical range vs. normal/borderline range) the observed

Table 2 Child neurodevelopmental scores for behavioral problems (SDQ) and cognitive and psychomotor development (IDS) in
children from Poland (n = 250)

Neurodevelopmental outcomes Mean (±SD) Range Borderline/Clinical (%)

Behavioral scales (SDQ)

Prosocial behavior 8 (±2) 4–10 7

Conduct problems 2 (±1) 0–7 28

Emotional Symptoms 2 (±2) 0–8 25

Hyperactivity/Inattention problems 4 (±3) 0–10 24

Peer relationship problems 1 (±2) 0–7 18

Total difficulties 9 (±5) 0–26 19

Internalizing scores 4 (±3) 0–13 NA

Externalizing scores 6 (±3) 0–15 NA

Intellectual ability (IDS)

Fluid intelligence (IQ) 104 (±14) 56–136 NA

Crystallized intelligence (IQ) 104 (±15) 60–142 NA

Cognition 73 (±12) 17–99 NA

Mathematical skills 11 (±3) 3–19 NA

Motor skills 30 (±6) 11–43 NA

Language skills 21 (±5) 6–32 NA

Table 3 BPA urinary concentrations (in μg/l and μg/g creatinine) and daily intakes (in ng/kg bw/day) in children from Poland
(REPRO_PL birth cohort, n = 250)

GMa (95% CIb) Median P25c P75d P95e Range

Urinary BPA concentrations
(μg/l)

1.9 (1.7–2.1) 1.8 1.1 2.8 10.7 0.05–53.1

Urinary BPA concentrations
(μg/g creatinine)

2.8 (2.5–3.1) 2.6 1.7 4.0 16.3 0.081–92.5

Daily Intakes of BPA
(ng/kg bw/day)

50.0 (44.5–56.1) 46.3 28.8 75.9 301.7 1.6–1840

a GM: Geometric Mean; b CI: Confidence Interval; c P25: Percentile 25th; d P75: Percentile 75th; e P95: Percentile 95th
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effect estimates on the emotional symptoms were not
maintained (Fig. S4). Cognitive and psychomotor devel-
opment measured with IDS were not found to be associ-
ated with BPA levels after controlling for covariates. The
results did not change in the sensitivity analyses with in-
clusion or exclusion of certain variables (Figs. S5 and S7
for SDQ and IDS, respectively). On the other hand, dif-
ferent effects depending on the children’s sex were not
found. This was assessed using an interactive term be-
tween sex and BPA levels on the associations with neu-
rodevelopmental outcomes (data not shown).

Discussion
In general, the BPA concentrations in Poland (1.9 μg/l)
ranged within similar levels as those found in other
European school-age children (Table 4). For 653 Euro-
pean children (DEMOCOPHES study) a median level of
2.0 μg/l was reported, with some differences among
European member states [16]. For instance, Slovenia and
Belgium were the two countries with the highest BPA
levels (2.6 μg/l and 2.4 μg/l, respectively), in comparison
to the other European locations analyzed in the report,
such as Denmark, Spain, Luxembourg and Sweden (ran-
ging from 1.5 μg/l to 1.9 μg/l) [16]. Other European
studies performed in Portugal (1.6 μg/l), Denmark
(1.7 μg/l), Slovenia (2.4 μg/l) and in a German cohort
(2.2 μg/l) reported similar BPA levels [43–45, 47]. Only
one study performed in 56 children aged 6–12 years
from Norway reported higher BPA concentrations
(3.1 μg/l) [46]. However, the differences regarding BPA
concentrations found between those studies cannot be

attributed to different population-exposure levels but to
the variability in sample size, children’s age, analytical
procedure and sampling period. The concentrations in
Poland are also in the same range than those found in
US studies, including the 2013–14 NHANES report and
the Ohio cohort (US), as well as in Hong Kong and
Brazil, with GM concentrations ranging from 1.4 μg/l to
1.7 μg/l [49, 52, 54, 57], but twice higher than those
found in Canada, Turkey or South Korea (0.6–1.0 μg/l)
[48, 51, 55]. The concentrations were, however, much
higher in studies performed in Asian populations, such
as one conducted in China (2.7 μg/l) and another in
India (5.1 μg/l) [53, 56].
BPA has been gradually banned in many countries

since 2009, especially in food-related products for chil-
dren, which has resulted in an effective decrease of BPA
exposures in child populations [58, 59]. BPA exposures
in the US also declined during the time period from
2003 to 2012 [60]. Therefore different time points of
sample collection, together with other relevant factors
mentioned above, might contribute to the small differ-
ences in concentrations found in the reported countries
and continents (Table 4) [61]. The overall trend indi-
cates a decreasing BPA exposures among the general
population.
For our study population we calculated oral daily BPA

intakes using the urinary excretion fraction (Fue) for
BPA. The Fue was set to a value of 1 based on human
metabolism studies indicating that almost 100% of the
orally administered BPA is excreted via urine within 24
h after exposure [3]. In our study, the median daily BPA

Table 4 Comparison of BPA concentrations in different children populations worldwide

Location Year n Age BPA (μg/l)a Reference

Poland 2014–15 250 7 1.9 [1.7–2.1] This study

Europe 2011–12 653 5–12 2.0 [1.8–2.2] [16]

Germany 2006–2010 465 8–10 2.2 [2.0–2.4] [43]

Portugal 2014–15 110 4–18 1.6 [1.2–2.1] [44]

Denmark 2011 143 6–11 1.7 [1.1–3.7]b [45]

Norway 2012 56 6–12 3.1 [1.8–4.1]b [46]

Slovenia 2011–12 145 6–11 2.4 [0.67–4.6]b [47]

Turkey 2015–16 125 3–6 0.60b [48]

US 2013–14 409 6–11 1.4 [1.3–1.6] [49]

Ohio, US 2003–14 222 8 1.6 [1.0–3.6]b [50]

Canada 2013–16 77 3–4 1.0 [0.6–1.5] [51]

Brazil 2012–13 300 6–14 1.7 [0.30–35.9]c [52]

China 2009–10 412 7 2.7 [2.2–3.2] [53]

Hong Kong 2016 31 4–6 1.7 [0.72–2.3]b [54]

South Korea 2016 162 7–9 0.60 [0.34–1.2]b [55]

India 2012–13 76 2–14 5.1 [0.070–41.4]c [56]
a GM [95% CI] b Median [25th–75th percentiles] c GM [Range]
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Fig. 1 Geometric means and 95% confidence intervals (μg/l) of BPA concentrations in 7-year old children for several socio-demographic
characteristics: children’s sex and BMI, number of siblings, place of residence, passive smoking at age 7, maternal age and educational level, and
socio-economic status
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Fig. 2 Density plot of BPA levels for each z-score body mass index category: underweight, healthy weight, and overweight/obesity

Fig. 3 Standardized beta-coefficients from multivariate regression models for BPA concentrations on the behavioral scales (SDQ) in children at 7
years of age. Models are adjusted for child’s sex and age at examination, household status, SES, maternal educational level, maternal age at birth,
number of siblings, cotinine levels during 1st trimester of pregnancy and in children at 7 years of age
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intake was 46.3 ng/kg bw/day, ranging from 1.6 ng/kg
bw/day and 1840 ng/kg bw/day (Table 3). None of the
studied children had BPA intakes above the European t-
TDI established by EFSA in 2015, set to 4 μg/kg bw/day
[17]. Thus, the median daily intake resembled roughly
1%, and the highest calculated daily intake resembled
roughly 50% of this EFSA t-TDI with even bigger mar-
gins for the US EPA oral reference dose of 50 μg/kg bw/
day. In the worldwide context, the global BPA exposure
level was estimated to be 60.1 ng/kg bw/day [62], while
in Europe, children’s median BPA DIs ranged from 31.3
ng/kg bw/day to 38.2 ng/kg bw/day [16, 44, 45]. In the
DEMOCOPHES study, however, the report showed DIs
estimations above the t-TDI of 4 μg/kg bw/day in a sub-
set of children from Denmark and Belgium [16].
Regarding educational level and socio-economic status,

the European DEMOCOPHES study also found higher
BPA levels among children from families with primary
education in relation to secondary or tertiary education,
similarly to the present results [16]. In the HOME co-
hort study performed in Ohio (US), the authors also
found that household annual incomes and maternal edu-
cation were associated with BPA levels in children, with
the same trends [57]. Conversely, a recent study per-
formed on six European cohorts found lower BPA levels
in low education groups [63]. To our knowledge, none
of the reports on BPA in children has found an associ-
ation with sex, although a recent study performed in
Turkey found higher concentrations among girls in rela-
tion to boys [16, 48]. In relation to the body mass index,
a study performed in Portuguese children found an
inversed pattern, in which children with obesity had

lower BPA levels than underweight/healthy weight chil-
dren [44]. However, the children from this study were
enrolled in a dietary program for weight loss/manage-
ment, and therefore, apart from physical characteristics
(e.g. BMI), diet or other determinants might influence
the BPA exposure patterns in children. In fact, a recent
report based on six NHANES examination cycles be-
tween 2003 and 2014 was not able to find any significant
association between BPA in urine and serum lipids in
children and do not hint to metabolic effects by BPA ex-
posure [64].
In our study, BPA was found to be positively associ-

ated with emotional symptoms. What is worth empha-
sizing is that this result was independent of previous
traumatic experiences in a child’s life that is more likely
expected to affect the emotional health of the children
(data not shown). Even though the observed effect of
BPA exposure on children emotional development is ra-
ther small, still it can have the long-term consequences
looking at their social functioning and scholastic
achievements. The result of the review from 2017 [8]
pointed out that there is a relationship between BPA ex-
posure both during prenatal and childhood period and
negative behavioral outcomes including emotional devel-
opment. However the existing studies are not fully con-
clusive. A study by Braun et al. (HOME cohort) assessed
the effect of childhood BPA exposure on behavior and
executive functions in children aged 3 years and found
that the associations were largely null and not modified
by child gender [65]. Harley et al. (CHAMACOS cohort)
observed a relationship between BPA exposure at age 5
years and increased externalizing behaviors, including

Fig. 4 Standardized beta-coefficients from multivariate regression models for BPA concentrations on intelligence and development scales (IDS) in
children at 7 years of age. Models are adjusted for child’s sex, examiner, household status, SES, maternal educational level, maternal age at birth,
number of siblings, cotinine levels during 1st trimester of pregnancy and in children at 7 years of age
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conduct problems, in girls at age 7 years and increased
internalizing behaviors and inattention and hyperactivity
behaviors in boys and girls at age 7 years [66]. Roen
et al., when studying the CCCEH cohort (follow-up),
showed that BPA levels in the urine of children mea-
sured at 3 and 5 years were related to the behavior of
girls aged 7–9 years - higher levels of anxiety, depression
and aggression were observed in them [67]. In a cross-
sectional study, Hong et al. showed that BPA levels in
the urine of girls and boys aged 8–10 years were associ-
ated with higher levels of anxiety and depression [68]. In
the Perera et al. publication (based on CCCEH cohort),
childhood exposure was not significantly related to the
measured anxiety and depression symptoms in children
aged 10–12 years [69]. Perez-Lobato, when studying boys
aged 9–11 from the INMA cohort, showed increased
problems with the internalization of behavior [70]. Stacy
et al. reported sex-dependent associations between BPA
and child neurobehavior [50]. A 10-fold increase in 8-
year BPA was associated with more externalizing behav-
iors in boys, but not in girls [50]. Two recent studies
based on data from several mother-child cohorts in Eur-
ope have also evaluated the associations between simul-
taneous exposure to a wide range of environmental
chemicals (including BPA exposure) and child behavior
[71, 72]. BPA urinary concentrations during the prenatal
period were associated with higher (worse) scores on the
externalizing behavior sub-scale evaluated between 3
and 7 years of age [71] although no associations were
observed for the postnatal period [72]. Discrepancies in
the literature could be partly due to differences in the
characteristics of the study populations (e.g. socio-
economic status) or study designs, including differences
in the timing of exposure or outcome assessment, neu-
robehavioral assessments tools, BPA exposure misclassi-
fication, or irrelevant time frames of exposure
assessment. Nevertheless, as pointed out in the existing
research, BPA exposure is more frequently associated
with externalizing/internalizing problems than cognitive
outcomes. Both internalizing and externalizing symp-
toms seem to coexist and a consistent pattern in term of
sexual differences is not present [11].
The future analyses should use the potential of pro-

spective mother-child cohort study design and look
more deeply at long-term consequences of BPA expos-
ure. Thus, the continued follow-up of existing cohorts
should be a priority for future studies in this area. More-
over, considering the real exposure scenario, the studies
should jointly consider both vulnerable periods of expos-
ure (prenatal and postnatal) as well as simultaneous ex-
posures to different chemical classes. Taking into
account that BPA has been classified as an endocrine-
disrupting chemical, the differential effect of sex and
BPA levels on neurodevelopmental outcomes should be

explorer more in depth. Finally, the future research
should put more efforts to focus on understanding the
mechanisms that may explain the observed patterns of
association, such as DNA methylation, immune dysfunc-
tion, systemic inflammation, oxidative stress, and
endocrine and metabolic disruption [10]. All those
above-mentioned require large sample thus an
exposome-based approach considering joint analyses
based on data from existing birth cohorts should be
strengthen in future research.
The current study is based on a well-defined child co-

hort from Poland. The follow-up was performed accur-
ately. Child mental health was assessed based on widely
used standardized and validated questionnaire that dis-
tinguish children with and without emotional and be-
havioral symptoms. Moreover, quantitatively assessed
data allows examination of the symptoms in the whole
spectrum, which do often not qualify for clinical diagno-
sis but still might have a great impact on an individual’s
behavioral health and can result in long-term conse-
quences (e.g., school achievements). In addition, child
cognitive and psychomotor assessments were performed
by trained and certified psychologists. IDS has a high re-
liability as well as high correlation with analogous
WISC-R scales [73].
The laboratory analysis was performed with the high-

est level of internal and external quality assurance, en-
suring with utmost accuracy and comparability of
urinary BPA concentrations [26, 74]. We have also ex-
cluded external contamination by analyzing the conjuga-
tion status of BPA in the urine samples. Above 90% of
total BPA was present in its conjugated form (data not
shown). Still, we have to acknowledge that BPA is a
non-persistent chemical, rapidly eliminated via urine.
Exposure assessments based on a single spot of urine
may thus wrongly classify the children’s individual over-
all or long term BPA exposure. Although sex-specificity
of the effects of BPA and child neurodevelopment has
been underlined in existing studies, we were not able to
find such association, probably due to the available sam-
ple size. On the statistical side, although the models
were validated and underwent sensitivity analysis, since
they were adjusted for numerous variables, the possibil-
ity of residual or unmeasured confounding cannot be ex-
cluded. In addition, other chemical exposures such as
phthalates (which were measured in a previous study
[25]) were not considered in the current analysis. Finally,
causality cannot be inferred due to the observational na-
ture of the current study and needs to be confirmed
through the application of other methods to strengthen
causal inference. Due to the cross-sectional design of
this analysis, single exposure measures of BPA along
with the low exposure levels are limited to capture ef-
fects of BPA on the health status during childhood. In
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addition, there is no data on previous children’s expos-
ure to BPA. Long-term exposure measures for BPA,
starting with prenatal exposure estimations and repeated
measures in critical developmental time frames during
childhood are highly warranted to solve the problems
with the short-term exposure estimations for BPA.

Conclusions
This study provides current biomonitoring data of
Bisphenol A in urine of 250 children from Poland.
The concentrations and daily intakes of BPA among
this Polish cohort were in concordance with other
European studies. Exposure with environmental to-
bacco smoke and body weight were associated with
BPA in 7-year old children. Specifically, higher urin-
ary cotinine concentrations were associated with
higher BPA levels, and underweight children showed
lower BPA levels than healthy weight or overweight/
obese children. Furhermore, this study was able to
find a positive association between BPA concentra-
tions in 7-year old children and emotional symptoms.
Some neurodevelopmental problems in children might
be associated to the exposure of nonpersistent chemi-
cals such as BPA. More efforts on understanding the
mechanisms that may explain the observed associa-
tions should be explored, specifically those related to
gene-environment interactions.
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