National Research Council. Science and decisions: advancing risk assessment. Washington, D.C.: National Academy Press; 2009.
Google Scholar
Grandjean P. Science for precautionary decision-making. In: Gee D, Grandjean P, Hansen SF, van den Hove S, MacGarvin M, Martin J, Nielsen G, Quist D, Stanners D, editors. Late lessons from early warnings, vol. 2. Copenhagen: European Environment Agency; 2013. p. 517–35.
Google Scholar
Grandjean P, Clapp R. Perfluorinated alkyl substances: emerging insights into health risks. New Solut. 2015;25(2):147–63.
Article
Google Scholar
Griffith FD, Long JE. Animal toxicity studies with ammonium perfluorooctanoate. Am Ind Hyg Assoc J. 1980;41(8):576–83.
Article
CAS
Google Scholar
Goldenthal EI, Jessup DC, Geil RG, Mehring JS. Final report, ninety day subacute rhesus monkey toxicity study, International Research and Development Corporation, study no. 137–090, November 10, 1978, U.S. EPA Administrative Record, AR226–0447. 1978.
Google Scholar
Goldenthal EI, Jessup DC, Geil RG, Mehring JS. Ninety-day subacute rat toxicity study, with Fluorad® Fluorochemical Surfactant FC-95, International Research and Development Corporation, project No. 137–085, December 18, 1978, U.S. EPA Administrative Record, AR226–0137. 1978.
Google Scholar
Lindstrom AB, Strynar MJ, Libelo EL. Polyfluorinated compounds: past, present, and future. Environ Sci Technol. 2011;45(19):7954–61.
Article
CAS
Google Scholar
Gilliland FD. Fluorocarbons and human health: studies in an occupational cohort. Minnesota: University of Minnesota; 1992.
Google Scholar
Gilliland FD, Mandel JS: Peripheral blood lymphocyte count in men occupationally exposed to perfluorooctanoic acid. 1992. (unpublished manuscript, available as PTX2498 at https://www.ag.state.mn.us/office/contactus.asp).
Grandjean P. Expert report. Minneapolis: State of Minnesota District Court for the County of Hennepin Fourth Judicial District; 2017. Civil Action No. 27-cv-10-28862, State of Minnesota, et al. v. 3M company
Google Scholar
Taves DR. Evidence that there are two forms of fluoride in human serum. Nature. 1968;217(5133):1050–1.
Article
CAS
Google Scholar
Guy WS, Taves DR, Brey WS. Organic fluorocompounds in human-plasma - prevalence and characterization. ACS Symp Ser. 1976;28:117–34.
Article
CAS
Google Scholar
PFCs. Global contaminants: PFOA is a pervasive pollutant in human blood, as are other PFCs [https://www.ewg.org/research/pfcs-global-contaminants/pfoa-pervasive-pollutant-human-blood-are-other-pfcs].
Inoue K, Okada F, Ito R, Kato S, Sasaki S, Nakajima S, Uno A, Saijo Y, Sata F, Yoshimura Y, et al. Perfluorooctane sulfonate (PFOS) and related perfluorinated compounds in human maternal and cord blood samples: assessment of PFOS exposure in a susceptible population during pregnancy. Environ Health Perspect. 2004;112(11):1204–7.
Article
CAS
Google Scholar
Kuklenyik Z, Reich JA, Tully JS, Needham LL, Calafat AM. Automated solid-phase extraction and measurement of perfluorinated organic acids and amides in human serum and milk. Environ Sci Technol. 2004;38(13):3698–704.
Article
CAS
Google Scholar
Olsen GW, Church TR, Miller JP, Burris JM, Hansen KJ, Lundberg JK, Armitage JB, Herron RM, Medhdizadehkashi Z, Nobiletti JB, et al. Perfluorooctanesulfonate and other fluorochemicals in the serum of American red Cross adult blood donors. Environ Health Perspect. 2003;111(16):1892–901.
Article
CAS
Google Scholar
Grandjean P, Eriksen ML, Ellegaard O, Wallin JA. The Matthew effect in environmental science publication: a bibliometric analysis of chemical substances in journal articles. Environ Health. 2011;10:96.
Article
Google Scholar
Yang Q, Xie Y, Alexson SE, Nelson BD, DePierre JW. Involvement of the peroxisome proliferator-activated receptor alpha in the immunomodulation caused by peroxisome proliferators in mice. Biochem Pharmacol. 2002;63(10):1893–900.
Article
CAS
Google Scholar
DeWitt JC, Peden-Adams MM, Keller JM, Germolec DR. Immunotoxicity of perfluorinated compounds: recent developments. Toxicol Pathol. 2012;40(2):300–11.
Article
CAS
Google Scholar
Guruge KS, Hikono H, Shimada N, Murakami K, Hasegawa J, Yeung LW, Yamanaka N, Yamashita N. Effect of perfluorooctane sulfonate (PFOS) on influenza a virus-induced mortality in female B6C3F1 mice. J Toxicol Sci. 2009;34(6):687–91.
Article
CAS
Google Scholar
Corsini E, Sangiovanni E, Avogadro A, Galbiati V, Viviani B, Marinovich M, Galli CL, Dell'Agli M, Germolec DR. In vitro characterization of the immunotoxic potential of several perfluorinated compounds (PFCs). Toxicol Appl Pharmacol. 2012;258(2):248–55.
Article
CAS
Google Scholar
Steenland K, Fletcher T, Savitz DA. Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environ Health Perspect. 2010;118(8):1100–8.
Article
CAS
Google Scholar
C8 Science Panel. In: Fletcher T, Steenland K, Savitz D, editors. Status report: PFOA and immune biomarkers in adults exposed to PFOA in drinking water in the mid Ohio valley; 2009.
Google Scholar
Looker C, Luster MI, Calafat AM, Johnson VJ, Burleson GR, Burleson FG, Fletcher T. Influenza vaccine response in adults exposed to perfluorooctanoate and perfluorooctanesulfonate. Toxicol Sci. 2014;138(1):76–88.
Article
CAS
Google Scholar
Kielsen K, Shamim Z, Ryder LP, Nielsen F, Grandjean P, Budtz-Jorgensen E, Heilmann C. Antibody response to booster vaccination with tetanus and diphtheria in adults exposed to perfluorinated alkylates. J Immunotoxicol. 2016;13(2):270–3.
Article
CAS
Google Scholar
Stein CR, McGovern KJ, Pajak AM, Maglione PJ, Wolff MS. Perfluoroalkyl and polyfluoroalkyl substances and indicators of immune function in children aged 12-19 y: National Health and nutrition examination survey. Pediatr Res. 2016;79(2):348–57.
Article
CAS
Google Scholar
Mogensen UB, Budtz-Jørgensen E, Heilmann C, Nielsen F, Weihe P, Grandjean P. Structural equation modeling of immunotoxicity associated with exposure to perfluorinated compounds. Environ Health. 2015;14:47.
Article
CAS
Google Scholar
Grandjean P, Andersen EW, Budtz-Jorgensen E, Nielsen F, Molbak K, Weihe P, Heilmann C. Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA. 2012;307(4):391–7.
Article
CAS
Google Scholar
Grandjean P, Heilmann C. Perfluorinated compounds and immunotoxicity in children – reply. JAMA. 2012;307:1910–1.
Article
CAS
Google Scholar
Granum B, Haug LS, Namork E, Stolevik SB, Thomsen C, Aaberge IS, van Loveren H, Lovik M, Nygaard UC. Pre-natal exposure to perfluoroalkyl substances may be associated with altered vaccine antibody levels and immune-related health outcomes in early childhood. J Immunotoxicol. 2013;10(4):373–9.
Article
CAS
Google Scholar
Mondal D, Weldon RH, Armstrong BG, Gibson LJ, Lopez-Espinosa MJ, Shin HM, Fletcher T. Breastfeeding: a potential excretion route for mothers and implications for infant exposure to perfluoroalkyl acids. Environ Health Perspect. 2014;122(2):187–92.
Article
Google Scholar
Grandjean P, Heilmann C, Weihe P, Nielsen F, Mogensen UB, Timmermann A, Budtz-Jorgensen E. Estimated exposures to perfluorinated compounds in infancy predict attenuated vaccine antibody concentrations at age 5-years. J Immunotoxicol. 2017;14(1):188–95.
Article
CAS
Google Scholar
Dalsager L, Christensen N, Husby S, Kyhl H, Nielsen F, Host A, Grandjean P, Jensen TK. Association between prenatal exposure to perfluorinated compounds and symptoms of infections at age 1-4years among 359 children in the Odense child cohort. Environ Int. 2016;96:58–64.
Article
CAS
Google Scholar
Goudarzi H, Miyashita C, Okada E, Kashino I, Chen CJ, Ito S, Araki A, Kobayashi S, Matsuura H, Kishi R. Prenatal exposure to perfluoroalkyl acids and prevalence of infectious diseases up to 4years of age. Environ Int. 2017;104:132–8.
Article
CAS
Google Scholar
Fei C, McLaughlin JK, Lipworth L, Olsen J. Prenatal exposure to PFOA and PFOS and risk of hospitalization for infectious diseases in early childhood. Environ Res. 2010;110(8):773–7.
Article
CAS
Google Scholar
Bach CC, Henriksen TB, Bossi R, Bech BH, Fuglsang J, Olsen J, Nohr EA. Perfluoroalkyl acid concentrations in blood samples subjected to transportation and processing delay. PLoS One. 2015;10(9):e0137768.
Article
CAS
Google Scholar
National Toxicology Program. Immunotoxicity associated with exposure to Perfluorooctanoic acid (PFOA) or Perfluorooctane sulfonate (PFOS). Raleigh: National Toxicology Program; 2016.
Google Scholar
European Food Safety Authority. Guidance of the scientific committee on use of the benchmark dose approach in risk assessment. EFSA J. 2009;1150:1–72.
Google Scholar
U.S. Environmental Protection Agency. Provisional health advisories for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Washington, DC: U.S. Environmental Protection Agency; 2009.
Google Scholar
U.S. Environmental Protection Agency. Health effects document for Perfluorooctanoic acid (PFOA). Washington, D.C.: U.S. EPA; 2014.
Google Scholar
U.S. Environmental Protection Agency. Health effects document for Perfluorooctane sulfonate (PFOS). Washington, D.C.: U.S. EPA; 2014.
Google Scholar
Agency for Toxic Substances and Disease Registry. Draft toxicological profile for perfluoroalkyls. Atlanta: Agency for Toxic Substances and Disease Registry; 2015.
Google Scholar
Agency for Toxic Substances and Disease Registry. Draft toxicological profile for perfluoroalkyls. Atlanta: Agency for Toxic Substances and Disease Registry; 2018.
Google Scholar
Grandjean P, Budtz-Jorgensen E. Immunotoxicity of perfluorinated alkylates: calculation of benchmark doses based on serum concentrations in children. Environ Health. 2013;12(1):35.
Article
CAS
Google Scholar
CDC: Fourth National Report on human exposure to environmental chemicals, updated tables. Centers for disease control and prevention; 2015.
Google Scholar
Budtz-Joergensen E, Grandjean P. Application of benchmark analysis for mixed contaminant exposures: Mutual adjustment of two perfluoroalkylate substances associated with immunotoxicity: bioRxiv; 2017. p. 198564. https://www.biorxiv.org/content/early/2017/10/06/198564.
European Food Safety Authority. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food (draft). EFSA J. 2018;16(5):1–293.
Google Scholar
Gwinn MR, Axelrad DA, Bahadori T, Bussard D, Cascio WE, Deener K, Dix D, Thomas RS, Kavlock RJ, Burke TA. Chemical risk assessment: traditional vs public health perspectives. Am J Public Health. 2017;107(7):1032–9.
Article
Google Scholar
Birnbaum LS, Grandjean P. Alternatives to PFASs: perspectives on the science. Environ Health Perspect. 2015;123(5):A104–5.
Article
Google Scholar
Dewitt JC, Copeland CB, Strynar MJ, Luebke RW. Perfluorooctanoic acid-induced immunomodulation in adult C57BL/6J or C57BL/6N female mice. Environ Health Perspect. 2008;116(5):644–50.
Article
CAS
Google Scholar