Environmental Health was launched in 2002, among the very first of the independent specialty journals on the roster of a new Open Access (OA) publisher, BioMed Central (BMC), which began in 2000 with its own in-house BMC journals. Its philosophical roots can be traced further back in time, but as a practical matter it was the almost free and limitless publishing and distribution technology of the internet in the 1990 s that made the modern OA movement possible. Suddenly, the major expense of publishing a scientific article online was in actually doing the science and the time and effort of authoring. All peer review and most executive editing was also done without cost to the publisher. The value added of printing and distribution provided by conventional print publishers suddenly disappeared, but in 2002 it was not yet demonstrated that the OA publishing model could be made into a viable commercial enterprise.
The realization that the printed journals from the big publishers were no longer an essential ingredient didn't happen overnight. The technology developed much more quickly than established scholars and scientists were able to accommodate, and recognition of the new conditions was unevenly distributed across disciplines. Except for a few isolated examples in the humanities and the social sciences, it was in physics and computer science that the first change occurred. In these fields a submitted paper could take 1 to 2 years to see print and when the papers finally appeared, their complex notation was usually produced by a standard open source and free typesetting program developed by Donald Knuth called TeX (now mainly seen in the form of one of its progeny, LaTeX). Because LaTeX was widely available for desktop computers and could be obtained without cost, physicists and computer scientists could produce and share their own "camera ready" manuscripts, circulate them for comment and establish priority before publication, even before peer review. Moreover the TeX typesetting language was not only standard but used only plain text that was "marked up" with tags, much like HTML, so collaboration and sharing of work could be done easily by email. From there it was a short step to depositing the manuscript drafts essentially in publishable form in a central source, often called a preprint server. It was just such a server for physics papers that was established at Los Alamos National Laboratory in the early 1990 s. The arXiv.org server still exists and self-archiving among physicists has not only become the norm, but in some subfields like high energy-physics, it is said to be 100%. From physics the pre-print culture spread to related fields like mathematics. Computer scientists had already been doing this and today their preprint server is almost twice as big as arXiv.org, automatically harvesting preprints (and now post-print or already peer reviewed and published articles) from specialized websites and institutional repositories, Google-style.
By comparison, open and free access to electronic versions of scientific papers has come late to biomedicine and still faces opposition from large publishers and a lack of understanding from many biomedical scientists. Paradoxically, biomedicine was an early adopter of digital referencing and searching. As long ago as 1879, when John Shaw Billings made a catalog of the US Surgeon General's Library which he had been developing as a repository of medical literature, the US Government had been supporting a monthly publication listing the medical periodical literature called Index Medicus. In 1964 the Library, now called the National Library of Medicine, produced the first computerized version of Index Medicus, the Medical Literature Analysis and Retrieval System (MEDLARS), rechristened Medline in 1971 when it went "online" (at the time this meant remote access from other authorized computer systems). Medline was accessible to libraries but not to the general public until 1997, when it was made freely available in a web-based version called PubMed [10]. Suddenly the world's biomedical literature was at the fingertips of anyone with a computer connection, not just scientists with access to a medical library.
But "fingertips" didn't mean "in hand". Medline/PubMed addressed finding what was happening in the exploding world of biomedicine in the form of journal citations, but did not provide the articles themselves. That still required either a personal subscription or access to a medical library. The rapid development of biomedicine also produced a proliferation of scientific journals, many catering to highly specialized branches of basic biology or clinical subspecialty. In 1999, the NIH Director Harold Varmus suggested a combined pre-print/post-print server, but it did not find immediate acceptance, although a beginning was made in early 2000 with the establishment of a post-print (already published) archive called PubMed Central. Starting with articles from only two journals, PNAS: Proceedings of the National Academy of Sciences, and Molecular Biology of the Cell, it now includes the full text of articles from thousands of journals, including this one (for a full current list, see [11]). All BMC published articles are also archived in other national repositories (INIST, France; Koninklijke Bibliotheek, The Netherlands; PubMed Central Canada; UK PubMed Central), where they will be available whatever the fate of this or any other journal.
The importance of OA in our field is illustrated by some recent statistics collected by a project supported by the European Commission [12]. The researchers generated a bibliometric analysis of environmental health research in Europe during 1995-2005. Through the PubMed database, a total of 6,329 articles were identified. One key finding, which the authors refrained from mentioning in the abstract, was that the articles had been published in a total of 711 scientific journals [12]. Thus to follow all the research in our field, one would have to access a very large number of scientific journals, not to mention information published by other means. The internet has immensely facilitated literature reviews, but only about 15% of scientific journals are likely to be OA. In that case, a rough estimate would suggest that about 600 of the 711 journals are not OA.