WHO: Health indicators of sustainable agriculture, food and nutrition security in the context of the Rio+20 UN Conference on Sustainable Development. www.who.int/hia/green_economy/indicators_food.pdf. 2012(accessed 2017–09-11).
Burlingame B, Dernini S. Food and Agriculture Organization of the United Nations (FAO): Sustainable diets and biodiversity. Directions and solutions for policy, research and action. In. Edited by Burlingame B, Dernini S; 2012.
Sustainable Food Systems Programme; 2016. [http://www.unep.org/10yfp/programmes/sustainable-food-systems-programme].
The World of Organic Agriculture. Statistics and emerging trends. Frick and Bonn: FiBL and IFOAM – organics international; 2017.
Council of the European Union: Council Regulation No 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91. In: Off J Eur Union 2007.
European Commission: Commission Regulation (EC) No 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. In: Off J Eur Union 2008.
Willer H, Schaack D, Lernoud J: Organic Farming and Market Development in Europe and the European Union. In: The World of Organic Agriculture - Statistics and Emerging Trends 2017. Edited by Willer H, Lernoud J. Frick and Bonn: FiBL and IFOAM; 2017.
Eurostat. http://ec.europa.eu/eurostat. Accessed 19 Sept 2017.
FAOSTAT. http://www.fao.org/faostat. Accessed 19 Sept 2017.
Facts and figures on organic agriculture in the European Union. [http://ec.europa.eu/agriculture/rica/pdf/Organic_2016_web_new.pdf]. Accessed 19 Sept 2017.
Reganold JP, Wachter JM. Organic agriculture in the twenty-first century. Nat Plants. 2016;2:15221.
Article
Google Scholar
Seufert V, Ramankutty N. Many shades of gray-the context-dependent performance of organic agriculture. Sci Adv. 2017;3(3):e1602638.
Article
Google Scholar
Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A. Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv. 2012;151(1):53–9.
Article
Google Scholar
Wheeler T, von Braun J. Climate change impacts on global food security. Science. 2013;341(6145):508–13.
Article
CAS
Google Scholar
Oates L, Cohen M, Braun L. Characteristics and consumption patterns of Australian organic consumers. J Sci Food Agric. 2012;92(14):2782–7.
Article
CAS
Google Scholar
Baudry J, Mejean C, Alles B, Peneau S, Touvier M, Hercberg S, Lairon D, Galan P, Kesse-Guyot E. Contribution of organic food to the diet in a large sample of French adults (the NutriNet-Sante cohort study). Nutrients. 2015;7(10):8615–32.
Article
Google Scholar
Baudry J, Touvier M, Alles B, Peneau S, Mejean C, Galan P, Hercberg S, Lairon D, Kesse-Guyot E. Typology of eaters based on conventional and organic food consumption: results from the NutriNet-Sante cohort study. Br J Nutr. 2016;116(4):700–9.
Article
CAS
Google Scholar
Kesse-Guyot E, Peneau S, Mejean C, Szabo de Edelenyi F, Galan P, Hercberg S, Lairon D. Profiles of organic food consumers in a large sample of French adults: results from the Nutrinet-Sante cohort study. PLoS One. 2013;8(10):e76998.
Article
CAS
Google Scholar
Eisinger-Watzl M, Wittig F, Heuer T, Hoffmann I. Customers purchasing organic food - do they live healthier? Results of the German National Nutrition Survey II. Eur J Nutr Food Saf. 2015;5(1):59–71.
Article
Google Scholar
Hughner RS, McDonagh P, Prothero A, Shultz CJ, Stanton J. Who are organic food consumers? A compilation and review of why people purchase organic food. J Consum Behav. 2007;6(2–3):94–110.
Article
Google Scholar
van de Vijver LP, van Vliet ME. Health effects of an organic diet--consumer experiences in the Netherlands. J Sci Food Agric. 2012;92(14):2923–7.
Article
CAS
Google Scholar
Brown E, Dury S, Holdsworth M. Motivations of consumers that use local, organic fruit and vegetable box schemes in Central England and southern France. Appetite. 2009;53(2):183–8.
Article
Google Scholar
Arvola A, Vassallo M, Dean M, Lampila P, Saba A, Lahteenmaki L, Shepherd R. Predicting intentions to purchase organic food: the role of affective and moral attitudes in the theory of planned behaviour. Appetite. 2008;50(2–3):443–54.
Article
CAS
Google Scholar
Dangour AD, Lock K, Hayter A, Aikenhead A, Allen E, Uauy R. Nutrition-related health effects of organic foods: a systematic review. Am J Clin Nutr. 2010;92(1):203–10.
Article
CAS
Google Scholar
Smith-Spangler C, Brandeau ML, Hunter GE, Bavinger JC, Pearson M, Eschbach PJ, Sundaram V, Liu H, Schirmer P, Stave C, et al. Are organic foods safer or healthier than conventional alternatives?: a systematic review. Ann Intern Med. 2012;157(5):348–66.
Article
Google Scholar
Forman J, Silverstein J. Organic foods: health and environmental advantages and disadvantages. Pediatrics. 2012;130(5):e1406–15.
Article
Google Scholar
Mark AB, Poulsen MW, Andersen S, Andersen JM, Bak MJ, Ritz C, Holst JJ, Nielsen J, de Courten B, Dragsted LO, et al. Consumption of a diet low in advanced glycation end products for 4 weeks improves insulin sensitivity in overweight women. Diabetes Care. 2014;37(1):88–95.
Article
CAS
Google Scholar
Soltoft M, Bysted A, Madsen KH, Mark AB, Bugel SG, Nielsen J, Knuthsen P. Effects of organic and conventional growth systems on the content of carotenoids in carrot roots, and on intake and plasma status of carotenoids in humans. J Sci Food Agric. 2011;91(4):767–75.
Article
CAS
Google Scholar
Torjusen H, Brantsaeter AL, Haugen M, Alexander J, Bakketeig LS, Lieblein G, Stigum H, Naes T, Swartz J, Holmboe-Ottesen G, et al. Reduced risk of pre-eclampsia with organic vegetable consumption: results from the prospective Norwegian mother and child cohort study. BMJ Open. 2014;4(9):e006143.
Article
Google Scholar
Abete I, Romaguera D, Vieira AR, Lopez de Munain A, Norat T. Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: a meta-analysis of cohort studies. Br J Nutr. 2014;112(5):762–75.
Article
CAS
Google Scholar
Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonnet E, Muller MJ, Oberritter H, Schulze M, et al. Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr. 2012;51(6):637–63.
Article
CAS
Google Scholar
Larsson SC, Orsini N. Red meat and processed meat consumption and all-cause mortality: a meta-analysis. Am J Epidemiol. 2014;179(3):282–9.
Article
Google Scholar
Li F, Hou LN, Chen W, Chen PL, Lei CY, Wei Q, Tan WL, Zheng SB. Associations of dietary patterns with the risk of all-cause, CVD and stroke mortality: a meta-analysis of prospective cohort studies. Br J Nutr. 2015;113(1):16–24.
Article
CAS
Google Scholar
Schwingshackl L, Hoffmann G. Diet quality as assessed by the healthy eating index, the alternate healthy eating index, the dietary approaches to stop hypertension score, and health outcomes: a systematic review and meta-analysis of cohort studies. J Acad Nutr Diet. 2015;115(5):780–800.e785.
Article
Google Scholar
Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, Hu FB. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ. 2014;349:g4490.
Article
Google Scholar
Zong G, Gao A, Hu FB, Sun Q. Whole grain intake and mortality from all causes, cardiovascular disease, and cancer: a meta-analysis of prospective cohort studies. Circulation. 2016;133(24):2370–80.
Article
CAS
Google Scholar
Bradbury KE, Balkwill A, Spencer EA, Roddam AW, Reeves GK, Green J, Key TJ, Beral V, Pirie K. The million women study C: organic food consumption and the incidence of cancer in a large prospective study of women in the United Kingdom. Br J Cancer. 2014;110(9):2321–6.
Article
Google Scholar
Alfven T, Braun-Fahrlander C, Brunekreef B, von Mutius E, Riedler J, Scheynius A, van Hage M, Wickman M, Benz MR, Budde J, et al. Allergic diseases and atopic sensitization in children related to farming and anthroposophic lifestyle--the PARSIFAL study. Allergy. 2006;61(4):414–21.
Article
CAS
Google Scholar
Kummeling I, Thijs C, Huber M, van de Vijver LP, Snijders BE, Penders J, Stelma F, van Ree R, van den Brandt PA, Dagnelie PC. Consumption of organic foods and risk of atopic disease during the first 2 years of life in the Netherlands. Br J Nutr. 2008;99(3):598–605.
Article
CAS
Google Scholar
Rist L, Mueller A, Barthel C, Snijders B, Jansen M, Simoes-Wust AP, Huber M, Kummeling I, von Mandach U, Steinhart H, et al. Influence of organic diet on the amount of conjugated linoleic acids in breast milk of lactating women in the Netherlands. Br J Nutr. 2007;97(4):735–43.
Article
CAS
Google Scholar
Stenius F, Swartz J, Lilja G, Borres M, Bottai M, Pershagen G, Scheynius A, Alm J. Lifestyle factors and sensitization in children - the ALADDIN birth cohort. Allergy. 2011;66(10):1330–8.
Article
CAS
Google Scholar
Fagerstedt S, Hesla HM, Ekhager E, Rosenlund H, Mie A, Benson L, Scheynius A, Alm J. Anthroposophic lifestyle is associated with a lower incidence of food allergen sensitization in early childhood. J Allergy Clin Immunol. 2016;137(4):1253–1256.e1251.
Article
Google Scholar
Alm JS, Swartz J, Lilja G, Scheynius A, Pershagen G. Atopy in children of families with an anthroposophic lifestyle. Lancet. 1999;353(9163):1485–8.
Article
CAS
Google Scholar
Floistrup H, Swartz J, Bergstrom A, Alm JS, Scheynius A, van Hage M, Waser M, Braun-Fahrlander C, Schram-Bijkerk D, Huber M, et al. Allergic disease and sensitization in Steiner school children. J Allergy Clin Immunol. 2006;117(1):59–66.
Article
Google Scholar
Thijs C, Muller A, Rist L, Kummeling I, Snijders BE, Huber M, van Ree R, Simoes-Wust AP, Dagnelie PC, van den Brandt PA. Fatty acids in breast milk and development of atopic eczema and allergic sensitisation in infancy. Allergy. 2011;66(1):58–67.
Article
CAS
Google Scholar
Kesse-Guyot E, Baudry J, Assmann KE, Galan P, Hercberg S, Lairon D. Prospective association between consumption frequency of organic food and body weight change, risk of overweight or obesity: results from the NutriNet-Santé study. Br J Nutr. 2017;117(2):325–34.
Article
CAS
Google Scholar
Baudry J, Mejean C, Peneau S, Galan P, Hercberg S, Lairon D, Kesse-Guyot E. Health and dietary traits of organic food consumers: results from the NutriNet-Sante study. Br J Nutr. 2015;114(12):2064–73.
Article
CAS
Google Scholar
Alfano CM, Day JM, Katz ML, Herndon JE 2nd, Bittoni MA, Oliveri JM, Donohue K, Paskett ED. Exercise and dietary change after diagnosis and cancer-related symptoms in long-term survivors of breast cancer: CALGB 79804. Psycho-Oncology. 2009;18(2):128–33.
Article
Google Scholar
Jacobs DR, Tapsell LC. Food synergy: the key to a healthy diet. Proc Nutr Soc. 2013;72(2):200–6.
Article
Google Scholar
Olsson ME, Andersson CS, Oredsson S, Berglund RH, Gustavsson K-E. Antioxidant levels and inhibition of cancer cell proliferation in vitro by extracts from organically and conventionally cultivated strawberries. J Agric Food Chem. 2006;54(4):1248–55.
Article
CAS
Google Scholar
Kazimierczak R, Hallmann E, Lipowski J, Drela N, Kowalik A, Püssa T, Matt D, Luik A, Gozdowski D, Rembiałkowska E. Beetroot (Beta Vulgaris L.) and naturally fermented beetroot juices from organic and conventional production: metabolomics, antioxidant levels and anticancer activity. J Sci Food Agric. 2014;94(13):2618–29.
Article
CAS
Google Scholar
Velimirov A, Huber M, Lauridsen C, Rembiałkowska E, Seidel K, Bügel S. Feeding trials in organic food quality and health research. J Sci Food Agric. 2010;90(2):175–82.
Article
CAS
Google Scholar
Huber M, van de Vijver LP, Parmentier H, Savelkoul H, Coulier L, Wopereis S, Verheij E, van der Greef J, Nierop D, Hoogenboom RA. Effects of organically and conventionally produced feed on biomarkers of health in a chicken model. Br J Nutr. 2010;103(5):663–76.
Article
CAS
Google Scholar
Huber MAS, Coulier L, Wopereis S, Savelkoul H, Nierop D, Hoogenboom R. Enhanced catch-up growth after a challenge in animals on organic feed. Paris: International Conference on Nutrition & Growth; 2012.
Google Scholar
Huber M, Knottnerus JA, Green L, Hvd H, Jadad AR, Kromhout D, Leonard B, Lorig K, Loureiro MI, JWMvd M, et al. How should we define health? BMJ. 2011;343
Jensen MM, Jorgensen H, Halekoh U, Olesen JE, Lauridsen C. Can agricultural cultivation methods influence the healthfulness of crops for foods? J Agric Food Chem. 2012;60(25):6383–90.
Article
CAS
Google Scholar
Srednicka-Tober D, Baranski M, Gromadzka-Ostrowska J, Skwarlo-Sonta K, Rembialkowska E, Hajslova J, Schulzova V, Cakmak I, Ozturk L, Krolikowski T, et al. Effect of crop protection and fertilization regimes used in organic and conventional production systems on feed composition and physiological parameters in rats. J Agric Food Chem. 2013;61(5):1017–29.
Article
CAS
Google Scholar
Finamore A, Britti MS, Roselli M, Bellovino D, Gaetani S, Mengheri E. Novel approach for food safety evaluation. Results of a pilot experiment to evaluate organic and conventional foods. J Agric Food Chem. 2004;52(24):7425–31.
Article
CAS
Google Scholar
Jensen MM, Halekoh U, Stokes CR, Lauridsen C. Effect of maternal intake of organically or conventionally produced feed on oral tolerance development in offspring rats. J Agric Food Chem. 2013;61(20):4831–8.
Article
CAS
Google Scholar
Roselli M, Finamore A, Brasili E, Capuani G, Kristensen HL, Micheloni C, Mengheri E. Impact of organic and conventional carrots on intestinal and peripheral immunity. J Sci Food Agric. 2012;92(14):2913–22.
Article
CAS
Google Scholar
van Bruggen AH, Gamliel A, Finckh MR. Plant disease management in organic farming systems. Pest Manag Sci. 2016;72(1):30–44.
Article
CAS
Google Scholar
Zehnder G, Gurr GM, Kuhne S, Wade MR, Wratten SD, Wyss E. Arthropod pest management in organic crops. Annu Rev Entomol. 2007;52:57–80.
Article
CAS
Google Scholar
Garibaldi LA, Carvalheiro LG, Vaissiere BE, Gemmill-Herren B, Hipolito J, Freitas BM, Ngo HT, Azzu N, Saez A, Astrom J, et al. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science. 2016;351(6271):388–91.
Article
CAS
Google Scholar
Gurr GM, Lu Z, Zheng X, Xu H, Zhu P, Chen G, Yao X, Cheng J, Zhu Z, Catindig JL, et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat Plants. 2016;2:16014.
Article
Google Scholar
European Commission: COMMISSION REGULATION (EU) No 1107/2009 of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. In: Off J Eur Union 2009.
European Commission: EU pesticides database; 2017. ec.europa.eu/food/plant/pesticides/eu-pesticides-database/.
Government report/policy document. French Ministry of Agriculture, Agrifood and Forestry. Plan Ecophyto II. http://agriculture.gouv.fr/sites/minagri/files/151022_ecophyto.pdf. Accessed 11 Sept 2017.
Mallory EB, Halberg N, Andreasen L, Delate K, Ngouajio M. Innovations in organic food systems for sustainable production and ecosystem services: an introduction to the special issue of sustainable agriculture research. Sustain Agric Res. 2015;4(3):1.
Article
Google Scholar
Beck A, Alexander C, Eduardo H, Anna Maria K, Koopmans J, Micheloni C, Moeskops C, Niggli B, Urs P, Ilse A, Susanne and Rasmussen. TP Organics: Strategic research and innovation agenda for organic food and farming. Belgium. 2014.
International Centre for Research in Organic Food Systems (ICROFS): Økologiens bidrag til samfundsgoder (the contribution of organic farming to public goods in Denmark, in Danish). 2015.
Google Scholar
Gustaf Forsberg: Control of cereal seed-borne diseases by hot humid air seed treatment, vol. 443; 2004.
Forsberg G. Control of cereal seed-borne diseases by hot humid air seed treatment. Diss. Swedish university of Agricultural Sciences, SLU. Uppsala, Sweden. 2003;2003:130–5. ISBN 91-576-6496-X.
Lantmännen opens the most modern seed factory in Europe [http://lantmannen.com/en/about-lantmannen/press-and-publications/news/news-page/news/lantmannen-opens-the-most-modern-seed-factory-in-europe/2196161].
European Food Safety Authority. The 2013 European Union Report on Pesticide Residues in Food. EFSA Journal. 2015;13:3.
European Food Safety Agency. The 2014 European Union report on pesticide residues in food. EFSA J. 2015;13(3):4038.
European Food Safety Agency. The 2015 European Union report on pesticide residues in food. EFSA J. 2017;15(4):4791.
Google Scholar
Kortenkamp A, Backhaus T, Faust M. State of the art report on mixture toxicity. In., vol. study 070307/2007/485103/ETU/D.1. European Commission: Brussels; 2009.
Google Scholar
Beckman K: Exponering för resthalter av pesticider i konventionellt odlade frukter, bär och grönsaker inom EU och i tredje land jämfört med konventionellt odlade i Sverige samt ekologiskt odlade. (Exposure for pesticide residues in conventionally grown fruits, berries and vegetables from the EU and third countries, compared to conventionally grown products from Sweden and to organically grown products, in Swedish). Bachelor thesis. 2015.
European Commission, Directorate-General for Health and Food Safety: Final report of an audit carried out in Germany from 07 September 2015 to 11 September 2015 in order to evaluate pesticide residue controls in organic production. 2015.
Google Scholar
CDC. Fourth National Report on human exposure to environmental chemicals, opdated tables september 2013. Washington: Centers for Disease Control and Prevention (CDC); 2013.
Google Scholar
Viel JF, Warembourg C, Le Maner-Idrissi G, Lacroix A, Limon G, Rouget F, Monfort C, Durand G, Cordier S, Chevrier C. Pyrethroid insecticide exposure and cognitive developmental disabilities in children: the PELAGIE mother-child cohort. Environ Int. 2015;82:69–75.
Article
CAS
Google Scholar
Cartier C, Warembourg C, Le Maner-Idrissi G, Lacroix A, Rouget F, Monfort C, Limon G, Durand G, Saint-Amour D, Cordier S, et al. Organophosphate insecticide metabolites in prenatal and childhood urine samples and intelligence scores at 6 years of age: results from the mother-child PELAGIE cohort (France). Environ Health Perspect. 2016;124(5):674–80.
Google Scholar
Fréry N, Guldner L, Saoudi A, Garnier R, Zeghnoun A, Bibondo M. Exposition de la population française aux substances chimiques de l'environnement. Polychlorobiphényles (PCB-NDL) et pesticides. In: Exposure of the French population to environmental chemicals. Volume 2 - Polychlorobiphenyls (NDL-PCBs) and pesticides, in French, vol. 2. Saint-Maurice: Institut de veille sanitaire; 2013.
Google Scholar
Heudorf U, Butte W, Schulz C, Angerer J. Reference values for metabolites of pyrethroid and organophosphorous insecticides in urine for human biomonitoring in environmental medicine. Int J Hyg Environ Health. 2006;209(3):293–9.
Article
CAS
Google Scholar
Spaan S, Pronk A, Koch HM, Jusko TA, Jaddoe VW, Shaw PA, Tiemeier HM, Hofman A, Pierik FH, Longnecker MP. Reliability of concentrations of organophosphate pesticide metabolites in serial urine specimens from pregnancy in the generation R study. J Expo Sci Environ Epidemiol. 2015;25(3):286–94.
Article
CAS
Google Scholar
Roca M, Miralles-Marco A, Ferre J, Perez R, Yusa V. Biomonitoring exposure assessment to contemporary pesticides in a school children population of Spain. Environ Res. 2014;131C:77–85.
Article
CAS
Google Scholar
Croes K, Den Hond E, Bruckers L, Govarts E, Schoeters G, Covaci A, Loots I, Morrens B, Nelen V, Sioen I, et al. Endocrine actions of pesticides measured in the Flemish environment and health studies (FLEHS I and II). Environ Sci Pollut Res Int. 2015;22(19):14589–99.
Article
CAS
Google Scholar
Wielgomas B, Nahorski W, Czarnowski W. Urinary concentrations of pyrethroid metabolites in the convenience sample of an urban population of northern Poland. Int J Hyg Environ Health. 2013;216(3):295–300.
Article
CAS
Google Scholar
Mørck T, Andersen H, Knudsen L: Organophosphate metabolites in urine samples from Danish children and women - measured in the Danish DEMOCOPHES population. Danish Environmental Protection Agency. 2017.
Tyler CR, Beresford N, van der Woning M, Sumpter JP, Thorpe K. Metabolism and environmental degradation of pyrethroid insecticides produce compounds with endocrine activities. Environ Toxicol Chem. Copenhagen. 2000;19(4):801–9.
Lu C, Toepel K, Irish R, Fenske RA, Barr DB, Bravo R. Organic diets significantly lower Children’s dietary exposure to Organophosphorus pesticides. Environ Health Perspect. 2006;114(2):260–3.
Article
CAS
Google Scholar
Oates L, Cohen M, Braun L, Schembri A, Taskova R. Reduction in urinary organophosphate pesticide metabolites in adults after a week-long organic diet. Environ Res. 2014;132(0):105–11.
Article
CAS
Google Scholar
Bradman A, Quiros-Alcala L, Castorina R, Aguilar Schall R, Camacho J, Holland NT, Barr DB, Eskenazi B. Effect of organic diet intervention on pesticide exposures in young children living in low-income urban and agricultural communities. Environ Health Perspect. 2015;123(10):1086–93.
Article
Google Scholar
Ye M, Beach J, Martin JW, Senthilselvan A. Associations between dietary factors and urinary concentrations of organophosphate and pyrethroid metabolites in a Canadian general population. Int J Hyg Environ Health. 2015;218(7):616–26.
Article
CAS
Google Scholar
Curl CL, Beresford SA, Fenske RA, Fitzpatrick AL, Lu C, Nettleton JA, Kaufman JD. Estimating pesticide exposure from dietary intake and organic food choices: the multi-ethnic study of atherosclerosis (MESA). Environ Health Perspect. 2015;123(5):475–83.
CAS
Google Scholar
Goodson WH 3rd, Lowe L, Carpenter DO, Gilbertson M, Manaf Ali A, Lopez de Cerain Salsamendi A, Lasfar A, Carnero A, Azqueta A, Amedei A, et al. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis. 2015;36(Suppl 1):S254–96.
Article
CAS
Google Scholar
Kortenkamp A. Low dose mixture effects of endocrine disrupters and their implications for regulatory thresholds in chemical risk assessment. Curr Opin Pharmacol. 2014;19:105–11.
Article
CAS
Google Scholar
Jacobsen PR, Axelstad M, Boberg J, Isling LK, Christiansen S, Mandrup KR, Berthelsen LO, Vinggaard AM, Hass U. Persistent developmental toxicity in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides. Reprod Toxicol. 2012;34(2):237–50.
Article
CAS
Google Scholar
Bjorling-Poulsen M, Andersen HR, Grandjean P. Potential developmental neurotoxicity of pesticides used in Europe. Environ Health. 2008;7:50.
Article
CAS
Google Scholar
Beronius A, Johansson N, Rudén C, Hanberg A. The influence of study design and sex-differences on results from developmental neurotoxicity studies of bisphenol a, implications for toxicity testing. Toxicology. 2013;311(1–2):13–26.
Article
CAS
Google Scholar
Tweedale T, Lysimachou A, Muilerman H. Missed & Dismissed - pesticide regulators ignore the legal obligation to use independent science for deriving safe exposure levels. Brussels: PAN Europe; 2014.
Google Scholar
Decision in case 12/2013/MDC on the practices of the European Commission regarding the authorisation and placing on the market of plant protection products (pesticides), www.ombudsman.europa.eu/cases/decision.faces/en/64069/html.bookmark , accessed 2016–03-15.
Chiu YH, Gaskins AJ, Williams PL, Mendiola J, Jorgensen N, Levine H, Hauser R, Swan SH, Chavarro JE, European Ombudsman. Intake of fruits and vegetables with low-to-moderate pesticide residues is positively associated with semen-quality parameters among young healthy men. J Nutr. 2016;146(5):1084–92.
Choi AL, Cordier S, Weihe P, Grandjean P. Negative confounding in the evaluation of toxicity: the case of methylmercury in fish and seafood. Crit Rev Toxicol. 2008;38(10):877–93.
Article
CAS
Google Scholar
Ntzani EE, Chondrogiorgi M, Ntritsos G, Evangelou E, Tzoulaki I: Literature review on epidemiological studies linking exposure to pesticides and health effects. EFSA Supporting Publication. 2013:159.
Moisan F, Spinosi J, Delabre L, Gourlet V, Mazurie JL, Benatru I, Goldberg M, Weisskopf MG, Imbernon E, Tzourio C, et al. Association of Parkinson's disease and its subtypes with agricultural pesticide exposures in men: a case-control study in France. EFSA Supporting Publication. 2013;10(10):EN–497. 159 pp.
Van Maele-Fabry G, Hoet P, Vilain F, Lison D. Occupational exposure to pesticides and Parkinson's disease: a systematic review and meta-analysis of cohort studies. Environ Int. 2012;46:30–43.
Article
CAS
Google Scholar
Starling AP, Umbach DM, Kamel F, Long S, Sandler DP, Hoppin JA. Pesticide use and incident diabetes among wives of farmers in the agricultural health study. Occup Environ Med. 2014;71(9):629–35.
Article
Google Scholar
Dyck R, Karunanayake C, Pahwa P, Hagel L, Lawson J, Rennie D, Dosman J. Prevalence, risk factors and co-morbidities of diabetes among adults in rural Saskatchewan: the influence of farm residence and agriculture-related exposures. BMC Public Health. 2013;13:7.
Article
Google Scholar
Schinasi L, Leon ME. Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: a systematic review and meta-analysis. Int J Environ Res Public Health. 2014;11(4):4449–527.
Article
Google Scholar
Van Maele-Fabry G, Hoet P, Lison D. Parental occupational exposure to pesticides as risk factor for brain tumors in children and young adults: a systematic review and meta-analysis. Environ Int. 2013;56:19–31.
Article
CAS
Google Scholar
Van Maele-Fabry G, Lantin AC, Hoet P, Lison D. Residential exposure to pesticides and childhood leukaemia: a systematic review and meta-analysis. Environ Int. 2011;37(1):280–91.
Article
CAS
Google Scholar
Chen M, Chang CH, Tao L, Lu C. Residential exposure to pesticide during childhood and childhood cancers: a meta-analysis. Pediatrics. 2015;136(4):719–29.
Article
Google Scholar
Andersen HR, Schmidt IM, Grandjean P, Jensen TK, Budtz-Jorgensen E, Kjaerstad MB, Baelum J, Nielsen JB, Skakkebaek NE, Main KM. Impaired reproductive development in sons of women occupationally exposed to pesticides during pregnancy. Environ Health Perspect. 2008;116(4):566–72.
Article
Google Scholar
Andersen HR, Debes F, Wohlfahrt-Veje C, Murata K, Grandjean P. Occupational pesticide exposure in early pregnancy associated with sex-specific neurobehavioral deficits in the children at school age. Neurotoxicol Teratol. 2015;47:1–9.
Article
CAS
Google Scholar
Wohlfahrt-Veje C, Andersen HR, Schmidt IM, Aksglaede L, Sorensen K, Juul A, Jensen TK, Grandjean P, Skakkebaek NE, Main KM. Early breast development in girls after prenatal exposure to non-persistent pesticides. Int J Androl. 2012;35(3):273–82.
Article
CAS
Google Scholar
Wohlfahrt-Veje C, Andersen HR, Jensen TK, Grandjean P, Skakkebaek NE, Main KM. Smaller genitals at school age in boys whose mothers were exposed to non-persistent pesticides in early pregnancy. Int J Androl. 2012;35(3):265–72.
Article
CAS
Google Scholar
Wohlfahrt-Veje C, Main KM, Schmidt IM, Boas M, Jensen TK, Grandjean P, Skakkebaek NE, Andersen HR. Lower birth weight and increased body fat at school age in children prenatally exposed to modern pesticides: a prospective study. Environ Health. 2011;10:79.
Article
Google Scholar
Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet. 2006;368(9553):2167–78.
Article
CAS
Google Scholar
Young JG, Eskenazi B, Gladstone EA, Bradman A, Pedersen L, Johnson C, Barr DB, Furlong CE, Holland NT. Association between in utero organophosphate pesticide exposure and abnormal reflexes in neonates. Neurotoxicology. 2005;26(2):199–209.
Article
CAS
Google Scholar
Eskenazi B, Marks AR, Bradman A, Harley K, Barr DB, Johnson C, Morga N, Jewell NP. Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect. 2007;115(5):792–8.
Article
CAS
Google Scholar
Marks AR, Harley K, Bradman A, Kogut K, Barr DB, Johnson C, Calderon N, Eskenazi B. Organophosphate pesticide exposure and attention in young Mexican-American children: the CHAMACOS study. Environ Health Perspect. 2010;118(12):1768–74.
Article
CAS
Google Scholar
Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, Calderon N, Trujillo C, Johnson C, Bradman A, Barr DB, et al. Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environ Health Perspect. 2011;119(8):1189–95.
Article
CAS
Google Scholar
Engel SM, Wetmur J, Chen J, Zhu C, Barr DB, Canfield RL, Wolff MS. Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood. Environ Health Perspect. 2011;119(8):1182–8.
Article
Google Scholar
Rauh VA, Garfinkel R, Perera FP, Andrews HF, Hoepner L, Barr DB, Whitehead R, Tang D, Whyatt RW. Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics. 2006;118(6):e1845–59.
Article
Google Scholar
Rauh V, Arunajadai S, Horton M, Perera F, Hoepner L, Barr DB, Whyatt R. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ Health Perspect. 2011;119(8):1196–201.
Article
CAS
Google Scholar
Rauh VA, Perera FP, Horton MK, Whyatt RM, Bansal R, Hao X, Liu J, Barr DB, Slotkin TA, Peterson BS. Brain anomalies in children exposed prenatally to a common organophosphate pesticide. Proc Natl Acad Sci U S A. 2012;109(20):7871–6.
Article
CAS
Google Scholar
Rauh VA, Garcia WE, Whyatt RM, Horton MK, Barr DB, Louis ED. Prenatal exposure to the organophosphate pesticide chlorpyrifos and childhood tremor. Neurotoxicology. 2015;51:80–6.
Article
CAS
Google Scholar
Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13(3):330–8.
Article
CAS
Google Scholar
Gonzalez-Alzaga B, Lacasana M, Aguilar-Garduno C, Rodriguez-Barranco M, Ballester F, Rebagliato M, Hernandez AF. A systematic review of neurodevelopmental effects of prenatal and postnatal organophosphate pesticide exposure. Toxicol Lett. 2014;230(2):104–21.
Article
CAS
Google Scholar
Ross SM, McManus IC, Harrison V, Mason O. Neurobehavioral problems following low-level exposure to organophosphate pesticides: a systematic and meta-analytic review. Crit Rev Toxicol. 2013;43(1):21–44.
Article
CAS
Google Scholar
Munoz-Quezada MT, Lucero BA, Barr DB, Steenland K, Levy K, Ryan PB, Iglesias V, Alvarado S, Concha C, Rojas E, et al. Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: a systematic review. Neurotoxicology. 2013;39C:158–68.
Article
CAS
Google Scholar
Bouchard MF, Bellinger DC, Wright RO, Weisskopf MG. Attention-deficit/hyperactivity disorder and urinary metabolites of organophosphate pesticides. Pediatrics. 2010;125(6):e1270–7.
Article
Google Scholar
Wagner-Schuman M, Richardson JR, Auinger P, Braun JM, Lanphear BP, Epstein JN, Yolton K, Froehlich TE. Association of pyrethroid pesticide exposure with attention-deficit/hyperactivity disorder in a nationally representative sample of U.S. children. Environ Health. 2015;14(1):44.
Article
CAS
Google Scholar
Quiros-Alcala L, Mehta S, Eskenazi B. Pyrethroid pesticide exposure and parental report of learning disability and attention deficit/hyperactivity disorder in U.S. children: NHANES 1999-2002. Environ Health Perspect. 2014;122(12):1336–42.
CAS
Google Scholar
Oulhote Y, Bouchard MF. Urinary metabolites of organophosphate and Pyrethroid pesticides and behavioral problems in Canadian children. Environ Health Perspect. 2013;121(11–12):1378–84.
Google Scholar
Viel JF, Rouget F, Warembourg C, Monfort C, Limon G, Cordier S, Chevrier C: Behavioural disorders in 6-year-old children and pyrethroid insecticide exposure: the PELAGIE mother-child cohort. Occup Environ Med 2017.
Yolton K, Xu Y, Sucharew H, Succop P, Altaye M, Popelar A, Montesano MA, Calafat AM, Khoury JC. Impact of low-level gestational exposure to organophosphate pesticides on neurobehavior in early infancy: a prospective study. Environ Health. 2013;12(1):79.
Article
CAS
Google Scholar
McKelvey W, Jacobson JB, Kass D, Barr DB, Davis M, Calafat AM, Aldous KM: Population-based biomonitoring of exposure to organophosphate and Pyrethroid pesticides in new York City. Environ Health Perspect. 2013.
Bellanger M, Demeneix B, Grandjean P, Zoeller RT, Trasande L. Neurobehavioral Deficits, Diseases and Associated Costs of Exposure to Endocrine Disrupting Chemicals in the European Union. J Clin Endocrin Metab. 2015; https://doi.org/10.1210/jc.2014-4323.
European Food Safety Authority: Final addendum to the art. 21 review on chlorpyrifos - public version. 2014.
Rapporteur Member State Spain. European Commission: Commission Regulation (EU) 2016/60 of 19 January 2016 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for chlorpyrifos in or on certain products. In: Off J Eur Union 2016. http://www.efsa.europa.eu/.
European Food Safety Authority (EFSA). Refined risk assessment regarding certain maximum residue levels (MRLs) of concern for the active substance chlorpyrifos. 2015;13(6):4142.
European Food Safety Authority: Conclusion on the peer review of the pesticide human health risk assessment of the active substance chlorpyrifos. 2014;12(4):3640.
Principles of organic agriculture, http://www.ifoam.bio/en/organic-landmarks/principles-organic-agriculture, accessed 2016–04-18.
Seufert V, Ramankutty N, Foley JA. Comparing the yields of organic and conventional agriculture. Nature. 2012;485(7397):229–32.
Article
CAS
Google Scholar
van Huylenbroek G, Mondelaers K, Aertsens J, Mondelaers K, Aertsens J, van Huylenbroeck G. A meta-analysis of the differences in environmental impacts between organic and conventional farming. Br Food J. 2009;111(10):1098–119.
Article
Google Scholar
Mie A, Laursen K, Åberg KM, Forshed J, Lindahl A, Thorup-Kristensen K, Olsson M, Knuthsen P, Larsen E, Husted S. Discrimination of conventional and organic white cabbage from a long-term field trial study using untargeted LC-MS-based metabolomics. Anal Bioanal Chem. 2014;406(12):2885–97.
Article
CAS
Google Scholar
Novotná H, Kmiecik O, Gałązka M, Krtková V, Hurajová A, Schulzová V, Hallmann E, Rembiałkowska E, Hajšlová J. Metabolomic fingerprinting employing DART-TOFMS for authentication of tomatoes and peppers from organic and conventional farming. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2012;29(9):1335–46.
Article
CAS
Google Scholar
Vallverdú-Queralt A, Medina-Remón A, Casals-Ribes I, Amat M, Lamuela-Raventós RM. A Metabolomic approach differentiates between conventional and organic ketchups. J Agric Food Chem. 2011;59(21):11703–10.
Article
CAS
Google Scholar
Röhlig RM, Engel K-H. Influence of the input system (conventional versus organic farming) on metabolite profiles of maize (Zea Mays) kernels. J Agric Food Chem. 2010;58(5):3022–30.
Article
CAS
Google Scholar
Chen P, Harnly JM, Lester GE. Flow injection mass spectral fingerprints demonstrate chemical differences in Rio red grapefruit with respect to year, harvest time, and conventional versus organic farming. J Agric Food Chem. 2010;58(8):4545–53.
Article
CAS
Google Scholar
Lehesranta SJ, Koistinen KM, Massat N, Davies HV, Shepherd LV, McNicol JW, Cakmak I, Cooper J, Luck L, Karenlampi SO, et al. Effects of agricultural production systems and their components on protein profiles of potato tubers. Proteomics. 2007;7(4):597–604.
Article
CAS
Google Scholar
Nawrocki A, Thorup-Kristensen K, Jensen ON. Quantitative proteomics by 2DE and MALDI MS/MS uncover the effects of organic and conventional cropping methods on vegetable products. J Proteome. 2011;74(12):2810–25.
Article
CAS
Google Scholar
Lu CG, Hawkesford MJ, Barraclough PB, Poulton PR, Wilson ID, Barker GL, Edwards KJ. Markedly different gene expression in wheat grown with organic or inorganic fertilizer. Proc R Soc Lond Ser BBiol Sci. 2005;272(1575):1901–8.
Article
CAS
Google Scholar
van Dijk JP, Cankar K, Hendriksen PJM, Beenen HG, Zhu M, Scheffer S, Shepherd LVT, Stewart D, Davies HV, Leifert C, et al. The identification and interpretation of differences in the Transcriptomes of organically and conventionally grown potato tubers. J Agric Food Chem. 2012;60(9):2090–101.
Article
CAS
Google Scholar
Dangour AD, Dodhia SK, Hayter A, Allen E, Lock K, Uauy R. Nutritional quality of organic foods: a systematic review. Am J Clin Nutr. 2009;90(3):680–5.
Article
CAS
Google Scholar
Brandt K, Leifert C, Sanderson R, Seal CJ. Agroecosystem management and nutritional quality of plant foods: the case of organic fruits and vegetables. Crit Rev Plant Sci. 2011;30(1–2):177–97.
Article
CAS
Google Scholar
Barański M, Średnicka-Tober D, Volakakis N, Seal C, Sanderson R, Stewart GB, Benbrook C, Biavati B, Markellou E, Giotis C, et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nutr. 2014;112(05):794–811.
Article
CAS
Google Scholar
Bindraban PS, Dimkpa C, Nagarajan L, Roy A, Rabbinge R. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol Fertil Soils. 2015;51(8):897–911.
Article
CAS
Google Scholar
Wiesler F. Nutrition and quality. In: Marschner's mineral nutrition of higher plants. Third ed. San Diego: Academic Press; 2012. p. 271–82.
Chapter
Google Scholar
Huber D, Römheld V, Weinmann M. Relationship between nutrition, plant diseases and pests. In: Marschner P, editor. Marschners mineral nutrition of higher plants. third ed; 2012. p. 283–98.
Chapter
Google Scholar
Güsewell S. N:P ratios in terrestrial plants: variation and functional significance. New Phytol. 2004;164(2):243–66.
Article
Google Scholar
Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. 2013;18(14):1818–92.
Article
CAS
Google Scholar
Treutter D. Managing phenol contents in crop plants by Phytochemical farming and breeding—visions and constraints. Int J Mol Sci. 2010;11(3):807–57.
Article
CAS
Google Scholar
Akesson A, Barregard L, Bergdahl IA, Nordberg GF, Nordberg M, Skerfving S. Non-renal effects and the risk assessment of environmental cadmium exposure. Environ Health Perspect. 2014;122(5):431–8.
CAS
Google Scholar
Grant CA. Influence of phosphate fertilizer on cadmium in agricultural soils and crops. In: Phosphate in Soils: Interaction with Micronutrients, Radionuclides and Heavy Metals, vol. 2; 2015. p. 123.
Google Scholar
EFSA Panel on Contaminants in the Food Chain. Cadmium in food. Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on cadmium in food. EFSA J. 2009;980:1–139.
Google Scholar
de Meeûs C, Eduljee GH, Hutton M. Assessment and management of risks arising from exposure to cadmium in fertilisers. I. Sci Total Environ. 2002;291(1–3):167–87.
Article
Google Scholar
Directorate-General for Enterprise and Industry (European Commission), Environmental Resources Management. European Commission: Analysis and conclusions from member States' assessment of the risk to health and the environment from cadmium in Fertilisers. 2001. https://publications.europa.eu/en/publication-detail/-/publication/6cfa95d3-2346-4c9f-8a06-35a5a0bef0ff/language-en.
Nziguheba G, Smolders E. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci Total Environ. 2008;390(1):53–7.
Article
CAS
Google Scholar
Kratz S, Schnug E. Schwermetalle in P-Düngern (Heavy metals in P fertilisers, in German). Landbauforschung Völkenrode Spec. 2005;286:37–45.
CAS
Google Scholar
Baranski M, Steward G, Leifert C: Personal communication. 2016.
Laursen KH, Schjoerring JK, Olesen JE, Askegaard M, Halekoh U, Husted S. Multielemental fingerprinting as a tool for authentication of organic wheat, barley, faba bean, and potato. J Agric Food Chem. 2011;59(9):4385–96.
Article
CAS
Google Scholar
Gundersen V, Bechmann IE, Behrens A, Sturup S. Comparative investigation of concentrations of major and trace elements in organic and conventional Danish agricultural crops. 1. Onions (Allium Cepa Hysam) and peas (Pisum Sativum ping pong). J Agric Food Chem. 2000;48(12):6094–102.
Article
CAS
Google Scholar
Jones K, Johnston A. Cadmium in cereal grain and herbage from long-term experimental plots at Rothamsted UK. Environ Pollut. 1989;57(3):199–216.
Article
CAS
Google Scholar
Christensen BT, Elsgaard L. Handelsgødnings indflydelse på afgrøders indhold af arsen, bly, cadmium, krom, kviksølv og nikkel (The influence of mineral fertilisers on the crop’s content of arsenic, lead, cadmium, chromium and nickel, in Danish). Tjele: DCA - Nationalt Center for Fødevarer og Jordbrug; 2013.
Google Scholar
Schnug E, Haneklaus N: Uranium in phosphate fertilizers–review and outlook. Uranium-past and future challenges. Cham: Springer; 2015;123–130.
Kratz S, Knappe F, Schnug E. Uranium balances in agroecosystems. In: Loads and fate of fertilizer-derived uranium Leiden: Backhuys; 2008. p. 179–90.
Google Scholar
Bigalke M, Ulrich A, Rehmus A, Keller A. Accumulation of cadmium and uranium in arable soils in Switzerland. Environ Pollut. 2017;221:85–93.
Article
CAS
Google Scholar
Liesch T, Hinrichsen S, Goldscheider N. Uranium in groundwater--fertilizers versus geogenic sources. Sci Total Environ. 2015;536:981–95.
Article
CAS
Google Scholar
Birke M, Rauch U, Lorenz H. Uranium in stream and mineral water of the Federal Republic of Germany. Environ Geochem Health. 2009;31(6):693–706.
Article
CAS
Google Scholar
Karlsson I, Friberg H, Steinberg C, Persson P. Fungicide effects on fungal community composition in the wheat phyllosphere. PLoS One. 2014;9(11):e111786.
Article
CAS
Google Scholar
Karlsson I, Friberg H, Kolseth AK, Steinberg C, Persson P. Organic farming increases richness of fungal taxa in the wheat phyllosphere. Mol Ecol. 2017;
Bernhoft A, Torp M, Clasen PE, Loes AK, Kristoffersen AB. Influence of agronomic and climatic factors on Fusarium infestation and mycotoxin contamination of cereals in Norway. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2012;29(7):1129–40.
Article
CAS
Google Scholar
Kabak B, Dobson AD, Var I. Strategies to prevent mycotoxin contamination of food and animal feed: a review. Crit Rev Food Sci Nutr. 2006;46(8):593–619.
Article
CAS
Google Scholar
European Food Safety Authority. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017;15(9):4718.
Google Scholar
Warnecke S, Paulsen HM, Schulz F, Rahmann G. Greenhouse gas emissions from enteric fermentation and manure on organic and conventional dairy farms—an analysis based on farm network data. Org Agric. 2014;4(4):285–93.
Article
Google Scholar
Palupi E, Jayanegara A, Ploeger A, Kahl J. Comparison of nutritional quality between conventional and organic dairy products: a meta-analysis. J Sci Food Agric. 2012;92(14):2774–81.
Article
CAS
Google Scholar
Woods VB, Fearon AM. Dietary sources of unsaturated fatty acids for animals and their transfer into meat, milk and eggs: a review. Livest Sci. 2009;126(1–3):1–20.
Article
Google Scholar
Khiaosa-ard R, Kreuzer M, Leiber F. Apparent recovery of C18 polyunsaturated fatty acids from feed in cow milk: a meta-analysis of the importance of dietary fatty acids and feeding regimens in diets without fat supplementation. J Dairy Sci. 2015;98(9):6399–414.
Article
CAS
Google Scholar
Średnicka-Tober D, Barański M, Seal CJ, Sanderson R, Benbrook C, Steinshamn H, Gromadzka-Ostrowska J, Rembiałkowska E, Skwarło-Sońta K, Eyre M. Higher PUFA and n-3 PUFA, conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: a systematic literature review and meta-and redundancy analyses. Br J Nutr. 2016:1–18.
Schwendel BH, Wester TJ, Morel PCH, Tavendale MH, Deadman C, Shadbolt NM, Otter DE. Organic and conventionally produced milk - an evaluation of factors influencing milk composition. J Dairy Sci. 2015;98(2):721–46.
Article
CAS
Google Scholar
Anderson KE. Comparison of fatty acid, cholesterol, and vitamin a and E composition in eggs from hens housed in conventional cage and range production facilities. Poult Sci. 2011;90(7):1600–8.
Article
CAS
Google Scholar
Mugnai C, Sossidou EN, Dal Bosco A, Ruggeri S, Mattioli S, Castellini C. The effects of husbandry system on the grass intake and egg nutritive characteristics of laying hens. J Sci Food Agric. 2014;94(3):459–67.
Article
CAS
Google Scholar
Rakonjac S, Bogosavljević-Bošković S, Pavlovski Z, Škrbić Z, Dosković V, Petrović M, Petričević V. Laying hen rearing systems: a review of chemical composition and hygienic conditions of eggs. World’s Poult Sci J. 2014;70(01):151–64.
Article
Google Scholar
Średnicka-Tober D, Barański M, Seal C, Sanderson R, Benbrook C, Steinshamn H, Gromadzka-Ostrowska J, Rembiałkowska E, Skwarło-Sońta K, Eyre M, et al. Composition differences between organic and conventional meat: a systematic literature review and meta-analysis. Br J Nutr. 2016;115(06):994–1011.
Article
CAS
Google Scholar
Mie A, Kesse-Guyot E, Kahl J, Rembiałkowska E, Andersen HR, Grandjean P, Gunnarsson S: Human health implications of organic food and organic agriculture. www.europarl.europa.eu/RegData/etudes/STUD/2016/581922/EPRS_STU(2016)581922_EN.pdf. In. Edited by European Parliament - Parliamentary Research Services; 2016.
Wanders AJ, Alssema M, de Koning EJP, le Cessie S, de Vries JH, Zock PL, Rosendaal FR, Md H, de Mutsert R. Fatty acid intake and its dietary sources in relation with markers of type 2 diabetes risk: the NEO study. Eur J Clin Nutr. 2017;71(2):245–51.
Article
CAS
Google Scholar
van Valenberg HJF, Hettinga KA, Dijkstra J, Bovenhuis H, Feskens EJM. Concentrations of n-3 and n-6 fatty acids in Dutch bovine milk fat and their contribution to human dietary intake. J Dairy Sci. 2013;96(7):4173–81.
Article
CAS
Google Scholar
Welch AA, Shakya-Shrestha S, Lentjes MA, Wareham NJ, Khaw KT. Dietary intake and status of n-3 polyunsaturated fatty acids in a population of fish-eating and non-fish-eating meat-eaters, vegetarians, and vegans and the product-precursor ratio [corrected] of alpha-linolenic acid to long-chain n-3 polyunsaturated fatty acids: results from the EPIC-Norfolk cohort. Am J Clin Nutr. 2010;92(5):1040–51.
Article
CAS
Google Scholar
Astorg P, Arnault N, Czernichow S, Noisette N, Galan P, Hercberg S. Dietary intakes and food sources of n-6 and n-3 PUFA in French adult men and women. Lipids. 2004;39(6):527–35.
Article
CAS
Google Scholar
EFSA Panel on Dietetic Products, Nutrition and Allergies: Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. 2010.
Google Scholar
Jakobsen MU, O'Reilly EJ, Heitmann BL, Pereira MA, Balter K, Fraser GE, Goldbourt U, Hallmans G, Knekt P, Liu S, et al. Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr. 2009;89(5):1425–32.
Article
CAS
Google Scholar
Chen M, Li Y, Sun Q, Pan A, Manson JE, Rexrode KM, Willett WC, Rimm EB, Hu FB. Dairy fat and risk of cardiovascular disease in 3 cohorts of US adults. Am J Clin Nutr. 2016;104(5):1209–17.
Article
CAS
Google Scholar
Wang DD, Li Y, Chiuve SE, Stampfer MJ, Manson JE, Rimm EB, Willett WC, Hu FB. Association of Specific Dietary Fats with Total and Cause-Specific Mortality. JAMA Intern Med. 2016;176(8):1134–45.
Article
Google Scholar
de Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T, Uleryk E, Budylowski P, Schunemann H, Beyene J, et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ. 2015;351:h3978.
Article
CAS
Google Scholar
Gayet-Boyer C, Tenenhaus-Aziza F, Prunet C, Marmonier C, Malpuech-Brugere C, Lamarche B, Chardigny JM. Is there a linear relationship between the dose of ruminant trans-fatty acids and cardiovascular risk markers in healthy subjects: results from a systematic review and meta-regression of randomised clinical trials. Br J Nutr. 2014;112(12):1914–22.
Article
CAS
Google Scholar
Lee SY, Pearce EN. Reproductive endocrinology: iodine intake in pregnancy--even a little excess is too much. Nat Rev Endocrinol. 2015;11(5):260–1.
Article
CAS
Google Scholar
Lazarus JH. Iodine status in Europe in 2014. Eur Thyroid J. 2014;3(1):3–6.
Article
Google Scholar
Gartner R. Recent data on iodine intake in Germany and Europe. J Trace Elem Med Biol. 2016;37:85–9.
Article
CAS
Google Scholar
Aburto N, Abudou M, Candeias V, Wu T, Organization WH. Effect and safety of salt iodization to prevent iodine deficiency disorders: a systematic review with meta-analyses. Geneva: World Health Organization; 2014.
Google Scholar
Woolhouse M, Ward M, van Bunnik B, Farrar J. Antimicrobial resistance in humans, livestock and the wider environment. Philos Tran R Soc Lond B Biol Sci. 2015;370(1670):20140083.
Article
CAS
Google Scholar
Silbergeld EK, Graham J, Price LB. Industrial food animal production, antimicrobial resistance, and human health. Annu Rev Public Health. 2008;29:151–69.
Article
Google Scholar
Cully M. Public health: the politics of antibiotics. Nature. 2014;509(7498):S16–7.
Article
CAS
Google Scholar
European Food Safety Authority (EFSA). ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. EFSA J. 2017;15(7):4872.
Google Scholar
WHO. Strategic and technical advisory group on antimicrobial resistance (STAG-AMR): report of the fifth meeting, 23–24 November 2015, WHO Headquarters. Geneva: World Health Organization; 2016. p. 9.
Google Scholar
Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–98.
Article
Google Scholar
Martinez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut. 2009;157(11):2893–902.
Article
CAS
Google Scholar
Casewell M, Friis C, Marco E, McMullin P, Phillips I. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J Antimicrob Chemother. 2003;52(2):159–61.
Article
CAS
Google Scholar
Hao H, Cheng G, Iqbal Z, Ai X, Hussain HI, Huang L, Dai M, Wang Y, Liu Z, Yuan Z. Benefits and risks of antimicrobial use in food-producing animals. Front Microbiol. 2014;5:288.
Article
Google Scholar
Mather AE, Reid SWJ, Maskell DJ, Parkhill J, Fookes MC, Harris SR, Brown DJ, Coia JE, Mulvey MR, Gilmour MW, et al. Distinguishable epidemics of multidrug-resistant salmonella Typhimurium DT104 in different hosts. Science. 2013;341(6153):1514–7.
Article
CAS
Google Scholar
Mather AE, Matthews L, Mellor DJ, Reeve R, Denwood MJ, Boerlin P, Reid-Smith RJ, Brown DJ, Coia JE, Browning LM, et al. An ecological approach to assessing the epidemiology of antimicrobial resistance in animal and human populations. Proc R Soc Lond B Biol Sci. 2012;279(1733):1630–9.
Article
Google Scholar
Bruckmeier K, Prutzer M. Swedish pig producers and their perspectives on animal welfare: a case study. Br Food J. 2007;109(11):906–18.
Article
Google Scholar
Andreasen CB, Spickler AR, Jones BE. Swedish animal welfare regulations and their impact on food animal production. J Am Vet Med A. 2005;227(1):34–40.
Article
Google Scholar
European Food Safety Authority. Scientific opinion of the panel of animal health and welfare on the request from the Commission on the welfare of weaners and rearing pigs: effects of different space allowances and floor types. EFSA J. 2005;268:1–19.
Google Scholar
European Food Safety Authority. Scientific opinion of the panel of animal health and welfare on the request from the Commission on animal health and welfare in fattening pigs in relation to housing and husbandry. EFSA Journal. 2007;564:1–14.
Google Scholar
Kijlstra A, Eijck IAJM. Animal health in organic livestock production systems: a review. Wagening J Life Sci. 2006;54(1):77–94.
Article
Google Scholar
Hegelund L. Medicinforbrug og dødelighed i økologisk og konventionel slagtesvineproduktion (use of pharmaceuticals and mortality in organic and conventional pig production, in Danish). In: Sundhed og medicinforbrug hos økologiske og konventionelle slagtesvin; 2006. p. 13–6.
Google Scholar
Wingstrand A, Struve T, Lundsby K, Vigre H, Emborg HD, Sørensen AIV, Jensen VF. Antibiotikaresistens og -forbrug i slagtesvineproduktionen (antibiotic resistance and use in pig production, in Danish). In: Fremtidens fødevaresikkerhed- Nye veje mod sikrere kød i Danmark. Denmark: Center for Bioetik og Risikovurdering; 2010. p. 98–106.
Google Scholar
Bennedsgaard TW, Klaas IC, Vaarst M. Reducing use of antimicrobials - experiences from an intervention study in organic dairy herds in Denmark. Livest Sci. 2010;131:183–92.
Article
Google Scholar
Kuipers A, Koops W, Wemmenhove H. Antibiotic use in dairy herds in the Netherlands from 2005 to 2012. J Dairy Sci. 2016;99(2):1632–48.
Article
CAS
Google Scholar
Fall N, Emanuelson U. Milk yield, udder health and reproductive performance in Swedish organic and conventional dairy herds. J Dairy Res. 2009;76(4):402–10.
Article
CAS
Google Scholar
Landesamt fuer Natur Umwelt und Verbraucherschutz Nordrhein-Westfalen. Überarbeiteter Abschlussbericht. Evaluierung des Antibiotikaeinsatzes in der Hähnchenhaltung. In: Revised final report. Evaluation of antibiotic use in broiler production. In German; 2012. https://www.lanuv.nrw.de/fileadmin/lanuv/agrar/tiergesundheit/arzneimittel/antibiotika/120403_Masthaehnchenstudie_ueberarbeitung_Evaluation_Endfassung.pdf.
Snary E, Pleydell E, Munday D. Investigation of persistence of antimicrobial resistant organisms in broiler flocks: a mathematical model. UK: Veterinary Laboratories Agency; 2006.
Google Scholar
Von Borell E, Sørensen JT. Organic livestock production in Europe: aims, rules and trends with special emphasis on animal health and welfare. Livest Prod Sci. 2004;90(1):3–9.
Article
Google Scholar
Hemme M, van Rennings L, Hartmann M, von Münchhausen C, Käsbohrer A, Kreienbrock L. Antibiotikaeinsatz in der Nutztierhaltung in Deutschland. Erste Ergebnisse zu zeitlichen Trends im wissenschaftlichen Projekt “VetCAb-Sentinel” Antibiotic use in livestock production in Germany. First results of temporal trends in the scientific project “VetCAb-Sentinel” (in German). Deutsches Tierärzteblatt. 2016;4:516–20.
Google Scholar
Katherine G, Callum H, Reeves H, Healey K, Coyne L, Teale C. UK Veterinary Antibiotic Resistance and Sales Surveillance (UK-VARSS). 2014. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/477788/Optimised_version_-_VARSS_Report_2014__Sales___Resistance_.pdf
Persoons D, Dewulf J, Smet A, Herman L, Heyndrickx M, Martel A, Catry B, Butaye P, Haesebrouck F. Antimicrobial use in Belgian broiler production. Prev Vet Med. 2012;105(4):320–5.
Article
Google Scholar
Woolhouse MEJ, Ward MJ. Sources of antimicrobial resistance. Science. 2013;341(6153):1460–1.
Article
CAS
Google Scholar
European Food Safety Authority. SCIENTIFIC REPORT OF ECDC, EFSA AND EMA ECDC/EFSA/EMA first joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. EFSA Journal. 2015;13(1)(4006):114.
Google Scholar
Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic. 2008;8(1):1–13.
Article
CAS
Google Scholar
Aarestrup FM. Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. Basic Clin Pharmacol Toxicol. 2005;96:271–81.
Article
CAS
Google Scholar
Österberg J, Wingstrand A, Jensen AN, Kerouanton A, Cibin V, Barco L, Denis M, Aabo S, Bengtsson B. Antibiotic resistance in Escherichia coli from pigs in organic and conventional farming in four European countries. PloS one. 2016;11(6):e0157049.
Sapkota AR, Kinney EL, George A, Hulet RM, Cruz-Cano R, Schwab KJ, Zhang G, Joseph SW. Lower prevalence of antibiotic-resistant salmonella on large-scale US conventional poultry farms that transitioned to organic practices. Sci Total Environ. 2014;476:387–92.
Article
CAS
Google Scholar
Leverstein-van Hall MA, Dierikx CM, Stuart JC, Voets GM, van den Munckhof MP, van Essen-Zandbergen A, Platteel T, Fluit AC, van de Sande-Bruinsma N, Scharinga J, et al. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infec. 2011;17(6):873–80.
Article
CAS
Google Scholar
de Neeling AJ, van den Broek MJM, Spalburg EC, van Santen-Verheuvel MG, Dam-Deisz WDC, Boshuizen HC, de Giessen AWV, van Duijkeren E, Huijsdens XW. High prevalence of methicillin resistant Staphylococcus Aureus in pigs. Vet Microbiol. 2007;122(3–4):366–72.
Article
CAS
Google Scholar
Fromm S, Beißwanger E, Käsbohrer A, Tenhagen B-A. Risk factors for MRSA in fattening pig herds – a meta-analysis using pooled data. Prev Vet Med. 2014;117(1):180–8.
Article
Google Scholar
Aubry-Damon H, Grenet K, Sall-Ndiaye P, Che D, Cordeiro E, Bougnoux ME, Rigaud E, Le Strat Y, Lemanissier V, Armand-Lefevre L, et al. Antimicrobial resistance in commensal flora of pig farmers. Emerg Infect Dis. 2004;10(5):873–9.
Article
CAS
Google Scholar
Armand-Lefevre L, Ruimy R, Andremont A. Clonal comparison of Staphylococcus Aureus isolates from healthy pig farmers, human controls, and pigs. Emerg Infect Dis. 2005;11(5):711–4.
Article
Google Scholar
Gerzova L, Babak V, Sedlar K, Faldynova M, Videnska P, Cejkova D, Jensen AN, Denis M, Kerouanton A, Ricci A, et al. Characterization of antibiotic resistance gene abundance and microbiota composition in feces of organic and conventional pigs from four EU countries. PLoS One. 2015;10(7):e0132892.
Article
CAS
Google Scholar
Osterberg J, Wingstrand A, Nygaard Jensen A, Kerouanton A, Cibin V, Barco L, Denis M, Aabo S, Bengtsson B. Antibiotic resistance in Escherichia Coli from pigs in organic and conventional farming in four European countries. PLoS One. 2016;11(6):e0157049.
Article
CAS
Google Scholar
Gleeson BL, Collins AM. Under what conditions is it possible to produce pigs without using antimicrobials? Anim Prod Sci. 2015;55(12):1424–31.
Google Scholar
Tilman D, Clark M. Global diets link environmental sustainability and human health. Nature. 2014;515(7528):518–22.
Article
CAS
Google Scholar
United States Environmental Protection Agency (EPA): Literature Review on Neurodevelopment Effects & FQPA Safety Factor Determination for the Organophosphate Pesticides. https://www.regulations.gov/contentStreamer?documentId=EPA-HQ-OPP-2008-0119-0015&contentType=pdf. In.; 2015. Accessed 19 Sept 2017.
Bourguet D, Guillemaud T: The hidden and external costs of pesticide use. In: Sustainable Agriculture Reviews. Cham: Springer; 2016;35–120.
Kahl J, Alborzi F, Beck A, Bugel S, Busscher N, Geier U, Matt D, Meischner T, Paoletti F, Pehme S, et al. Organic food processing: a framework for concept, starting definitions and evaluation. J Sci Food Agric. 2014;94(13):2582–94.
Article
CAS
Google Scholar
Monteiro CA, Levy RB, Claro RM, de Castro IR, Cannon G. Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. Public Health Nutr. 2011;14(1):5–13.
Article
Google Scholar
Fardet A, Rock E, Bassama J, Bohuon P, Prabhasankar P, Monteiro C, Moubarac JC, Achir N. Current food classifications in epidemiological studies do not enable solid nutritional recommendations for preventing diet-related chronic diseases: the impact of food processing. Adv Nutr (Bethesda, Md). 2015;6(6):629–38.
Article
CAS
Google Scholar
Scientific Steering Committee of the Norwegian Scientific Committee for Food Safety: Comparison of organic and conventional food and food production. Overall summary: impact on plant health, animal health and welfare, and human health; 2014. https://vkm.no/download/18.13735ab315cffecbb5138642/1501774854136/7852b1a164.pdf. Accessed 12 Oct 2017.
European Parliament and Council of the European Union: Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. Eur-Lex 2009.
Sofi F, Macchi C, Abbate R, Gensini GF, Casini A. Mediterranean diet and health status: an updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014;17(12):2769–82.
Article
Google Scholar
UNEP: Avoiding future famines: strengthening the ecological foundation of food security through sustainable food systems. 2012.
Google Scholar
Dernini S, Berry EM. Mediterranean diet: from a healthy diet to a sustainable dietary pattern. Front Nutr. 2015;2:15.
Article
Google Scholar
Sáez-Almendros S, Obrador B, Bach-Faig A, Serra-Majem L. Environmental footprints of Mediterranean versus western dietary patterns: beyond the health benefits of the Mediterranean diet. Environ Health. 2013;12(1):118.
Article
Google Scholar
Mithril C, Dragsted LO, Meyer C, Blauert E, Holt MK, Astrup A. Guidelines for the new Nordic diet. Public Health Nutr. 2012;15(10):1941–7.
Article
Google Scholar
Mithril C, Dragsted LO, Meyer C, Tetens I, Biltoft-Jensen A, Astrup A. Dietary composition and nutrient content of the new Nordic diet. Public Health Nutr. 2013;16(05):777–85.
Article
Google Scholar
Saxe H. The new Nordic diet is an effective tool in environmental protection: it reduces the associated socioeconomic cost of diets. Am J Clin Nutr. 2014;99(5):1117–25.
Article
CAS
Google Scholar
Poulsen SK, Due A, Jordy AB, Kiens B, Stark KD, Stender S, Holst C, Astrup A, Larsen TM. Health effect of the new Nordic diet in adults with increased waist circumference: a 6-mo randomized controlled trial. Am J Clin Nutr. 2014;99(1):35–45.
Article
CAS
Google Scholar
Strassner C, Cavoski I, Di Cagno R, Kahl J, Kesse-Guyot E, Lairon D, Lampkin N, Loes AK, Matt D, Niggli U, et al. How the organic food system supports sustainable diets and translates these into practice. Front Nutr. 2015;2:19.
Article
Google Scholar
Moomaw W, Griffin T, Kurczak K, Lomax J. The critical role of global food consumption patterns in achieving sustainable food systems and food for all. In: United Nations Environment Programme, Tech Rep; 2012.
Google Scholar