Utell MJ, Frampton MW. Acute health effects of ambient air pollution: The ultrafine particle hypothesis. J Aerosol Med-Depos Clear Eff Lung. 2000;13(4):355–9.
CAS
Google Scholar
Pope CA, Turner MC, Burnett RT, Jerrett M, Gapstur SM, Diver WR, Krewski D, Brook RD. Relationships Between Fine Particulate Air Pollution, Cardiometabolic Disorders, and Cardiovascular Mortality. Circ Res. 2015;116(1):108–U258.
Article
CAS
Google Scholar
Kunzli N, Bridevaux PO, Liu LJS, Garcia-Esteban R, Schindler C, Gerbase MW, Sunyer J, Keidel D, Rochat T, Team S. Traffic-related air pollution correlates with adult-onset asthma among never-smokers. Thorax. 2009;64(8):664–70.
Article
CAS
Google Scholar
Neupane B, Jerrett M, Burnett RT, Marrie T, Arain A, Loeb M. Long-Term Exposure to Ambient Air Pollution and Risk of Hospitalization with Community-acquired Pneumonia in Older Adults. Am J Res Crit Care Med. 2010;181(1):47–53.
Article
CAS
Google Scholar
Masiol M, Harrison RM. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmos Environ. 2014;95:409–55.
Article
CAS
Google Scholar
Harrison RM, Masiol M, Vardoulakis S. Civil aviation, air pollution and human health. Environ Res Lett. 2015;10(4):041001.
Article
CAS
Google Scholar
Hsu H-H, Adamkiewicz G, Houseman EA, Zarubiak D, Spengler JD, Levy JI. Contributions of aircraft arrivals and departures to ultrafine particle counts near Los Angeles International Airport. Sci Total Environ. 2013;444:347–55.
Article
CAS
Google Scholar
Winther M, Kousgaard U, Ellermann T, Massling A, Nøjgaard JK, Ketzel M. Emissions of NOx, particle mass and particle numbers from aircraft main engines, APU's and handling equipment at Copenhagen Airport. Atmos Environ. 2015;100:218–29.
Article
CAS
Google Scholar
Stacey B. Measurement of ultrafine particles at airports: A review. Atmos Environ. 2019;198:463–77.
Article
CAS
Google Scholar
Ritchie G, Still K, Rossi J 3rd, Bekkedal M, Bobb A, Arfsten D. Biological and health effects of exposure to kerosene-based jet fuels and performance additives. Journal of toxicology and environmental health Part B. Crit Rev. 2003;6(4):357–451.
CAS
Google Scholar
Mattie DR, Sterner TR. Past, present and emerging toxicity issues for jet fuel. Toxicol Appl Pharmacol. 2011;254(2):127–32.
Article
CAS
Google Scholar
Pleil JD, Smith LB, Zelnick SD. Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases. Environ Health Perspect. 2000;108(3):183–92.
Article
CAS
Google Scholar
Egeghy PP, Hauf-Cabalo L, Gibson R, Rappaport SM. Benzene and naphthalene in air and breath as indicators of exposure to jet fuel. Occup Environ Med. 2003;60(12):969–76.
Article
CAS
Google Scholar
Wang S, Young RS, Sun NN, Witten ML. In vitro cytokine release from rat type II pneumocytes and alveolar macrophages following exposure to JP-8 jet fuel in co-culture. Toxicology. 2002;173(3):211–9.
Article
CAS
Google Scholar
Pfaff J, Parton K, Clark Lantz R, Chen H, Hays AM, Witten ML. Inhalation exposure to jp-8 jet fuel alters pulmonary function and substance p levels in fischer 344 rats. J Appl Toxicol. 1995;15(4):249–56.
Article
CAS
Google Scholar
Pfaff JK, Tollinger BJ, Lantz RC, Chen H, Hays AM, Witten ML. Neutral endopeptidase (NEP) and its role in pathological pulmonary change with inhalation exposure to JP-8 jet fuel. Toxicol Ind Health. 1996;12(1):93–103.
Article
CAS
Google Scholar
Fechter LD, Gearhart C, Fulton S, Campbell J, Fisher J, Na K, Cocker D, Nelson-Miller A, Moon P, Pouyatos B. JP-8 jet fuel can promote auditory impairment resulting from subsequent noise exposure in rats. Toxicol Sci. 2007;98(2):510–25.
Article
CAS
Google Scholar
Fechter LD, Fisher JW, Chapman GD, Mokashi VP, Ortiz PA, Reboulet JE, Stubbs JE, Lear AM, McInturf SM, Prues SL, et al. Subchronic JP-8 jet fuel exposure enhances vulnerability to noise-induced hearing loss in rats. J Toxicol Environ Health A. 2012;75(5):299–317.
Article
CAS
Google Scholar
Kaufman LR, LeMasters GK, Olsen DM, Succop P. Effects of concurrent noise and jet fuel exposure on hearing loss. J Occup Environ Med. 2005;47(3):212–8.
Article
Google Scholar
Fife TD, Robb MJA, Steenerson KK, Saha KC. Bilateral Vestibular Dysfunction Associated With Chronic Exposure to Military Jet Propellant Type-Eight Jet. Fuel. 2018;9:351.
Google Scholar
Harris DT, Sakiestewa D, Titone D, Robledo RF, Young RS, Witten M. Jet fuel-induced immunotoxicity. Toxicol Ind Health. 2000;16(7–8):261–5.
Article
CAS
Google Scholar
Harris DT, Sakiestewa D, Titone D, Young RS, Witten M. JP-8 jet fuel exposure results in immediate immunotoxicity, which is cumulative over time. Toxicol Ind Health. 2002;18(2):77–83.
Article
CAS
Google Scholar
Mattie DR, Sterner TR, Reddy G, Steup DR, Zeiger E, Wagner DJ, Kurtz K, Daughtrey WC, Wong BA, Dodd DE, et al. Toxicity and occupational exposure assessment for Fischer-Tropsch synthetic paraffinic kerosene. J Toxicol Environ Health A. 2018;81(16):774–91.
Article
CAS
Google Scholar
Lighty JS, Veranth JM, Sarofim AF. Combustion Aerosols: Factors Governing Their Size and Composition and Implications to Human Health. J Air Waste Manag Assoc. 2000;50(9):1565–618.
Article
CAS
Google Scholar
Hammes K, Schmidt MWI, Smernik RJ, Currie LA, Ball WP, Nguyen TH, Louchouarn P, Houel S, Gustafsson Ö, Elmquist M, et al. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Glob Biogeochem Cycles. 2007;21(3):GB3016. https://doi.org/10.1029/2006GB002914.
Singh A, Rajput P, Sharma D, Sarin MM, Singh D. Black Carbon and Elemental Carbon from Postharvest Agricultural-Waste Burning Emissions in the Indo-Gangetic Plain. J Adv Meteorol. 2014;2014:10.
Google Scholar
Costabile F, Angelini F, Barnaba F, Gobbi GP. Partitioning of Black Carbon between ultrafine and fine particle modes in an urban airport vs. urban background environment. Atmos Environ. 2015;102:136–44.
Article
CAS
Google Scholar
Keuken MP, Moerman M, Zandveld P, Henzing JS, Hoek G. Total and size-resolved particle number and black carbon concentrations in urban areas near Schiphol airport (the Netherlands). Atmos Environ. 2015;104:132–42.
Article
CAS
Google Scholar
Mazaheri M, Johnson GR, Morawska L. An inventory of particle and gaseous emissions from large aircraft thrust engine operations at an airport. Atmos Environ. 2011;45(20):3500–7.
Article
CAS
Google Scholar
Stacey B, Harrison RM, Pope F. Evaluation of ultrafine particle concentrations and size distributions at London Heathrow Airport. Atmos Environ. 2019;222:117148.
Article
CAS
Google Scholar
Liati A, Schreiber D, Alpert PA, Liao Y, Brem BT, Corral Arroyo P, Hu J, Jonsdottir HR, Ammann M, Dimopoulos Eggenschwiler P. Aircraft soot from conventional fuels and biofuels during ground idle and climb-out conditions: Electron microscopy and X-ray micro-spectroscopy. Environ Pollut. 2019;247:658–67.
Article
CAS
Google Scholar
Shirmohammadi F, Sowlat MH, Hasheminassab S, Saffari A, Ban-Weiss G, Sioutas C. Emission rates of particle number, mass and black carbon by the Los Angeles International Airport (LAX) and its impact on air quality in Los Angeles. Atmos Environ. 2017;151:82–93.
Article
CAS
Google Scholar
Campagna M, Frattolillo A, Pili S, Marcias G, Angius N, Mastino CC, Cocco P, Buonanno G. Environmental exposure to ultrafine particles inside and nearby a military airport. Atmosphere. 2016;7(10):138.
Article
Google Scholar
Westerdahl D, Fruin SA, Fine PL, Sioutas C. The Los Angeles International Airport as a source of ultrafine particles and other pollutants to nearby communities. Atmos Environ. 2008;42(13):3143–55.
Article
CAS
Google Scholar
Canepari S, Padella F, Astolfi ML, Marconi E, Perrino C. Elemental Concentration in Atmospheric Particulate Matter: Estimation of Nanoparticle Contribution. Aerosol Air Qual Res. 2013;13(6):1619–29.
Article
CAS
Google Scholar
Bendtsen KM, Brostrøm A, Koivisto AJ, Koponen I, Berthing T, Bertram N, Kling KI, Dal Maso M, Kangasniemi O, Poikkimäki M, et al. Airport emission particles: exposure characterization and toxicity following intratracheal instillation in mice. Particle Fibre Toxicol. 2019;16(1):23.
Article
CAS
Google Scholar
Rahim MF, Pal D, Ariya PA. Physicochemical studies of aerosols at Montreal Trudeau Airport: The importance of airborne nanoparticles containing metal contaminants. Environ Pollut. 2019;246:734–44.
Article
CAS
Google Scholar
Vander Wal RL, Bryg VM, Huang C-H. Aircraft engine particulate matter: Macro- micro- and nanostructure by HRTEM and chemistry by XPS. Combustion Flame. 2014;161(2):602–11.
Article
CAS
Google Scholar
Moore RH, Thornhill KL, Weinzierl B, Sauer D, D’Ascoli E, Kim J, Lichtenstern M, Scheibe M, Beaton B, Beyersdorf AJ, et al. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature. 2017;543(7645):411–5.
Article
CAS
Google Scholar
Agrawal H, Sawant AA, Jansen K, Wayne Miller J, Cocker DR. Characterization of chemical and particulate emissions from aircraft engines. Atmos Environ. 2008;42(18):4380–92.
Article
CAS
Google Scholar
Targino AC, Machado BLF, Krecl P. Concentrations and personal exposure to black carbon particles at airports and on commercial flights. Transport Res. 2017;52:128–38.
Google Scholar
Fushimi A, Saitoh K, Fujitani Y, Takegawa N. Identification of jet lubrication oil as a major component of aircraft exhaust nanoparticles. Atmos Chem Phys. 2019;19(9):6389–99.
Article
CAS
Google Scholar
Li W, Wang Y, Kannan K. Occurrence, distribution and human exposure to 20 organophosphate esters in air, soil, pine needles, river water, and dust samples collected around an airport in New York state, United States. Environ Int. 2019;131:105054.
Article
CAS
Google Scholar
Solbu K, Daae HL, Thorud S, Ellingsen DG, Lundanes E, Molander P. Exposure to airborne organophosphates originating from hydraulic and turbine oils among aviation technicians and loaders. J Environ Monitor. 2010;12(12):2259–68.
Article
CAS
Google Scholar
Harrison V, Mackenzie Ross SJ. An emerging concern: Toxic fumes in airplane cabins. Cortex. 2016;74:297–302.
Article
Google Scholar
Michaelis SBJ, Howard CV. Aerotoxic syndrome: a new occupational disease? Public Health Panorama. 2017;3(2):198–211.
Google Scholar
Boyle KA. Evaluating particulate emissions from jet engines: analysis of chemical and physical characteristics and potential impacts on coastal environments and human health. Transport Res Record. 1996;1517(1):1–9.
Article
Google Scholar
Abegglen M, Brem BT, Ellenrieder M, Durdina L, Rindlisbacher T, Wang J, Lohmann U, Sierau B. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry. Atmos Environ. 2016;134:181–97.
Article
CAS
Google Scholar
Shirmohammadi F, Lovett C, Sowlat MH, Mousavi A, Verma V, Shafer MM, Schauer JJ, Sioutas C. Chemical composition and redox activity of PM0.25 near Los Angeles International Airport and comparisons to an urban traffic site. Sci Total Environ. 2018;610–611:1336–46.
Article
CAS
Google Scholar
He R-W, Shirmohammadi F, Gerlofs-Nijland ME, Sioutas C, Cassee FR. Pro-inflammatory responses to PM0.25 from airport and urban traffic emissions. Sci Total Environ. 2018;640–641:997–1003.
Article
CAS
Google Scholar
Turgut ET, Gaga EO, Jovanovic G, Odabasi M, Artun G, Ari A, Urosevic MA. Elemental characterization of general aviation aircraft emissions using moss bags. Environ Sci Pollut Res Int. 2019;26(26):26925–38.
Article
CAS
Google Scholar
Cavallo D, Ursini CL, Carelli G, Iavicoli I, Ciervo A, Perniconi B, Rondinone B, Gismondi M, Iavicoli S. Occupational exposure in airport personnel: Characterization and evaluation of genotoxic and oxidative effects. Toxicology. 2006;223(1–2):26–35.
Article
CAS
Google Scholar
Lai C-H, Chuang K-Y, Chang J-W. Characteristics of nano−/ultrafine particle-bound PAHs in ambient air at an international airport. Environ Sci Pollut Res. 2013;20(3):1772–80.
Article
CAS
Google Scholar
Chen Y-C, Lee W-J, Uang S-N, Lee S-H, Tsai P-J. Characteristics of polycyclic aromatic hydrocarbon (PAH) emissions from a UH-1H helicopter engine and its impact on the ambient environment. Atmos Environ. 2006;40(39):7589–97.
Article
CAS
Google Scholar
European Commission: Ambient air pollution by Polycyclic Aromatic Hydrocarbons (PAH). Position Paper. https://ec.europa.eu/environment/archives/; 2001.
Google Scholar
Zanoni I, Ostuni R, Marek LR, Barresi S, Barbalat R, Barton GM, Granucci F, Kagan JC. CD14 Controls the LPS-Induced Endocytosis of Toll-like Receptor 4. Cell. 2011;147(4):868–80.
Article
CAS
Google Scholar
Federal Aviation Administration. Select Resource Materials and Annotated Bibliography on the Topic of Hazardous Air Pollutants (HAPs) Associated with Aircraft, Airports and Aviation. In: Federal Aviation Administration Office of Environment and Energy; 2003.
Google Scholar
Mokalled T, Gérard JA, Abboud M, Liaud C, Nasreddine R, Le Calvé S. An assessment of indoor air quality in the maintenance room at Beirut-Rafic Hariri International Airport. Atmos Pollut Res. 2019;10(3):701–11.
Article
CAS
Google Scholar
Janssen N, Lammer M, Maitland-van de Zee A, van de Zee S, Keuken R, Blom M, van den Bulk P, van Dinther D, Hoek G, Kamstra K, et al. Onderzoek naar de gezondheidseffecten van kortdurende blootstelling aan ultrafijn stof rond Schiphol 2019–0084 edn. The Nederlands: RIVM official reports; 2019. p. 188.
Stafoggia M, Cattani G, Forastiere F, Di Menno di Bucchianico A, Gaeta A, Ancona C. Particle number concentrations near the Rome-Ciampino city airport. Atmos Environ. 2016;147:264–73.
Article
CAS
Google Scholar
Masiol M, Harrison RM. Quantification of air quality impacts of London Heathrow Airport (UK) from 2005 to 2012. Atmos Environ. 2015;116:308–19.
Article
CAS
Google Scholar
Stettler MEJ, Eastham S, Barrett SRH. Air quality and public health impacts of UK airports. Part I: Emissions. Atmos Environ. 2011;45(31):5415–24.
Article
CAS
Google Scholar
Mokalled T, Le Calvé S, Badaro-Saliba N, Abboud M, Zaarour R, Farah W, Adjizian-Gérard J. Identifying the impact of Beirut Airport’s activities on local air quality - Part I: Emissions inventory of NO2 and VOCs. Atmos Environ. 2018;187:435–44.
Article
CAS
Google Scholar
Rissman J, Arunachalam S, BenDor T, West JJ. Equity and health impacts of aircraft emissions at the Hartsfield-Jackson Atlanta International Airport. Landscape Urban Plan. 2013;120:234–47.
Article
Google Scholar
Hudda N, Gould T, Hartin K, Larson TV, Fruin SA. Emissions from an international airport increase particle number concentrations 4-fold at 10 km downwind. Environ Sci Technol. 2014;48(12):6628–35.
Article
CAS
Google Scholar
Schlenker W, Walker WR. Airports, Air Pollution, and Contemporaneous Health. Rev Econ Stud. 2015;83(2):768–809.
Article
Google Scholar
Pecorari E, Mantovani A, Franceschini C, Bassano D, Palmeri L, Rampazzo G. Analysis of the effects of meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model. Sci Total Environ. 2016;541:839–56.
Article
CAS
Google Scholar
Schmid O, Stoeger T. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J Aerosol Sci. 2016;99:133–43.
Article
CAS
Google Scholar
IARC. Diesel and Gasoline Engine Exhausts and Some Nitroarenes. https://monographs.iarc.fr/agents-classified-by-the-iarc/. In: International Agency for Research on Cancer Monographs database, vol. 105; 2010.
Google Scholar
Salvi S, Blomberg A, Rudell B, Kelly F, Sandström T, Holgate S, Frew A. Acute Inflammatory Responses in the Airways and Peripheral Blood After Short-Term Exposure to Diesel Exhaust in Healthy Human Volunteers. Am J Respir Crit Care Med. 1999;159(3):702–9.
Article
CAS
Google Scholar
Hashimoto AH, Amanuma K, Hiyoshi K, Sugawara Y, Goto S, Yanagisawa R, Takano H, Masumura K, Nohmi T, Aoki Y. Mutations in the lungs of gpt delta transgenic mice following inhalation of diesel exhaust. Environ Mol Mutagene. 2007;48(8):682–93.
Article
CAS
Google Scholar
Brightwell J, Fouillet X, Cassano-Zoppi AL, Bernstein D, Crawley F, Duchosal F, Gatz R, Perczel S, Pfeifer H. Tumours of the respiratory tract in rats and hamsters following chronic inhalation of engine exhaust emissions. J Appl Toxicol. 1989;9(1):23–31.
Article
CAS
Google Scholar
Saber AT, Bornholdt J, Dybdahl M, Sharma AK, Loft S, Vogel U, Wallin H. Tumor necrosis factor is not required for particle-induced genotoxicity and pulmonary inflammation. Arch Toxicol. 2005;79(3):177–82.
Article
CAS
Google Scholar
Saber AT, Jacobsen NR, Bornholdt J, Kjaer SL, Dybdahl M, Risom L, Loft S, Vogel U, Wallin H. Cytokine expression in mice exposed to diesel exhaust particles by inhalation. Role Tumor Necrosis factor. Particle Fibre Toxicol. 2006;3:4.
Article
CAS
Google Scholar
Husain M, Kyjovska ZO, Bourdon-Lacombe J, Saber AT, Jensen KA, Jacobsen NR, Williams A, Wallin H, Halappanavar S, Vogel U, et al. Carbon black nanoparticles induce biphasic gene expression changes associated with inflammatory responses in the lungs of C57BL/6 mice following a single intratracheal instillation. Toxicol Appl Pharmacol. 2015;289(3):573–88.
Article
CAS
Google Scholar
Saber AT, Jensen KA, Jacobsen NR, Birkedal R, Mikkelsen L, Moller P, Loft S, Wallin H, Vogel U. Inflammatory and genotoxic effects of nanoparticles designed for inclusion in paints and lacquers. Nanotoxicology. 2012;6(5):453–71.
Article
CAS
Google Scholar
Saber AT, Lamson JS, Jacobsen NR, Ravn-Haren G, Hougaard KS, Nyendi AN, Wahlberg P, Madsen AM, Jackson P, Wallin H, et al. Particle-induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk. PLoS One. 2013;8(7):e69020.
Article
CAS
Google Scholar
Jacobsen NR, Moller P, Jensen KA, Vogel U, Ladefoged O, Loft S, Wallin H. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE−/− mice. Particle Fibre Toxicol. 2009;6:2.
Article
CAS
Google Scholar
Kyjovska ZO, Jacobsen NR, Saber AT, Bengtson S, Jackson P, Wallin H, Vogel U. DNA strand breaks, acute phase response and inflammation following pulmonary exposure by instillation to the diesel exhaust particle NIST1650b in mice. Mutagenesis. 2015;30(4):499–507.
Article
CAS
Google Scholar
Vermeulen R, Silverman DT, Garshick E, Vlaanderen J, Portengen L, Steenland K. Exposure-response estimates for diesel engine exhaust and lung cancer mortality based on data from three occupational cohorts. Environ Health Perspect. 2014;122(2):172–7.
Article
Google Scholar
Ge C, Peters S, Olsson A, Portengen L, Schüz J, Almansa J, Ahrens W, Bencko V, Benhamou S, Boffetta P, et al. Diesel Engine Exhaust Exposure, Smoking, and Lung Cancer Subtype Risks: A Pooled Exposure-response Analysis of 14 Case-control Studies. Am J Respir Crit Care Med. 2020;202:402–11.
Article
Google Scholar
IARC. Preamble to the IARC Monographs. January 2019 edn. https://monographs.iarc.fr/iarc-monographs-preamble-preamble-to-the-iarc-monographs/: International Agency for Research in Cancer; 2019.
Childers JW, Witherspoon CL, Smith LB, Pleil JD. Real-time and integrated measurement of potential human exposure to particle-bound polycyclic aromatic hydrocarbons (PAHs) from aircraft exhaust. Environ Health Perspect. 2000;108(9):853–62.
Article
CAS
Google Scholar
Iavicoli I, Carelli G, Bergamaschi A. Exposure evaluation to airborne polycyclic aromatic hydrocarbons in an italian airport. J Occup Environ Med. 2006;48(8):815–22.
Article
CAS
Google Scholar
Pirhadi M, Mousavi A, Sowlat MH, Janssen NAH, Cassee FR, Sioutas C. Relative contributions of a major international airport activities and other urban sources to the particle number concentrations (PNCs) at a nearby monitoring site. Environ Pollut. 2020;260:114027.
Article
CAS
Google Scholar
Buonanno G, Bernabei M, Avino P, Stabile L. Occupational exposure to airborne particles and other pollutants in an aviation base. Environ Pollut. 2012;170:78–87.
Article
CAS
Google Scholar
Møller KL, Thygesen LC, Schipperijn J, Loft S, Bonde JP, Mikkelsen S, Brauer C. Occupational Exposure to Ultrafine Particles among Airport Employees - Combining Personal Monitoring and Global Positioning System. PLOS ONE. 2014;9(9):e106671.
Article
CAS
Google Scholar
Marie-Desvergne C, Dubosson M, Touri L, Zimmermann E, Gaude-Mome M, Leclerc L, Durand C, Klerlein M, Molinari N, Vachier I, et al. Assessment of nanoparticles and metal exposure of airport workers using exhaled breath condensate. J Breath Res. 2016;10(3):036006.
Article
Google Scholar
Ren J, Liu J, Cao X, Li F, Li J. Ultrafine particles in the cabin of a waiting commercial airliner at Tianjin International Airport, China. Indoor Built Environ. 2017;27(9):1247–58.
Article
Google Scholar
Ren J, Cao X, Liu J. Impact of atmospheric particulate matter pollutants to IAQ of airport terminal buildings: A first field study at Tianjin Airport, China. Atmos Environ. 2018;179:222–6.
Article
CAS
Google Scholar
Lopes M, Russo A, Monjardino J, Gouveia C, Ferreira F. Monitoring of ultrafine particles in the surrounding urban area of a civilian airport. Atmos Pollut Res. 2019;10(5):1454–63.
Article
Google Scholar
Marcias G, Casula MF, Uras M, Falqui A, Miozzi E, Sogne E, Pili S, Pilia I, Fabbri D, Meloni F, et al. Occupational Fine/Ultrafine Particles and Noise Exposure in Aircraft Personnel Operating in Airport Taxiway. Environments. 2019;6(3):35.
Article
Google Scholar
Mokalled T, Adjizian Gérard J, Abboud M, Trocquet C, Nassreddine R, Person V, le Calvé S. VOC tracers from aircraft activities at Beirut Rafic Hariri International Airport. Atmos Pollut Res. 2019;10(2):537–51.
Article
CAS
Google Scholar
Lin S, Munsie JP, Herdt-Losavio M, Hwang SA, Civerolo K, McGarry K, Gentile TJ. Residential proximity to large airports and potential health impacts in New York State. Int Arch Occup Environ Health. 2008;81(7):797–804.
Article
CAS
Google Scholar
Senkayi SN, Sattler ML, Rowe N, Chen VCP. Investigation of an association between childhood leukemia incidences and airports in Texas. Atmos Pollut Res. 2014;5(2):189–95.
Article
CAS
Google Scholar
Penn SL, Boone ST, Harvey BC, Heiger-Bernays W, Tripodis Y, Arunachalam S, Levy JI. Modeling variability in air pollution-related health damages from individual airport emissions. Environ Res. 2017;156:791–800.
Article
CAS
Google Scholar
Henry RC, Mohan S, Yazdani S. Estimating potential air quality impact of airports on children attending the surrounding schools. Atmos Environ. 2019;212:128–35.
Article
CAS
Google Scholar
Møller KL, Brauer C, Mikkelsen S, Loft S, Simonsen EB, Koblauch H, Bern SH, Alkjær T, Hertel O, Becker T, et al. Copenhagen Airport Cohort: air pollution, manual baggage handling and health. BMJ Open. 2017;7(5):e012651.
Article
Google Scholar
Møller KL, Brauer C, Mikkelsen S, Bonde JP, Loft S, Helweg-Larsen K, Thygesen LC. Cardiovascular disease and long-term occupational exposure to ultrafine particles: A cohort study of airport workers. Int J Hygiene EnvironHealth. 2019;223:214–9.
Article
Google Scholar
Lemasters GK, Livingston GK, Lockey JE, Olsen DM, Shukla R, New G, Selevan SG, Yiin JH. Genotoxic changes after low-level solvent and fuel exposure on aircraft maintenance personnel. Mutagenesis. 1997;12(4):237–43.
Article
CAS
Google Scholar
Tunnicliffe WS, O'Hickey SP, Fletcher TJ, Miles JF, Burge PS, Ayres JG. Pulmonary function and respiratory symptoms in a population of airport workers. Occup Environ Med. 1999;56(2):118–23.
Article
CAS
Google Scholar
Yang C-Y, Wu T-N, Wu J-J, Ho C-K, Chang P-Y. Adverse Respiratory and Irritant Health Effects in Airport Workers in Taiwan. J Toxicol Environ Health Part A. 2003;66(9):799–806.
Article
CAS
Google Scholar
Whelan EA, Lawson CC, Grajewski B, Petersen MR, Pinkerton LE, Ward EM, Schnorr TM. Prevalence of respiratory symptoms among female flight attendants and teachers. Occup Environ Med. 2003;60(12):929.
Article
CAS
Google Scholar
Radican L, Blair A, Stewart P, Wartenberg D. Mortality of aircraft maintenance workers exposed to trichloroethylene and other hydrocarbons and chemicals: extended follow-up. J Occup Environ Med. 2008;50(11):1306–19.
Article
CAS
Google Scholar
Erdem O, Sayal A, Eken A, Akay C, Aydin A. Evaluation of genotoxic and oxidative effects in workers exposed to jet propulsion fuel. Int Arch Occup Environ Health. 2012;85(4):353–61.
Article
CAS
Google Scholar
Visser O, van Wijnen JH, van Leeuwen FE. Incidence of cancer in the area around Amsterdam Airport Schiphol in 1988–2003: a population-based ecological study. BMC Public Health. 2005;5:127.
Article
Google Scholar
Habre R, Zhou H, Eckel SP, Enebish T, Fruin S, Bastain T, Rappaport E, Gilliland F. Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma. Environ Int. 2018;118:48–59.
Article
CAS
Google Scholar
Lammers A, Janssen NAH, Boere AJF, Berger M, Longo C, Vijverberg SJH, Neerincx AH, Maitland - van der Zee AH, Cassee FR. Effects of short-term exposures to ultrafine particles near an airport in healthy subjects. Environ Int. 2020;141:105779.
Article
CAS
Google Scholar
He R-W, Gerlofs-Nijland ME, Boere J, Fokkens P, Leseman D, Janssen NAH, Cassee FR. Comparative toxicity of ultrafine particles around a major airport in human bronchial epithelial (Calu-3) cell model at the air–liquid interface. Toxicol Vitro. 2020;68:104950.
Article
CAS
Google Scholar
Ferry D, Rolland C, Delhaye D, Barlesi F, Robert P, Bongrand P, Vitte J. Jet exhaust particles alter human dendritic cell maturation. Inflam Res. 2011;60(3):255–63.
Article
CAS
Google Scholar
Jonsdottir HR, Delaval M, Leni Z, Keller A, Brem BT, Siegerist F, Schönenberger D, Durdina L, Elser M, Burtscher H, et al. Non-volatile particle emissions from aircraft turbine engines at ground-idle induce oxidative stress in bronchial cells. Commun Biol. 2019;2(1):90.
Article
Google Scholar
Zhou Y, Levy JI. Between-airport heterogeneity in air toxics emissions associated with individual cancer risk thresholds and population risks. Environ Health. 2009;8(1):22.
Article
CAS
Google Scholar
WHO. Ambient (outdoor) air pollution. http://who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health. Accessed Jan 2021.
Ye RD, Sun L. Emerging functions of serum amyloid A in inflammation. J Leukocyte Biol. 2015;98(6):923–9.
Article
CAS
Google Scholar
Ye Y, Yue M, Jin X, Chen S, Li Y. The effect of oral tolerance on the roles of small intestinal intraepithelial lymphocytes in murine colitis induced by dextran sodium sulfate. Int J Colorectal Dis. 2012;27(5):583–93.
Article
Google Scholar
Yang RB, Mark MR, Gray A, Huang A, Xie MH, Zhang M, Goddard A, Wood WI, Gurney AL, Godowski PJ. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature. 1998;395(6699):284–8.
Article
CAS
Google Scholar
Stone V, Miller MR, Clift MJD, Elder A, Mills NL, Moller P, Schins RPF, Vogel U, Kreyling WG, Alstrup Jensen K, et al. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. Environ Health Perspect. 2017;125(10):106002.
Article
Google Scholar
Carvalho RN, Arukwe A, Ait-Aissa S, Bado-Nilles A, Balzamo S, Baun A, Belkin S, Blaha L, Brion F, Conti D, et al. Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they? Toxicol Sci. 2014;141(1):218–33.
Article
CAS
Google Scholar
Naughton SX, Terry AV Jr. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology. 2018;408:101–12.
Article
CAS
Google Scholar
Singh S, Sharma N. Neurological syndromes following organophosphate poisoning. Neurol India. 2000;48(4):308–13.
CAS
Google Scholar
Howard C, Johnson D, Morton J, Michaelis S, Supplee D, Burdon J. Is a cumulative exposure to a background aerosol of nanoparticles part of the causal mechanism of aerotoxic syndrome, vol. 2018; 2018.
Google Scholar
Castaneda AR, Bein KJ, Smiley-Jewell S, Pinkerton KE. Fine particulate matter (PM2.5) enhances allergic sensitization in BALB/c mice. J Toxicol Env Health Part A. 2017;80(4):197–207.
Article
CAS
Google Scholar
Inoue KI, Takano H. Aggravating Impact of Nanoparticles on Immune-Mediated Pulmonary Inflammation. Sci World J. 2011;11:382–90.
Article
CAS
Google Scholar
Stone V, Johnston H, Clift MJD. Air pollution, ultrafine and nanoparticle toxicology: Cellular and molecular interactions. IEEE Trans Nanobiosci. 2007;6(4):331–40.
Article
Google Scholar
Spira-Cohen A, Chen LC, Kendall M, Lall R, Thurston GD. Personal exposures to traffic-related air pollution and acute respiratory health among Bronx schoolchildren with asthma. Environ Health Perspect. 2011;119(4):559–65.
Article
Google Scholar