WHO: World Health Organization (WHO). Physical status: the use and interpretation of anthropometry. WHO technical report series no. 854. Geneva: WHO; 1995.
Google Scholar
WHO. South East Asia regional NEONATAL-PERINATAL DATABASE, World Health Organization (South-East Asia region), working definitions; 2009. https://www.newbornwhocc.org/pdf/database.pdf, Accessed 15 November, 2019.
Google Scholar
Hughes MM, Black RE, Katz J. 2500-g low birth weight cutoff: history and implications for future research and policy. Matern Child Health J. 2017;21(2):283–9.
Google Scholar
Honami Y, Noriko K, Tetsuji Y. Current trends in low birth weight infants in Japan. J Natl Inst Public Health. 2014;63(1):2–16.
Google Scholar
OECD. Health statistics; European Community health indicators (ECHI), OECD health at a glance; 2019. accessed through the HEIDI data tool; https://www.oecd.org/els/family/CO_1_3_Low_birth_weight.pdf. Accessed May 20, 2020.
Google Scholar
Bobak M. Outdoor air pollution, low birth weight, and prematurity. Environ Health Perspect. 2000;108(2):173–6.
CAS
Google Scholar
Dugandzic R, Dodds L, Stieb D, Smith-Doiron M. The association between low level exposures to ambient air pollution and term low birth weight: a retrospective cohort study. Environ Health. 2006;5(1):3.
Google Scholar
Grazuleviciene R, Nieuwenhuijsen MJ, Vencloviene J, Kostopoulou-Karadanelli M, Krasner SW, Danileviciute A, et al. Individual exposures to drinking water trihalomethanes, low birth weight and small for gestational age risk: a prospective Kaunas cohort study. Environ Health. 2011;10(1):32.
CAS
Google Scholar
Kloog I, Melly SJ, Ridgway WL, Coull BA, Schwartz J. Using new satellite based exposure methods to study the association between pregnancy pm2.5 exposure, premature birth and birth weight in Massachusetts. Environ Health. 2012;11(1):40.
Google Scholar
Ruckart PZ, Bove FJ, Maslia M. Evaluation of contaminated drinking water and preterm birth, small for gestational age, and birth weight at marine Corps Base camp Lejeune, North Carolina: a cross-sectional study. Environ Health. 2014;13(1):99.
Google Scholar
Seo JH, Ha EH, Kim OJ, Kim BM, Park HS, Leem JH, et al. Kim YJ: [environmental health surveillance of low birth weight in Seoul using air monitoring and birth data]. J Prev Med Public Health. 2007;40(5):363–70.
Google Scholar
Morello-Frosch R, Jesdale BM, Sadd JL, Pastor M. Ambient air pollution exposure and full-term birth weight in California. Environ Health. 2010;9(1):44.
Google Scholar
Genowska A, Jamiołkowski J, Szafraniec K, Stepaniak U, Szpak A, Pająk A. Environmental and socio-economic determinants of infant mortality in Poland: an ecological study. Environ Health. 2015;14(1):61.
Google Scholar
UNSCEAR. Report of the United Nations Scientific committee on the effects of atomic radiation (UNSCEAR), general Assembly official records: thirteenth session supplement no. 17 (a/3838); ANEX H:the genetic effects of radiation; 1958. p. 180.
Google Scholar
Karn MN, Penrose LS. Birth weight and gestation time in relation to maternal age, parity and infant survival. Ann Eugenics. 1952;16:147–64.
CAS
Google Scholar
Coutinho PR, Cecatti JG, Surita FG, Costa ML, Morais SS. Perinatal outcomes associated with low birth weight in a historical cohort. Reprod Health. 2011;8:18.
Google Scholar
Kaijser M, Bonamy AK, Akre O, Cnattingius S, Granath F, Norman M, et al. Perinatal risk factors for ischemic heart disease: disentangling the roles of birth weight and preterm birth. Circulation. 2008;117(3):405–10.
Google Scholar
Kaijser M, Bonamy AK, Akre O, Cnattingius S, Granath F, Norman M, et al. Perinatal risk factors for diabetes in later life. Diabetes. 2009;58(3):523–6.
CAS
Google Scholar
Barker DJ. Early growth and cardiovascular disease. Arch Dis Child. 1999;80(4):305–7.
CAS
Google Scholar
Yoshimoto Y, Schull WJ, Kato H, Neel JV. Mortality among the offspring (F1) of atomic bomb survivors, 1946-85. J Radiat Res (Tokyo). 1991;32(4):327–51.
CAS
Google Scholar
Tang FR, Loke WK, Khoo BC. Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models. J Radiat Res. 2017;58(2):165–82.
CAS
Google Scholar
Dehmel S, Nathan P, Bartel S, El-Merhie N, Scherb H, Milger K, et al. Intrauterine smoke exposure deregulates lung function, pulmonary transcriptomes, and in particular insulin-like growth factor (IGF)-1 in a sex-specific manner. Sci Rep. 2018;8(1):7547.
Google Scholar
Voigt M, Hermanussen M, Wittwer-Backofen U, Fusch C, Hesse V. Sex-specific differences in birth weight due to maternal smoking during pregnancy. Eur J Pediatr. 2006;165(11):757–61.
CAS
Google Scholar
Papastefanou C. Radioactivity of tobacco leaves and radiation dose induced from smoking. Int J Environ Res Public Health. 2009;6(2):558–67.
CAS
Google Scholar
Wo JY, Viswanathan AN. Impact of radiotherapy on fertility, pregnancy, and neonatal outcomes in female cancer patients. Int J Radiat Oncol Biol Phys. 2009;73(5):1304–12.
Google Scholar
Signorello LB, Cohen SS, Bosetti C, Stovall M, Kasper CE, Weathers RE, et al. Female survivors of childhood cancer: preterm birth and low birth weight among their children. J Natl Cancer Inst. 2006;98(20):1453–61.
Google Scholar
Hujoel PP, Bollen AM, Noonan CJ, del Aguila MA. Antepartum dental radiography and infant low birth weight. JAMA. 2004;291(16):1987–93.
CAS
Google Scholar
Chen S, Yang Y, Qv Y, Zou Y, Zhu H, Gong F, et al. Paternal exposure to medical-related radiation associated with low birthweight infants: a large population-based, retrospective cohort study in rural China. Medicine. 2018;97(2):e9565.
Google Scholar
Tsou M, Liu J, Hammitt JK, et al. The effect of prenatal exposure to radiation on birth outcomes: exploiting a natural experiment in Taiwan. JER. 2019. https://doi.org/10.1007/s42973-019-00016-9.
Petrova A, Gnedko T, Maistrova I, Zafranskaya M, Dainiak N. Morbidity in a large cohort study of children born to mothers exposed to radiation from Chernobyl. Stem Cells. 1997;15(Suppl 2):141–50.
Google Scholar
Hatch M, Little MP, Brenner AV, Cahoon EK, Tereshchenko V, Chaikovska L, et al. Neonatal outcomes following exposure in utero to fallout from Chernobyl. Eur J Epidemiol. 2017;32(12):1075–88.
CAS
Google Scholar
Ericson A, Kallen B. Pregnancy outcome in Sweden after the Chernobyl accident. Environ Res. 1994;67(2):149–59.
CAS
Google Scholar
S-i H, Tsuchiya M, Ochiai K, Nakiri S, Nakanishi S, Ishii N, et al. Small head size and delayed body weight growth in wild Japanese monkey fetuses after the Fukushima Daiichi nuclear disaster. Sci Rep. 2017;7(1):3528.
Google Scholar
Scherb H, Mori K, Hayashi K. Increases in perinatal mortality in prefectures contaminated by the Fukushima nuclear power plant accident in Japan: a spatially stratified longitudinal study. Medicine (Baltimore). 2016;95(38):e4958.
Google Scholar
Scherb H, Mori K, Hayashi K. Comment on ‘perinatal mortality after the Fukushima accident’. J Radiol Prot. 2019;39(2):647–9.
Google Scholar
Murase K, Murase J, Mishima A. Nationwide increase in complex congenital heart diseases after the Fukushima nuclear accident. J Am Heart Assoc. 2019;8(6):e009486.
Google Scholar
Murase K, Murase J, Machidori K, Mizuno K, Hayashi Y, Kohri K. Nationwide increase in cryptorchidism after the Fukushima nuclear accident. Urology. 2018;118:65–70.
Google Scholar
Korblein A, Kuchenhoff H. Perinatal mortality after the Fukushima accident: a spatiotemporal analysis. J Radiol Prot. 2019;39(4):1021–30.
Google Scholar
Tsuda T, Tokinobu A, Yamamoto E, Suzuki E. Thyroid cancer detection by ultrasound among residents ages 18 years and younger in Fukushima, Japan: 2011 to 2014. Epidemiology. 2016;27(3):316–22.
Google Scholar
Yamamoto H, Hayashi K, Scherb H. Association between the detection rate of thyroid cancer and the external radiation dose-rate after the nuclear power plant accidents in Fukushima, Japan. Medicine (Baltimore). 2019;98(37):e17165.
CAS
Google Scholar
Kato T. Re: associations between childhood thyroid cancer and external radiation dose after the Fukushima Daiichi nuclear power plant accident. Epidemiology. 2019;30(2):e9–e11.
Google Scholar
Toki H, Wada T, Manabe Y, Hirota S, Higuchi T, Tanihata I, et al. Relationship between environmental radiation and radioactivity and childhood thyroid cancer found in Fukushima health management survey. Sci Rep. 2020;10(1):4074.
CAS
Google Scholar
Fujimori K, Kyozuka H, Yasuda S, Goto A, Yasumura S, Ota M, et al. Pregnancy and birth survey after the great East Japan earthquake and Fukushima Daiichi nuclear power plant accident in Fukushima prefecture. Fukushima J Med Sci. 2014;60(1):75–81.
Google Scholar
Leppold C, Nomura S, Sawano T, Ozaki A, Tsubokura M, Hill S, et al. Birth outcomes after the Fukushima Daiichi nuclear power plant disaster: a long-term retrospective study. Int J Environ Res Public Health. 2017;14(5):542.
Google Scholar
Kyozuka H, Fujimori K, Hosoya M, Yasumura S, Yokoyama T, Sato A, et al. The Japan environment and Children's study (JECS) in Fukushima prefecture: pregnancy outcome after the great East Japan earthquake. Tohoku J Exp Med. 2018;246(1):27–33.
Google Scholar
Choi BC, Pak AW. A catalog of biases in questionnaires. Prev Chronic Dis. 2005;2(1):A13.
Google Scholar
Sugawara J, Iwama N, Hoshiai T, Tokunaga H, Nishigori H, Metoki H, et al. Regional birth outcomes after the 2011 great East Japan earthquake and tsunami in Miyagi prefecture. Prehosp Disaster Med. 2018;33(2):215–9.
Google Scholar
Yasunari TJ, Stohl A, Hayano RS, Burkhart JF, Eckhardt S, Yasunari T. Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proc Natl Acad Sci. 2011;108(49):19530.
CAS
Google Scholar
UNSCEAR. Report 2013, Volume I, United Nations Scientific Committee on the Effects of Atomic Radiation, REPORT TO THE GENERAL ASSEMBLY, SCIENTIFIC ANNEX A: Levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami, http://www.unscear.org/docs/reports/2013/13-85418_Report_2013_Annex_A.pdf and https://www.unscear.org/docs/publications/2013/UNSCEAR_2013_Annex-A_Attach_C-2.xls. Accessed May 22, 2019.
UNSCEAR. Report 2017. United Nations Scientific Committee on the Effects of Atomic Radiation, Report to the General Assembly, SCIENTIFIC ANNEXES A and B, https://www.unscear.org/unscear/en/publications/2017.html. Accessed November 5, 2019.
Harada N, Shigemura J, Tanichi M, Kawaida K, Takahashi S, Yasukata F. Mental health and psychological impacts from the 2011 great East Japan earthquake disaster: a systematic literature review. Disaster Mil Med. 2015;1:17.
Google Scholar
Hasegawa A, Ohira T, Maeda M, Yasumura S, Tanigawa K. Emergency responses and health consequences after the Fukushima accident; evacuation and relocation. Clin Oncol (R Coll Radiol). 2016;28(4):237–44.
CAS
Google Scholar
Turner SL, Karahalios A, Forbes AB, Taljaard M, Grimshaw JM, Cheng AC, et al. Design characteristics and statistical methods used in interrupted time series studies evaluating public health interventions: protocol for a review. BMJ Open. 2019;9(1):e024096.
Google Scholar
Scherb H, Weigelt E, Brüske-Hohlfeld I. European stillbirth proportions before and after the Chernobyl accident. Int J Epidemiol. 1999;28(5):932–40.
CAS
Google Scholar
Scherb H, Weigelt E, Brüske-Hohlfeld I. Regression analysis of time trends in perinatal mortality in Germany, 1980-1993. Environ Health Perspect. 2000;108(2):159–65.
CAS
Google Scholar
Scherb H, Weigelt E. Congenital malformation and stillbirth in Germany and Europe before and after the Chernobyl nuclear power plant accident. Environ Sci Pollut Res Special Issue. 2003;1:117–25.
Google Scholar
Scherb H, Voigt K. Analytical ecological epidemiology: exposure-response relations in spatially stratified time series. Environmetrics. 2009;20(6):596–606.
Google Scholar
Yorifuji T, Naruse H, Kashima S, Murakoshi T, Kato T, Inoue S, et al. Trends of preterm birth and low birth weight in Japan: a one hospital-based study. BMC Pregnancy Childbirth. 2012;12(1):162.
Google Scholar
Kato T: Area Dose Response of Prevalent Childhood Thyroid Cancers after the Fukushima Nuclear Power Plant Accident. In., vol. Clinical Oncology and Research: Area Dose Response of Prevalent Childhood Thyroid Cancers: Science Repository, DOI: https://doi.org/10.31487/j.COR.2019.06.16, Accessed 6 January, 2020.
Goldberg MS, Mayo NE, Levy AR, Scott SC, Poitras B. Adverse reproductive outcomes among women exposed to low levels of ionizing radiation from diagnostic radiography for adolescent idiopathic scoliosis. Epidemiology. 1998;9(3):271–8.
CAS
Google Scholar
Mortazavi SM, Shirazi KR, Mortazavi G. The study of the effects of ionizing and non-ionizing radiations on birth weight of newborns to exposed mothers. J Nat Sci Biol Med. 2013;4(1):213–7.
CAS
Google Scholar
Cardis E, Krewski D, Boniol M, Drozdovitch V, Darby SC, Gilbert ES, et al. Estimates of the cancer burden in Europe from radioactive fallout from the Chernobyl accident. Int J Cancer. 2006;119(6):1224–35.
CAS
Google Scholar
Scherb H, Kusmierz R, Voigt K. Increased sex ratio in Russia and Cuba after Chernobyl: a radiological hypothesis. Environ Health. 2013;12:63.
Google Scholar
Schmitz-Feuerhake I, Busby C, Pflugbeil S. Genetic radiation risks: a neglected topic in the low dose debate. Environ Health Toxicol. 2016;31:e2016001.
Google Scholar