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Abstract 

Background:  Polycystic ovary morphology (PCOM) is an ultrasonographic finding that can be present in women 
with ovulatory disorder and oligomenorrhea due to hypothalamic, pituitary, and ovarian dysfunction. While air pol-
lution has emerged as a possible disrupter of hormone homeostasis, limited research has been conducted on the 
association between air pollution and PCOM.

Methods:  We conducted a longitudinal cohort study using electronic medical records data of 5,492 women with 
normal ovaries at the first ultrasound that underwent a repeated pelvic ultrasound examination during the study 
period (2004–2016) at Boston Medical Center. Machine learning text algorithms classified PCOM by ultrasound. We 
used geocoded home address to determine the ambient annual average PM2.5 exposures and categorized into 
tertiles of exposure. We used Cox Proportional Hazards models on complete data (n = 3,994), adjusting for covariates, 
and additionally stratified by race/ethnicity and body mass index (BMI).

Results:  Cumulative exposure to PM2.5 during the study ranged from 4.9 to 17.5 µg/m3 (mean = 10.0 μg/m3). On 
average, women were 31 years old and 58% were Black/African American. Hazard ratios and 95% confidence intervals 
(CI) comparing the second and third PM2.5 exposure tertile vs. the reference tertile were 1.12 (0.88, 1.43) and 0.89 (0.62, 
1.28), respectively. No appreciable differences were observed across race/ethnicity. Among women with BMI ≥ 30 kg/
m2, we observed weak inverse associations with PCOM for the second (HR: 0.93, 95% CI: 0.66, 1.33) and third tertiles 
(HR: 0.89, 95% CI: 0.50, 1.57).

Conclusions:  In this study of reproductive-aged women, we observed little association between PM2.5 concentra-
tions and PCOM incidence. No dose response relationships were observed nor were estimates appreciably different 
across race/ethnicity within this clinically sourced cohort.
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Background
Polycystic ovary morphology (PCOM) is an ultrasono-
graphic finding that can be present in women with ovula-
tory disorder and oligomenorrhea due to hypothalamic, 
pituitary, and ovarian dysfunction [1–3]. PCOM may 
be seen in multiple endocrine states where follicular 

development is altered, resulting in arrested antral fol-
licles [4]. PCOM has been observed in about 30–50% 
of patients with functional hypothalamic amenorrhea 
[5–7] and is more common in women with Cushing’s 
disease [8]. Women with polycystic ovary syndrome 
(PCOS), a disease notable for oligomenorrhea and 
androgen excess, and PCOM have demonstrated higher 
risks of insulin resistance, dyslipidemia and cardiovas-
cular diseases compared to women with only PCOS [9]. 
The clinical significance of PCOM alone is undefined as 
previous literature on direct health impacts of PCOM 
remains sparse.  However, some studies have observed 
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associations between PCOM and elevated anti-Müllerian 
hormone (AMH) among healthy girls with regular men-
ses [10], as well as a higher severity of primary dysmenor-
rhea [11].

Air pollution has emerged as a possible disrupter of 
hormone homeostasis interfering with the female repro-
ductive system [12, 13]. Epidemiologic studies have 
begun to evaluate specific reproductive health outcomes 
in relation to environmental air pollution including infer-
tility [14–17], hormone function [18, 19], and menstrual 
cycle status [20–22]. Likewise, animal studies have inves-
tigated associations between ovarian function and air 
pollution, finding significant decreases in the area occu-
pied by primordial follicles for mice exposed to pollut-
ants from diesel exhaust [23] and changes in AMH levels 
for mice exposed to fine particulate matter (PM2.5) [24]. 
However, there is a dearth of research on the associa-
tion between PM2.5 and PCOM.  One study to date has 
evaluated PM2.5 and PCOS, rather than PCOM [25], and 
observed an increased risk of PCOS with higher levels of 
PM2.5 [25]. However, this study assessed air pollution one 
year before diagnosis without investigating potentially 
longer windows of exposure and diagnosed PCOS via 
ICD-9-CM codes [25].

In the current study, we investigated the association 
between PM2.5 and PCOM in a population of reproduc-
tive-age women receiving clinical care. Women in our 
study had a minimum of four years of exposure data prior 
to diagnosis. We hypothesized that higher levels of PM2.5 
would be associated with increased incidence of PCOM.

Methods
Study population
This study was conducted at Boston University Medical 
Campus (BUMC), an academic research medical center 
in Boston, Massachusetts which includes Boston Uni-
versity School of Medicine (BUSM) and Boston Medical 
Center (BMC). BMC is the largest safety-net hospital in 
New England.  Greater than 50% of BMC patients come 
from underserved populations that depend on govern-
ment coverage for health expenses through programs like 
Medicare, Medicaid, and the Health Safety Net [26]. In 
2009, 34.4% of the population treated at BMC was White, 
31.5% was Black and 17.6% was Hispanic/Latino [27].

The BUMC and BUSM Institutional Review Board 
approved the protocol. Using electronic medical records 
(EMR) data, we identified patients who attended outpa-
tient clinic visits as described by Cheng et al. [28]. Briefly, 
all pelvic ultrasounds from October 1, 2003 through 
December 12, 2016 were retrieved from the BMC Clini-
cal Data Warehouse (CDW) for women of reproductive 
age (i.e., between 18 and 45 years old), excluding women 
with a previous diagnosis of endocrinopathy noted by the 

following ICD-9 codes and descriptions: 182.0 Malignant 
neoplasm of corpus uteri, except isthmus; 240.0 Simple 
Goiter; 240.9 Goiter unspecified; 241.0 Nontoxic uni-
nodular goiter; 241.1 Nontoxic multinodular goiter; 242 
Thyrotoxicosis with or without goiter; 243 Congenital 
hypothyroidism, 244 Acquired hypothyroidism; 245 Thy-
roiditis; 246 Other disorders of thyroid; 255.0 Cushings 
Syndrome; 255.1 Hyperaldosteronism; 255.2 Adrenogen-
ital disorders; 255.3 Other corticoadrenal overactivity; 
255.4  Corticoadrenal insufficiency; 255.5 Other adre-
nal hypofunction; 255.6 Medulloadrenal hyperfunction; 
255.8 Other specified disorders of adrenal glands; 255.9 
Unspecified disorders of adrenal glands; 256.8 Other 
ovarian dysfunction, in order to determine incidence of 
PCOM among healthy participants without this previous 
diagnosis. This process yielded 25,535 unique patient IDs 
[28]. The time period for data query corresponds to the 
entire period when ICD-9 coding was in use at BUMC.

Study design: longitudinal cohort approach
We applied a longitudinal cohort approach using the 
EMR derived dataset. We identified women undergoing 
an initial and follow-up transvaginal pelvic ultrasound 
who received care from 2004–2016 and lived in Massa-
chusetts during this timeframe. Patients were followed 
through 2016, the last year that air pollution data was 
available. The first pelvic ultrasound examination over 
the study period was designated as the initial visit. To 
establish that women were at risk of PCOM but free of 
this condition at initial visit, we included only women 
who had normal ovaries as assessed by the first ultra-
sound (n = 5,492). Follow-up pelvic ultrasound examina-
tions determined the incidence of PCOM.

Exposure assessment: measurement of fine particulate 
matter PM2.5
We estimated ambient annual average PM2.5 using the 
North American PM2.5 model based on the combina-
tion of aerosol optical depth (AOD) measurements, 
the chemical transport model (GEOS-Chem) and geo-
graphically weighted regression results, as previously 
described [29]. Briefly, geophysical PM2.5  estimates 
were consistent with those of globally distributed moni-
tors on the ground (R2 = 0.81; slope = 0.90). Geographi-
cally weighted regression was also used to account for 
the residual bias of monitors, producing higher cross 
validated agreement with ground monitors (R2 = 0.90–
0.92; slope = 0.90–0.97) [29]. The PM2.5 model yields 
annual average PM2.5 concentration estimates globally at 
1 × 1 km resolution, and results are compiled in a freely 
available database (https://​sites.​wustl.​edu/​acag/​datas​ets/​
surfa​ce-​pm2-​5/#​V4.​NA.​03). These AOD measurements 
are available at high temporal resolution and provide a 
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historical repository that can be used to retrospectively 
model PM2.5 [30–34]. Annual average PM2.5 exposure 
data starting in the year 2000 were matched to geocoded 
home addresses from the patient’s initial visit using Esri 
ArcPro version 2.2 and SAS v. 9.4.

Outcome assessment: diagnosis of PCOM
We used the novel technique of identifying PCOM or 
polycystic ovaries based on radiologic report data as 
described previously using the Rule Based Classifier 
Model based on the Rotterdam criteria [2, 28]. Briefly, an 
ovary was defined as “PCOM-present” if there were 12 
or more 2–9  mm follicles in each ovary and/or if ovar-
ian volume was greater than 10 mL without the presence 
of confounding pathology [2, 28, 35–37]. Confound-
ing pathology included presence of a dominant follicle 
(> 10  mm), corpus luteum, abnormal cyst, or ovarian 
asymmetry, in which case further investigation would 
be warranted. If a) confounding pathology occurred, b) 
an ovary was not measured, c) the radiologic ultrasound 
was not mentioned, or d) PCOM was recorded as absent, 
we categorized the ultrasound as showing no indication 
of PCOM and compared this population to patients who 
had a “PCOM-present” diagnosis.

Covariates
We extracted EMR information from the patient’s initial 
visit on demographic characteristics, including age, race/
ethnicity, marital status, educational attainment, and 
smoking status. We calculated body mass index (BMI kg/
m2) from the height and weight abstracted from this visit. 
If data on these variables were not available from the ini-
tial visit, they were obtained from the visit most proxi-
mate to the initial visit within the 2004–2015 timeframe. 
We restricted our analysis to women with BMIs between 
19–54 kg/m2 [38], as values outside of this range were not 
verified and were likely related to documentation errors. 
Calendar year denoted the year of annual average PM2.5 
measurement. There were 3,994 women with complete 
data included in the analysis.

Statistical analysis
We described the characteristics of the study population 
using proportions, means and standard deviations. As 
PM2.5 concentrations were measured yearly, we utilized 
time-varying Cox proportional hazards models to exam-
ine the association between PM2.5 and the incidence of 
PCOM. Women contributed person-years starting from 
January 2000 until ultrasound detected PCOM or the 
last ultrasound visit. The first pelvic ultrasound examina-
tion during the study period confirmed that the patient 
was free of PCOM at the initial visit. Patients were able 
to contribute 4 to 15 years of person-time for follow-up. 

To account for patterns in pollution over time (Figure 
S1), all models were stratified by age in years and cal-
endar year within the Cox model and were used to esti-
mate hazard ratios (HRs) and 95% confidence intervals 
(CIs). We categorized air pollution exposure into ter-
tiles in our main analysis to allow for non-linearity and 
to account for extreme values. The lowest tertile (tertile 
1) was designated as the reference group. We conducted 
multivariate analyses with covariates hypothesized to be 
associated with air pollution and with PCOM based on a 
priori literature and directed acyclic graphs [39] (Figure 
S2). These models included race/ethnicity, educational 
attainment, marital status, and smoking status [40–44], 
with educational attainment and marital status serving 
as proxies for socioeconomic status/household income. 
We evaluated patients with complete information on all 
covariates, PM2.5 based on complete data on geocoded 
home address, and PCOM (n = 3,994). To evaluate if the 
association between PM2.5 and PCOM varied by BMI and 
race/ethnicity, we conducted stratified analyses by these 
variables. As a sensitivity analysis, we also evaluated 1) 
women who never moved over the study period (n = 682) 
to determine the impact of possible exposure misclassi-
fication due to residential mobility and 2) continuous air 
pollution models to assess precision without categorical 
restrictions.

Results
At initial visit, mean age was 31.1  years among the 
3,994 women in the analysis (Table  1). The majority of 
women were Black/African American (57.9%), never 
smokers (73.5%), and not married (75.2%). About one-
third of women graduated high school or received their 
GED (32.7%) and about one-quarter attained education 
beyond high school (27.7%). Mean BMI at initial visit was 
30 kg/m3. Mean PM2.5 level from 2004–2016 was 10.0 µg/
m3, over the entire study period (Table 1).

HRs comparing the second and third tertiles to the ref-
erence (first) tertile were 1.12 (95% CI: 0.88, 1.43) and 
0.89 (95% CI: 0.62, 1.28), respectively (Table  2, Fig.  1). 
Thus, we did not observe a dose–response relationships 
across tertiles. Among women with a BMI < 30  kg/m2, 
HRs comparing the second and third tertiles to the refer-
ence tertile were 1.30 (95% CI: 0.91, 1.88) and 0.89 (95% 
CI: 0.53, 1.49), respectively (Table  3). Among women 
with BMI ≥ 30  kg/m2, we observed weak inverse asso-
ciations with PCOM for both the second (HR: 0.93, 95% 
CI: 0.66, 1.33) and third (HR: 0.89, 95% CI: 0.50, 1.57) 
tertiles when compared to the reference tertile (Table 3, 
Fig.  1). When stratified by race/ethnicity, the HRs (95% 
CI) between PM2.5 and PCOM among Black, Hispanic/
Latino and White women comparing the third tertile to 
the reference tertile were 0.73 (95% CI: 0.44, 1.20), 0.93 
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(95% CI: 0.14, 5.90), and 0.60 (95% CI: 0.23, 1.59), respec-
tively (Table  4, Fig.  2). HRs in our sensitivity analysis, 
restricted to women who never moved, were similar to 
those for the entire cohort: HRs comparing the second 
and third tertiles to the reference tertile were 1.25 (95% 
CI: 0.68, 2.28) and 0.84 (95% CI: 0.33, 2.15), respectively 
(Table S1). HRs modeling continuous air pollution were 
null (Table S2).

Discussion
In this population of women who attended clinic visits at 
BMC, long-term PM2.5 concentrations were not appreci-
ably associated with incidence of PCOM. We observed 
associations that were inconsistent in direction across 
tertiles, with no evidence of a dose response relationship. 
We also found little variation in estimates across race/
ethnicity categories, and slight variations across BMI cat-
egories, though estimates were imprecise.

Previous studies evaluating the association between 
air pollution and women’s reproductive health outcomes 
have been limited. A study of 133 Polish women of repro-
ductive age found that higher concentrations of PM10, as 
measured by municipal-level monitoring data, were asso-
ciated with luteal phase shortening; however, the study 
did not observe any effect on follicular phase or overall 
cycle length [45]. A time-series analysis from northwest-
ern China recorded more than 51,893 outpatient visits 
for menstrual disorders and found that higher short-term 
ambient PM10 concentrations were associated with more 
outpatient visits for menstrual disorders, with a stronger 
effect observed among females aged 18–29  years [46]. 
Furthermore, a cross-sectional study of 34,832 women 
from the Nurses’ Health Study II observed an association 
between average total suspended particles with increased 
odds  of androgen excess irregularity phenotypes and 
lengthened time to cycle regularity [22]. However, none 
of these studies investigated PCOM explicitly, nor did 
they assess exposure to fine particulate matter.

Although there is no previous research on air pollu-
tion and PCOM, one prior study by Lin et al. has evalu-
ated the relationship between fine particulate matter 
and PCOS. This prospective Taiwanese study observed 

Table 1  Characteristics of Patients at Initial Visit* (2004–2015) 
(n = 3994) 

* If not available from initial visit, data obtained from the visit most proximate to 
initial visit within the 2004–2015 timeframe
a % Missing (n): BMI: 4.8% (193)
b PM2.5 concentration at initial visit

% or mean (SD)

Age (years) 31.1 (7.6)

Race/Ethnicity

 Black/African American 57.9

 Hispanic/Latino 5.0

 White 15.1

 Other 4.8

 Declined to Answer 17.2

Educational Attainment

 Some high school or less 37.2

 Grad high school/GED 32.7

 Some College/Voc/Tech 15.0

 Grad college/postgrad 12.7

 Declined/Unavailable 2.4

Marital Status

 Married 24.8

 Not Married 75.2

Smoking Status

 Current Smoker 19.3

 Former Smoker 7.2

 Never Smoker 73.5

Mean BMI (kg/m2)a 30.0 (9.8)

Mean PM2.5 (µg/m3)b 10.0 (1.4)

Table 2  Association of fine particulate matter (PM2.5) (in 
exposure tertiles) and Polycystic Ovarian Morphology (n = 3994) 
(complete analysis)

a Basic model: stratified by age in years and calendar year in the Cox model
b Additionally adjusted for race, education, marital status, smoking status

# Cases HR (95% CI)a HR (95% CI)b

PM 2.5 (µg/m3)

 4.90–9.70 798 Reference Reference

 9.80–11.30 319 1.13 (0.88, 1.44) 1.12 (0.88, 1.43)

11.40–17.50 70 0.88 (0.61, 1.25) 0.89 (0.62, 1.28)

Fig. 1  PM2.5 and incidence of PCOM for a) full sample (n = 3994) & b) 
BMI (kg/m2) stratified analyses (n = 3788). Adjusted for race/ethnicity, 
education, marital status, smoking status; Model stratified by age in 
years and calendar year
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that exposure to PM2.5 at the fourth (34.78–67.45  ppb) 
vs. first quartile (22.49- 27.23  ppb) was associated with 
a 3.56-fold increased risk of PCOS (95% CI: 3.05–4.15) 
[25]. While the investigators examined PCOS diagnosed 
with ICD-9 CM codes, they were able to evaluate PM2.5 
concentrations one year before diagnosis but did not 
have a longer follow-up, which may have overlooked part 
of the relevant exposure window within this population. 
Furthermore, Lin et al. were not able to evaluate effects 
at lower levels of exposure that are more common in the 
United States and other countries (mean and 90th per-
centile weighted annual average across U.S. trend sites in 
2019: 7.7, 9.5 µg/m3) [47] or to assess the potential for a 
threshold effect, given the relatively high PM2.5 concen-
trations in the cohort (mean ± standard deviation daily 
concentrations of PM2.5: 30.9 ± 6.2  µg/m3). Our study 
has been able to fill a gap in the literature by specifi-
cally evaluating the association between long-term PM2.5 
and PCOM more commonly observed at lower levels of 
exposure.

Limitations of the current study include possible 
restricted generalizability. Our study was limited to 
women receiving care at BMC and who had an indi-
cation for repeated pelvic ultrasounds. Addition-
ally, our EMR dataset was not designed as a traditional 

Table 3  Association of fine particulate matter (PM2.5) (in exposure tertiles) and Polycystic Ovarian Morphology, by BMI status (< 30 
vs. >  = 30 kg/m2)a (n = 3788)

a Stratified by age in years and calendar year in the Cox model; Adjusted for race, education, marital status, smoking status

 < 30 kg/m2

n = 2174
 >  = 30 kg/m2

n = 1614

# Cases HR (95% CI) # Cases HR (95% CI)

PM 2.5 (µg/m3)

 5.10–9.70 441 Reference 5.0–9.70 330 Reference

 9.80–11.30 171 1.30 (0.91, 1.88) 9.80–11.30 134 0.93 (0.66, 1.33)

11.40–14.80 35 0.89 (0.53, 1.49) 11.40–17.50 26 0.89 (0.50, 1.57)

Table 4  Association of tertile fine particulate matter (PM2.5) exposure and Polycystic Ovarian Morphology, by race/ethnicitya

a Stratified by age in years and calendar year; Adjusted for education, marital status, smoking status;

Displaying categories for those that self-identified as Black/African America, Hispanic Latino, and White or as another race/ethnicity

 ~ 16.5% of participants declined to answer and were not included in this analysis

Black/African American
n = 2336

Hispanic/Latino
n = 204

White
n = 610

Other
n = 190

PM 2.5 (µg/m3)

 4.90–9.70 Reference Reference Reference Reference

 9.80–11.30 0.97 (0.72, 1.33) 0.80 (0.20, 3.27) 0.99 (0.51, 1.90) 1.12 (0.87, 1.43)

 11.40–17.50 0.73 (0.44, 1.20) 0.93 (0.14, 5.90) 0.60 (0.23, 1.59) 0.83 (0.58, 1.19)

Fig. 2  PM2.5 and incidence of PCOM, stratified by race. Adjusted 
for education, marital status, smoking status. Model stratified by 
age in years and calendar year. Categories shown for medical 
record recorded race/ethnicity with highest proportions. Displaying 
categories for those that self-identified as Black/African America, 
Hispanic Latino, and White
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prospective cohort study since EMR and air pollution 
data were both collected before the start of our investi-
gation. However, we were able to assess those at risk of 
PCOM by only including women with normal ovaries at 
the first ultrasound visit and at least one repeated pelvic 
ultrasound examination thereafter to determine develop-
ment of PCOM. Furthermore, we were unable to confirm 
if women received care and/or ultrasound examinations 
at another facility during the timeframe of this analysis. 
We therefore may not have been able to precisely assess 
the time to PCOM diagnosis for these women, if, for 
instance, diagnosis occurred prior to their subsequent 
ultrasound at BMC. The number of ultrasounds that 
women underwent and the time between each ultra-
sound was also not uniform across women. Since PCOM 
may not cause acute symptoms that indicate an imme-
diate ultrasound, and as women were not screened for 
PCOM at regular intervals for detection, women may 
have contributed person time after PCOM occurred but 
before PCOM was detected via ultrasound. We addition-
ally did not have information accessible to link PM2.5 to 
address changes over time. Consequently, the partici-
pant’s address at the initial visit was used to assess PM2.5 
concentration. Nevertheless, our findings were com-
parable to results for the entire analytic sample when 
we restricted our sample to those that had not moved 
addresses throughout the study. Furthermore, we could 
not expand our study further to other pollutants in addi-
tion to PM2.5 because geocoded data on these other com-
ponents were not available at the time of our analysis.

For this hospital sourced radiological data, ultrasound 
assessment was not timed to menstrual cycle day, which 
was also a limitation in our study as we were not able to 
account for influence of cycle day on ultrasound imag-
ing [48, 49]. However, this study does not evaluate antral 
follicle count (AFC) measurements on the basal phase 
of the menstrual cycle (cycle day 2–4), as it was not 
designed to evaluate AFC in relation to PCOM [50, 51]. 
Given the age of the population (mean: 31.1; standard 
deviation: 7.6), we suspect within person variation to be 
limited. Additionally, those with PCOM at baseline were 
excluded to evaluate PCOM incidence. Furthermore, our 
algorithm for detection of PCOM used text from the 
radiologic report as a proxy, rather than directly counting 
follicles from ultrasound images. Methods for determin-
ing the presence of PCOM in ultrasound reports demon-
strated high sensitivity and specificity, and accuracy of up 
to 97.6% (95% CI: 96.5, 98.5%) when comparing machine 
learning text algorithm used for classification of PCOM 
in pelvic ultrasounds based on the radiographic report 
compared to the hand-labeled test set [28]. However, 
misclassification of the outcome may have occurred if 
some providers did not report the necessary information 

to characterize PCOM, or if there were discrepancies in 
ultrasound reading by the technician. We also observed 
marginal inverse associations among women with obe-
sity (BMI ≥ 30 vs. < 30 kg/m2) for both higher level tertiles 
compared to the reference tertile. Yet, results suggest-
ing a potential reduction in incidence of PCOM among 
obese women may be due to detection bias, as pelvic 
examinations may be less sensitive for detecting PCOM 
among obese women.

Additionally, we defined our detection of PCOM based 
on Rotterdam criteria. Recently, alternative criteria have 
been proposed including a higher follicle threshold (≥ 25 
follicles per ovary), but the sensitivity of these criteria is 
still being considered [50, 52]. To add further complex-
ity, women with regular menstrual cycles can be defined 
as having PCOM in the setting of very robust ovarian 
reserve or younger age [53]. A previous study found the 
prevalence of polycystic ovaries assessed by antral follicle 
count to be 32% and that prevalence decreased with age 
[53]. Future studies should focus on the dynamic aspects 
of ovarian physiology in an unselected population and 
include measures of ovarian volume, follicle counts in the 
basal phase of the menstrual cycle corresponding to fol-
licular recruitment, and include cycle length in the analy-
sis, rather than focusing of PCOM alone.

Although the EMR dataset did not permit us to con-
duct a traditional prospective cohort study, a strength 
of our analysis was that we were able to assess those at 
risk of PCOM over time by having access to baseline and 
follow-up data. We included women with normal ova-
ries at the first ultrasound visit and at least one repeated 
pelvic ultrasound examination thereafter to determine 
incidence of PCOM. Furthermore, to our knowledge, this 
is the first study to evaluate exposure to fine particulate 
matter in relation PCOM. Additional strengths include 
the efficiency of this analysis in integrating retrospec-
tive air pollution assessment in evaluation of reproduc-
tive disease pathophysiology. Furthermore, the rich set 
of EMR data provided a large sample size of nearly 4,000 
women and the ability to control for important con-
founding variables.

Conclusions
Among a population of reproductive-age women receiv-
ing clinical care within our cohort, PM2.5 concentrations 
were generally not associated with higher risk of PCOM 
at the fine particulate matter levels within our cohort. No 
dose response relationships were observed nor were esti-
mates appreciably different across race/ethnicity. Future 
studies with greater variation in exposure levels and addi-
tional data on ovarian physiology in unselected popula-
tions would further extend these findings.
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