Organization WH, Agency IAE, Nations F and AO of the U. Trace elements in human nutrition and health. World Health Organization; 1996. Accessed 2 Mar 2020. https://apps.who.int/iris/handle/10665/37931
Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy Metals Toxicity and the Environment. EXS. 2012;101:133–64. https://doi.org/10.1007/978-3-7643-8340-4_6.
Article
Google Scholar
Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq Q, Mohd R. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int J Mol Sci. 2015;16(12):29592–630. https://doi.org/10.3390/ijms161226183.
Article
CAS
Google Scholar
Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 2021;12:643972. https://doi.org/10.3389/fphar.2021.643972.
Article
CAS
Google Scholar
Zheng G, Zhong H, Guo Z, et al. Levels of heavy metals and trace elements in umbilical cord blood and the risk of adverse pregnancy outcomes: a population-based study. Biol Trace Elem Res. 2014;160(3):437–44. https://doi.org/10.1007/s12011-014-0057-x.
Article
CAS
Google Scholar
Kippler M, Tofail F, Gardner R, et al. Maternal cadmium exposure during pregnancy and size at birth: a prospective cohort study. Environ Health Perspect. 2012;120(2):284–9. https://doi.org/10.1289/ehp.1103711.
Article
CAS
Google Scholar
Howe CG, Claus Henn B, Eckel SP, et al. Prenatal metal mixtures and birth weight for gestational age in a predominately lower-income Hispanic pregnancy cohort in Los Angeles. Environ Health Perspect. 2020;128(11):117001. https://doi.org/10.1289/EHP7201.
Article
CAS
Google Scholar
Lee MS, Eum KD, Golam M, et al. Umbilical Cord Blood Metal Mixtures and Birth Size in Bangladeshi Children. Environ Health Perspect. 2021;129(5):EHP7502, 057006. https://doi.org/10.1289/EHP7502.
Article
Google Scholar
Arai Y, Ohgane J, Yagi S, et al. Epigenetic assessment of environmental chemicals detected in maternal peripheral and cord blood samples. J Reprod Dev. 2011;57(4):507–17. https://doi.org/10.1262/jrd.11-034A.
Article
CAS
Google Scholar
Hanna CW, Bloom MS, Robinson WP, et al. DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum Reprod. 2012;27(5):1401–10. https://doi.org/10.1093/humrep/des038.
Article
CAS
Google Scholar
Chen Z, Myers R, Wei T, et al. Placental transfer and concentrations of cadmium, mercury, lead, and selenium in mothers, newborns, and young children. J Expo Sci Environ Epidemiol. 2014;24(5):537–44. https://doi.org/10.1038/jes.2014.26.
Article
CAS
Google Scholar
Zhang YL, Zhao YC, Wang JX, et al. Effect of Environmental Exposure to Cadmium on Pregnancy Outcome and Fetal Growth: A Study on Healthy Pregnant Women in China. J Environ Sci Health Part A. 2004;39(9):2507–15. https://doi.org/10.1081/ESE-200026331.
Article
CAS
Google Scholar
Gustin K, Barman M, Stråvik M, et al. Low-level maternal exposure to cadmium, lead, and mercury and birth outcomes in a Swedish prospective birth-cohort. Environ Pollut. 2020;265:114986. https://doi.org/10.1016/j.envpol.2020.114986.
Article
CAS
Google Scholar
Rahman ML, Oken E, Hivert MF, et al. Early pregnancy exposure to metal mixture and birth outcomes – A prospective study in Project Viva. Environ Int. 2021;156:106714. https://doi.org/10.1016/j.envint.2021.106714.
Article
CAS
Google Scholar
McDermott S, Salzberg DC, Anderson AP, Shaw T, Lead J. Systematic Review of Chromium and Nickel Exposure During Pregnancy and Impact on Child Outcomes. J Toxicol Environ Health A. 2015;78(21–22):1348–68. https://doi.org/10.1080/15287394.2015.1090939.
Article
CAS
Google Scholar
Qi J, Lai Y, Liang C, et al. Prenatal thallium exposure and poor growth in early childhood: a prospective birth cohort study. Environ Int. 2019;123:224–30. https://doi.org/10.1016/j.envint.2018.12.005.
Article
CAS
Google Scholar
Shih YH, Scannell Bryan M, Argos M. Association between prenatal arsenic exposure, birth outcomes, and pregnancy complications: An observational study within the National Children’s Study cohort. Environ Res. 2020;183:109182. https://doi.org/10.1016/j.envres.2020.109182.
Article
CAS
Google Scholar
Kot K, Łanocha-Arendarczyk N, Kupnicka P, et al. Selected Metal Concentration in Maternal and Cord Blood. Int J Environ Res Public Health. 2021;18(23):12407. https://doi.org/10.3390/ijerph182312407.
Article
CAS
Google Scholar
Li A, Zhuang T, Shi J, Liang Y, Song M. Heavy metals in maternal and cord blood in Beijing and their efficiency of placental transfer. J Environ Sci. 2019;80:99–106. https://doi.org/10.1016/j.jes.2018.11.004.
Article
CAS
Google Scholar
Bocca B, Ruggieri F, Pino A, et al. Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part A. concentrations in maternal blood, urine and cord blood. Environ Res. 2019;177:108599. https://doi.org/10.1016/j.envres.2019.108599.
Article
CAS
Google Scholar
Ashrap P, Watkins DJ, Mukherjee B, et al. Predictors of urinary and blood Metal(loid) concentrations among pregnant women in Northern Puerto Rico. Environ Res. 2020;183:109178. https://doi.org/10.1016/j.envres.2020.109178.
Article
CAS
Google Scholar
Ashrap P, Watkins DJ, Mukherjee B, et al. Performance of urine, blood, and integrated metal biomarkers in relation to birth outcomes in a mixture setting. Environ Res. 2021;200:111435. https://doi.org/10.1016/j.envres.2021.111435.
Article
CAS
Google Scholar
Wai K, Mar O, Kosaka S, Umemura M, Watanabe C. Prenatal heavy metal exposure and adverse birth outcomes in Myanmar: a birth-cohort study. Int J Environ Res Public Health. 2017;14(11):1339. https://doi.org/10.3390/ijerph14111339.
Article
CAS
Google Scholar
Karakis I, Landau D, Yitshak-Sade M, et al. Exposure to metals and congenital anomalies: a biomonitoring study of pregnant Bedouin-Arab women. Sci Total Environ. 2015;517:106–12. https://doi.org/10.1016/j.scitotenv.2015.02.056.
Article
CAS
Google Scholar
McIntire DD, Bloom SL, Casey BM, Leveno KJ. Birth weight in relation to morbidity and mortality among newborn infants. N Engl J Med. 1999;340(16):1234–8. https://doi.org/10.1056/NEJM199904223401603.
Article
CAS
Google Scholar
Risnes KR, Vatten LJ, Baker JL, et al. Birthweight and mortality in adulthood: a systematic review and meta-analysis. Int J Epidemiol. 2011;40(3):647–61. https://doi.org/10.1093/ije/dyq267.
Article
Google Scholar
Punshon T, Li Z, Jackson BP, et al. Placental metal concentrations in relation to placental growth, efficiency and birth weight. Environ Int. 2019;126:533–42. https://doi.org/10.1016/j.envint.2019.01.063.
Article
CAS
Google Scholar
Cowell W, Colicino E, Levin-Schwartz Y, et al. Prenatal metal mixtures and sex-specific infant negative affectivity. Environ Epidemiol. 2021;5(2):e147. https://doi.org/10.1097/EE9.0000000000000147.
Article
Google Scholar
Gardner RM, Kippler M, Tofail F, et al. Environmental exposure to metals and children’s growth to age 5 years: a prospective cohort study. Am J Epidemiol. 2013;177(12):1356–67. https://doi.org/10.1093/aje/kws437.
Article
Google Scholar
Sun X, Liu W, Zhang B, et al. Maternal heavy metal exposure, thyroid hormones, and birth outcomes: a prospective cohort study. J Clin Endocrinol Metab. 2019;104(11):5043–52. https://doi.org/10.1210/jc.2018-02492.
Article
Google Scholar
Gilbert-Diamond D, Emond JA, Baker ER, Korrick SA, Karagas MR. Relation between in utero arsenic exposure and birth outcomes in a cohort of mothers and their newborns from new Hampshire. Environ Health Perspect. 2016;124(8):1299–307. https://doi.org/10.1289/ehp.1510065.
Article
CAS
Google Scholar
Fang X, Qu J, Huan S, et al. Associations of urine metals and metal mixtures during pregnancy with cord serum vitamin D Levels: a prospective cohort study with repeated measurements of maternal urinary metal concentrations. Environ Int. 2021;155:106660. https://doi.org/10.1016/j.envint.2021.106660.
Article
CAS
Google Scholar
Bobb JF, Valeri L, Claus Henn B, et al. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics. 2015;16(3):493–508. https://doi.org/10.1093/biostatistics/kxu058.
Article
Google Scholar
Holness N. High-Risk Pregnancy. Nurs Clin North Am. 2018;53(2):241–51. https://doi.org/10.1016/j.cnur.2018.01.010.
Article
Google Scholar
World Health Organization, Centers for Disease Control and Prevention (U.S.), International Clearinghouse for Birth Defects Monitoring Systems. Birth Defects Surveillance: A Manual for Programme Managers. 2nd ed. World Health Organization; 2020. Accessed 5 June 2022. https://apps.who.int/iris/handle/10665/337425
Khoshnood B, Greenlees R, Loane M, Dolk H, on behalf of the EUROCAT Project Management Committee and a EUROCAT Working Group. Paper 2: EUROCAT public health indicators for congenital anomalies in Europe. Birt Defects Res A Clin Mol Teratol. 2011;91(S1):S16–22. https://doi.org/10.1002/bdra.20776.
Article
CAS
Google Scholar
O’Brien KM, Upson K, Cook NR, Weinberg CR. Environmental Chemicals in Urine and Blood: Improving Methods for Creatinine and Lipid Adjustment. Environ Health Perspect. 2016;124(2):220–7. https://doi.org/10.1289/ehp.1509693.
Article
CAS
Google Scholar
O’Brien KM, Upson K, Buckley JP. Lipid and creatinine adjustment to evaluate health effects of environmental exposures. Curr Environ Health Rep. 2017;4(1):44–50. https://doi.org/10.1007/s40572-017-0122-7.
Article
CAS
Google Scholar
Characterization and Classification of Geographical Units by the Socio-Economic Level of the Population 2017. The National Central Bureau of Statistics. Jerusalem, Israel. 2020.
Ananth CV, Brandt JS. A principled approach to mediation analysis in perinatal epidemiology. Am J Obstet Gynecol. 2022;226(1):24-32.e6. https://doi.org/10.1016/j.ajog.2021.10.028.
Article
Google Scholar
VanderWeele TJ, Mumford SL, Schisterman EF. Conditioning on intermediates in perinatal epidemiology. Epidemiology. 2012;23(1):1–9. https://doi.org/10.1097/EDE.0b013e31823aca5d.
Article
Google Scholar
Signes-Pastor AJ, Doherty BT, Romano ME, et al. Prenatal exposure to metal mixture and sex-specific birth outcomes in the New Hampshire Birth Cohort Study. Environ Epidemiol. 2019;3(5):e068. https://doi.org/10.1097/EE9.0000000000000068.
Article
Google Scholar
Chen X, Wei L, Huang H, et al. Assessment of individual and mixture effects of element exposure measured in umbilical cord blood on birth weight in Bangladesh. Environ Res Commun. 2021;3(10):105001. https://doi.org/10.1088/2515-7620/ac23a8.
Article
Google Scholar
Lee KS, Kim KN, Ahn YD, et al. Prenatal and postnatal exposures to four metals mixture and IQ in 6-year-old children: a prospective cohort study in South Korea. Environ Int. 2021;157:106798. https://doi.org/10.1016/j.envint.2021.106798.
Article
CAS
Google Scholar
Bobb JF, Claus Henn B, Valeri L, Coull BA. Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. Environ Health. 2018;17(1):67. https://doi.org/10.1186/s12940-018-0413-y.
Article
Google Scholar
Coker E, Chevrier J, Rauch S, et al. Association between prenatal exposure to multiple insecticides and child body weight and body composition in the VHEMBE South African birth cohort. Environ Int. 2018;113:122–32. https://doi.org/10.1016/j.envint.2018.01.016.
Article
CAS
Google Scholar
Xia W, Hu J, Zhang B, et al. A case-control study of maternal exposure to chromium and infant low birth weight in China. Chemosphere. 2016;144:1484–9. https://doi.org/10.1016/j.chemosphere.2015.10.006.
Article
CAS
Google Scholar
Peng Y, Hu J, Li Y, et al. Exposure to chromium during pregnancy and longitudinally assessed fetal growth: Findings from a prospective cohort. Environ Int. 2018;121:375–82. https://doi.org/10.1016/j.envint.2018.09.003.
Article
CAS
Google Scholar
Guo Y, Huo X, Li Y, et al. Monitoring of lead, cadmium, chromium and nickel in placenta from an e-waste recycling town in China. Sci Total Environ. 2010;408(16):3113–7. https://doi.org/10.1016/j.scitotenv.2010.04.018.
Article
CAS
Google Scholar
Cabrera-Rodríguez R, Luzardo OP, González-Antuña A, et al. Occurrence of 44 elements in human cord blood and their association with growth indicators in newborns. Environ Int. 2018;116:43–51. https://doi.org/10.1016/j.envint.2018.03.048.
Article
CAS
Google Scholar
Banu SK, Stanley JA, Taylor RJ, et al. Sexually dimorphic impact of chromium accumulation on human placental oxidative stress and apoptosis. Toxicol Sci. 2018;161(2):375–87. https://doi.org/10.1093/toxsci/kfx224.
Article
CAS
Google Scholar
Schoots MH, Gordijn SJ, Scherjon SA, van Goor H, Hillebrands JL. Oxidative stress in placental pathology. Placenta. 2018;69:153–61. https://doi.org/10.1016/j.placenta.2018.03.003.
Article
CAS
Google Scholar
Saxena DK, Murthy RC, Jain VK, Chandra SV. Fetoplacental-maternal uptake of hexavalent chromium administered orally in rats and mice. Bull Environ Contam Toxicol. 1990;45(3):430–5. https://doi.org/10.1007/BF01701168.
Article
CAS
Google Scholar
Wise SS, Holmes AL, Wise, Sr. JP. Hexavalent Chromium-Induced DNA Damage and Repair Mechanisms. Rev Environ Health. 2008;23(1). https://doi.org/10.1515/REVEH.2008.23.1.39
Solé-Navais P, Brantsæter AL, Caspersen IH, et al. Maternal dietary selenium intake during pregnancy is associated with higher birth weight and lower risk of small for gestational age births in the Norwegian Mother, Father and child cohort study. Nutrients. 2020;13(1):23. https://doi.org/10.3390/nu13010023.
Article
CAS
Google Scholar
Monangi N, Xu H, Khanam R, et al. Association of maternal prenatal selenium concentration and preterm birth: a multicountry meta-analysis. BMJ Glob Health. 2021;6(9):e005856. https://doi.org/10.1136/bmjgh-2021-005856.
Article
Google Scholar
Kalansuriya DM, Lim R, Lappas M. In vitro selenium supplementation suppresses key mediators involved in myometrial activation and rupture of fetal membranes. Metallomics. 2020;12(6):935–51. https://doi.org/10.1039/d0mt00063a.
Article
CAS
Google Scholar
Sun H, Chen W, Wang D, Jin Y, Chen X, Xu Y. The effects of prenatal exposure to low-level cadmium, lead and selenium on birth outcomes. Chemosphere. 2014;108:33–9. https://doi.org/10.1016/j.chemosphere.2014.02.080.
Article
CAS
Google Scholar
Hu X, Zheng T, Cheng Y, et al. Distributions of heavy metals in maternal and cord blood and the association with infant birth weight in China. J Reprod Med. 2015;60(1–2):21–9.
Google Scholar
Xia W, Du X, Zheng T, et al. A case-control study of prenatal thallium exposure and low birth weight in China. Environ Health Perspect. 2016;124(1):164–9. https://doi.org/10.1289/ehp.1409202.
Article
Google Scholar
Zhou H, Sun X, Wang Y, et al. The mediating role of placental weight change in the association between prenatal exposure to thallium and birth weight: a prospective birth cohort study. Front Public Health. 2021;9:679406. https://doi.org/10.3389/fpubh.2021.679406.
Article
Google Scholar
Puttabyatappa M, Banker M, Zeng L, et al. Maternal exposure to environmental disruptors and sexually dimorphic changes in maternal and neonatal oxidative stress. J Clin Endocrinol Metab. 2020;105(2):492–505. https://doi.org/10.1210/clinem/dgz063.
Article
Google Scholar
Biri A, Bozkurt N, Turp A, Kavutcu M, Himmetoglu Ö, Durak İ. Role of oxidative stress in intrauterine growth restriction. Gynecol Obstet Invest. 2007;64(4):187–92. https://doi.org/10.1159/000106488.
Article
CAS
Google Scholar
Yorita Christensen KL. Metals in blood and urine, and thyroid function among adults in the United States 2007–2008. Int J Hyg Environ Health. 2013;216(6):624–32. https://doi.org/10.1016/j.ijheh.2012.08.005.
Article
CAS
Google Scholar
Fort M, Cosín-Tomás M, Grimalt JO, Querol X, Casas M, Sunyer J. Assessment of exposure to trace metals in a cohort of pregnant women from an urban center by urine analysis in the first and third trimesters of pregnancy. Environ Sci Pollut Res. 2014;21(15):9234–41. https://doi.org/10.1007/s11356-014-2827-6.
Article
CAS
Google Scholar
Bashore C, Geer L, He X, et al. Maternal mercury exposure, season of conception and adverse birth outcomes in an urban immigrant community in Brooklyn, New York, U.S.A. Int J Environ Res Public Health. 2014;11(8):8414–42. https://doi.org/10.3390/ijerph110808414.
Article
CAS
Google Scholar
Xiao T, Guha J, Liu CQ, et al. Potential health risk in areas of high natural concentrations of thallium and importance of urine screening. Appl Geochem. 2007;22(5):919–29. https://doi.org/10.1016/j.apgeochem.2007.02.008.
Article
CAS
Google Scholar
Wang X, Qi L, Peng Y, et al. Urinary concentrations of environmental metals and associating factors in pregnant women. Environ Sci Pollut Res. 2019;26(13):13464–75. https://doi.org/10.1007/s11356-019-04731-z.
Article
CAS
Google Scholar
Kim SS, Meeker JD, Keil AP, et al. Exposure to 17 trace metals in pregnancy and associations with urinary oxidative stress biomarkers. Environ Res. 2019;179:108854. https://doi.org/10.1016/j.envres.2019.108854.
Article
CAS
Google Scholar
Barregard L, Ellingsen DG, Berlinger B, Weinbruch S, Harari F, Sallsten G. Normal variability of 22 elements in 24-hour urine samples – Results from a biobank from healthy non-smoking adults. Int J Hyg Environ Health. 2021;233:113693. https://doi.org/10.1016/j.ijheh.2021.113693.
Article
CAS
Google Scholar
Howe CG, Nozadi SS, Garcia E, et al. Prenatal metal(loid) mixtures and birth weight for gestational age: a pooled analysis of three cohorts participating in the ECHO program. Environ Int. 2022;161:107102. https://doi.org/10.1016/j.envint.2022.107102.
Article
CAS
Google Scholar
Jalali LM, Koski KG. Amniotic fluid minerals, trace elements, and prenatal supplement use in humans emerge as determinants of fetal growth. J Trace Elem Med Biol. 2018;50:139–45. https://doi.org/10.1016/j.jtemb.2018.06.012.
Article
CAS
Google Scholar
Nielsen FH, Uthus EO, Poellot RA, Shuler TR. Dietary vitamin B12, sulfur amino acids, and odd-chain fatty acids affect the response of rats to nickel deprivation. Biol Trace Elem Res. 1993;37(1):1–15. https://doi.org/10.1007/BF02789397.
Article
CAS
Google Scholar
Rogne T, Tielemans MJ, Chong MFF, et al. Associations of Maternal Vitamin B12 Concentration in Pregnancy With the Risks of Preterm Birth and Low Birth Weight: A Systematic Review and Meta-Analysis of Individual Participant Data. Am J Epidemiol. Published online January 20, 2017:amjepid;kww212v1. https://doi.org/10.1093/aje/kww212
Vigeh M, Nishioka E, Ohtani K, et al. Prenatal mercury exposure and birth weight. Reprod Toxicol. 2018;76:78–83. https://doi.org/10.1016/j.reprotox.2018.01.002.
Article
CAS
Google Scholar
Third National Report on Human Exposure to Environmental Chemicals (No. NCEH Pub. No. 05-0570), 2005. Department of Health and Human Services Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30341-3724.
Assessment of prenatal exposure to mercury: human biomonitoring survey. Published online 2018. Accessed 26 Jan 2022. https://www.euro.who.int/en/health-topics/environment-and-health/chemical-safety/publications/2018/assessment-of-prenatal-exposure-to-mercury-human-biomonitoring-survey-2018
Zhang B, Xia W, Li Y, et al. Prenatal exposure to lead in relation to risk of preterm low birth weight: a matched case-control study in China. Reprod Toxicol Elmsford N. 2015;57:190–5. https://doi.org/10.1016/j.reprotox.2015.06.051.
Article
CAS
Google Scholar
Nozadi SS, Li L, Luo L, et al. Prenatal Metal Exposures and Infants’ Developmental Outcomes in a Navajo Population. Int J Environ Res Public Health. 2021;19(1):425. https://doi.org/10.3390/ijerph19010425.
Article
CAS
Google Scholar
Amegah AK, Sewor C, Jaakkola JJK. Cadmium exposure and risk of adverse pregnancy and birth outcomes: a systematic review and dose–response meta-analysis of cohort and cohort-based case–control studies. J Expo Sci Environ Epidemiol. 2021;31(2):299–317. https://doi.org/10.1038/s41370-021-00289-6.
Article
CAS
Google Scholar
Davis MA, Higgins J, Li Z, et al. Preliminary analysis of in utero low-level arsenic exposure and fetal growth using biometric measurements extracted from fetal ultrasound reports. Environ Health. 2015;14(1):12. https://doi.org/10.1186/1476-069X-14-12.
Article
CAS
Google Scholar
Fano-Sizgorich D, Vásquez-Velásquez C, Yucra S, et al. Total urinary arsenic and inorganic arsenic concentrations and birth outcomes in pregnant women of Tacna, Peru: a cross-sectional Study. Expo Health. 2021;13(1):133–40. https://doi.org/10.1007/s12403-020-00377-2.
Article
CAS
Google Scholar
Guan H, Piao F, Zhang X, et al. Prenatal Exposure to Arsenic and Its Effects on Fetal Development in the General Population of Dalian. Biol Trace Elem Res. 2012;149(1):10–5. https://doi.org/10.1007/s12011-012-9396-7.
Article
CAS
Google Scholar
Mullin AM, Amarasiriwardena C, Cantoral-Preciado A, et al. Maternal blood arsenic levels and associations with birth weight-for-gestational age. Environ Res. 2019;177:108603. https://doi.org/10.1016/j.envres.2019.108603.
Article
CAS
Google Scholar
Bermúdez L, García-Vicent C, López J, Torró MI, Lurbe E. Assessment of ten trace elements in umbilical cord blood and maternal blood: association with birth weight. J Transl Med. 2015;13:291. https://doi.org/10.1186/s12967-015-0654-2.
Article
CAS
Google Scholar
Bloom MS, Neamtiu IA, Surdu S, et al. Low level arsenic contaminated water consumption and birth outcomes in Romania-An exploratory study. Reprod Toxicol Elmsford N. 2016;59:8–16. https://doi.org/10.1016/j.reprotox.2015.10.012.
Article
CAS
Google Scholar
Rahman ML, Kile ML, Rodrigues EG, et al. Prenatal arsenic exposure, child marriage, and pregnancy weight gain: associations with preterm birth in Bangladesh. Environ Int. 2018;112:23–32. https://doi.org/10.1016/j.envint.2017.12.004.
Article
CAS
Google Scholar
Liao KW, Chang CH, Tsai MS, et al. Associations between urinary total arsenic levels, fetal development, and neonatal birth outcomes: a cohort study in Taiwan. Sci Total Environ. 2018;612:1373–9. https://doi.org/10.1016/j.scitotenv.2017.08.312.
Article
CAS
Google Scholar
Yokoyama Y, Sugimoto M, Ooki S. Analysis of factors affecting birthweight, birth length and head circumference: study of Japanese triplets. Twin Res Hum Genet. 2005;8(6):657–63. https://doi.org/10.1375/twin.8.6.657.
Article
Google Scholar
Smit DJA, Luciano M, Bartels M, et al. Heritability of head size in Dutch and Australian twin families at ages 0–50 years. Twin Res Hum Genet. 2010;13(4):370–80. https://doi.org/10.1375/twin.13.4.370.
Article
Google Scholar
Yang XL, Zhang SY, Zhang H, et al. Three Novel Loci for Infant Head Circumference Identified by a Joint Association Analysis. Front Genet. 2019;10:947. https://doi.org/10.3389/fgene.2019.00947.
Article
CAS
Google Scholar
Jayaraman D, Bae BI, Walsh CA. The Genetics of primary microcephaly. Annu Rev Genomics Hum Genet. 2018;19(1):177–200. https://doi.org/10.1146/annurev-genom-083117-021441.
Article
CAS
Google Scholar
Williams CA, Dagli A, Battaglia A. Genetic disorders associated with macrocephaly. Am J Med Genet A. 2008;146A(15):2023–37. https://doi.org/10.1002/ajmg.a.32434.
Article
CAS
Google Scholar
Smeester L, Martin EM, Cable P, et al. Toxic metals in amniotic fluid and altered gene expression in cell-free fetal RNA. Prenat Diagn. 2017;37(13):1364–6. https://doi.org/10.1002/pd.5183.
Article
CAS
Google Scholar
Montes-Castro N, Alvarado-Cruz I, Torres-Sánchez L, et al. Prenatal exposure to metals modified DNA methylation and the expression of antioxidant- and DNA defense-related genes in newborns in an urban area. J Trace Elem Med Biol. 2019;55:110–20. https://doi.org/10.1016/j.jtemb.2019.06.014.
Article
CAS
Google Scholar
Bozack AK, Rifas-Shiman SL, Coull BA, et al. Prenatal metal exposure, cord blood DNA methylation and persistence in childhood: an epigenome-wide association study of 12 metals. Clin Epigenetics. 2021;13(1):208. https://doi.org/10.1186/s13148-021-01198-z.
Article
CAS
Google Scholar
Wang M, Xia W, Liu H, et al. Urinary metabolomics reveals novel interactions between metal exposure and amino acid metabolic stress during pregnancy. Toxicol Res. 2018;7(6):1164–72. https://doi.org/10.1039/C8TX00042E.
Article
CAS
Google Scholar
Küpers LK, Monnereau C, Sharp GC, et al. Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight. Nat Commun. 2019;10(1):1893. https://doi.org/10.1038/s41467-019-09671-3.
Article
CAS
Google Scholar
Paustenbach DJ, Panko JM, Fredrick MM, Finley BL, Proctor DM. Urinary chromium as a biological marker of environmental exposure: what are the limitations? Regul Toxicol Pharmacol. 1997;26(1):S23–34. https://doi.org/10.1006/rtph.1997.1135.
Article
CAS
Google Scholar
Hawkes WC, Alkan FZ, Oehler L. Absorption, Distribution and Excretion of Selenium from Beef and Rice in Healthy North American Men. J Nutr. 2003;133(11):3434–42. https://doi.org/10.1093/jn/133.11.3434.
Article
CAS
Google Scholar
Keil DE, Berger-Ritchie J, McMillin GA. Testing for toxic elements: a focus on arsenic, cadmium, lead, and mercury. Lab Med. 2011;42(12):735–42. https://doi.org/10.1309/LMYKGU05BEPE7IAW.
Article
Google Scholar
Nordberg G, Fowler BA, Nordberg M. Handbook on the Toxicology of Metals. 4th edition. Elsevier/Academic Press; Amsterdam. 2015.
Park JD, Zheng W. Human exposure and health effects of inorganic and elemental mercury. J Prev Med Pub Health. 2012;45(6):344–52. https://doi.org/10.3961/jpmph.2012.45.6.344.
Article
Google Scholar
Mehdi Y, Hornick JL, Istasse L, Dufrasne I. Selenium in the environment, metabolism and involvement in body functions. Molecules. 2013;18(3):3292–311. https://doi.org/10.3390/molecules18033292.
Article
CAS
Google Scholar
de Souza ID, de Andrade AS, Dalmolin RJS. Lead-interacting proteins and their implication in lead poisoning. Crit Rev Toxicol. 2018;48(5):375–86. https://doi.org/10.1080/10408444.2018.1429387.
Article
CAS
Google Scholar