Jedrychowski WA, Perera FP, Spengler JD, Mroz E, Stigter L, Flak E, et al. Intrauterine exposure to fine particulate matter as a risk factor for increased susceptibility to acute broncho-pulmonary infections in early childhood. Int J Hyg Environ Health. 2013;216(4):395–401.
Article
CAS
Google Scholar
Rudan I, Boschi-Pinto C, Biloglav Z, Mulholland K, Campbell H. Epidemiology and etiology of childhood pneumonia. Bull World Health Organ. 2008;86(October 2007):408–16.
Article
Google Scholar
Jokinen C, Heiskanen L, Juvonen H, Kallinen S, Kleemola M, Koskela M, et al. Microbial etiology of community-acquired pneumonia in the adult population of 4 municipalities in eastern Finland. Clin Infect Dis. 2001;32:1141–54.
Article
CAS
Google Scholar
Pelton SI, Hammerschlag MR. Overcoming current obstacles in the management of bacterial community-acquired pneumonia in ambulatory children. Clin Pediatr (Phila). 2005;44(February):1–17.
Article
Google Scholar
Sram RJ, Binkova B, Dostal M, Merkerova-Dostalova M, Libalova H, Milcova A, et al. Health impact of air pollution to children. Int J Hyg Environ Health [Internet] 2013;216(5):533–540. Available from: http://dx.doi.org/10.1016/j.ijheh.2012.12.001.
Karr C, Lumley T, Schreuder A, Davis R, Larson T, Ritz B, et al. Effects of subchronic and chronic exposure to ambient air pollutants on infant bronchiolitis. Am J Epidemiol. 2007;165(5):553–60.
Article
Google Scholar
Fuchs O, Latzin P, Kuehni CE, Frey U. Cohort profile: the Bern infant lung development cohort. Int J Epidemiol. 2012;41(January 2011):366–76.
Article
Google Scholar
Ganor E, Stupp A, Alpert P. A method to determine the effect of mineral dust aerosols on air quality. Atmos Environ [Internet] 2009;43(34):5463–5468. Available from: http://dx.doi.org/10.1016/j.atmosenv.2009.07.028.
Karakis I, Landau D, Yitshak-Sade M, Hershkovitz R, Rotenberg M, Sarov B, et al. Exposure to metals and congenital anomalies: a biomonitoring study of pregnant Bedouin-Arab women. Sci Total Environ [Internet]. 2015;517:106–12 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0048969715001990.
Article
CAS
Google Scholar
Novack L, Manor E, Gurevich E, Yitshak-Sade M, Landau D, Sarov B, et al. Can cell proliferation of umbilical cord blood cells reflect environmental exposures? Springerplus [internet]. 2015;4:372. Available from. http://www.ncbi.nlm.nih.gov/pubmed/26217549.
Kennedy C, Flak Pennington A, Darrow LA, Klein M, Zhai X, Bates JT, et al. Associations of mobile source air pollution during the first year of life with childhood pneumonia, bronchiolitis, and otitis media. Env Epidemiol. 2017;176(1):139–48.
Google Scholar
Morgenstern V, Zutavern A, Cyrys J, Brockow I, Gehring U, Koletzko S, et al. Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children. Occup Environ Med. 2007;64(1):8–16.
Article
CAS
Google Scholar
Girguis MS, Strickland MJ, Hu X, Liu Y, Chang HH, Kloog I, et al. Exposure to acute air pollution and risk of bronchiolitis and otitis media for preterm and term infants article. J Expo Sci Environ Epidemiol. 2018;28(4):348–57.
Article
CAS
Google Scholar
Horne BD, Joy EA, Hofmann MG, Gesteland PH, Cannon JB, Le JS, et al. Short-term elevation of fine particulate matter air pollution and acute lower respiratory infection. Am J Respir Crit Care Med. 2018;198(6):759–66.
Article
Google Scholar
Yitshak-Sade M, Yudovitch D, Novack V, Tal A, Kloog I, Goldbart A. Air pollution and hospitalization for bronchiolitis among Yound children. Ann Am Thorac Soc. 2017;14(12):1796–802.
Article
Google Scholar
Jedrychowski W, Galas A, Pac A, Flak E, Camman D, Rauh V, et al. Prenatal ambient air exposure to polycyclic aromatic hydrocarbons and the occurrence of respiratory symptoms over the first year of life. Eur J Epidemiol. 2005;20:775–82.
Article
CAS
Google Scholar
Kajekar R. Environmental factors and developmental outcomes in the lung. Pharmacol Ther. 2007;114:129–45.
Article
CAS
Google Scholar
Selevan SG, Kimmel CA, Mendola P. Identifying critical windows of exposure for children’s health. Environ Health Perspect. 2000;108(SUPPL. 3):451–5.
Google Scholar
Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med [Internet]. 2008;359(1):61–73. Available from: https://www.nejm.org/doi/full/10.1056/nejmra0708473.
Jedrychowski WA, Perera FP, Maugeri U, Mroz E, Klimaszewska-Rembiasz M, Flak E, et al. Effect of prenatal exposure to fine particulate matter on ventilatory lung function of preschool children of non-smoking mothers. Paediatr Perinat Epidemiol. 2010;24(5):492–501.
Article
Google Scholar
Rice MB, Rifas-Shiman SL, Oken E, Gillman MW, Ljungman PL, Litonjua A a., et al. Exposure to traffic and early life respiratory infection: A cohort study. Pediatr Pulmonol 2014;1–8.
Yang SI, Kim BJ, Lee SY, Kim H. Bin, Lee CM, Yu J, et al. prenatal particulate matter/tobacco smoke increases infants’ respiratory infections: COCOA study. Allergy, Asthma Immunol Res. 2015;7(6):573–82.
Article
CAS
Google Scholar
Madsen C, Haberg SE, Magnus MC, Aamodt G, Stigum H, London SJ, et al. Pregnancy exposure to air pollution and early childhood respiratory health in the Norwegian mother and child cohort study ( MoBa ). BMJ Open. 2017:1–8.
Proietti E, Röösli M, Frey U, Latzin P. Air pollution during pregnancy and neonatal outcome: a review. J Aerosol Med Pulm Drug Deliv. 2012;26(1):120802095343004.
Google Scholar
Pardo M, Porat Z, Rudich A, Schauer JJ, Rudich Y. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage. Environ Pollut [Internet]. 2016;210:227–37. Available from: http://dx.doi.org/10.1016/j.envpol.2015.12.009.
Mauad T, Rivero DHRF, De Oliveira RC, Lichtenfels AJDFC, Guimarães ET, De Andre PA, et al. Chronic exposure to ambient levels of urban particles affects mouse lung development. Am J Respir Crit Care Med. 2008;178(7):721–8.
Article
Google Scholar
Tang W, Du L, Sun W, Yu Z, He F, Chen J, et al. Maternal exposure to fine particulate air pollution induces epithelial-to-mesenchymal transition resulting in postnatal pulmonary dysfunction mediated by transforming growth factor-β/Smad3 signaling. Toxicol Lett [Internet]. 2017;267:11–20. Available from: http://dx.doi.org/10.1016/j.toxlet.2016.12.016.
Backes C, Nelin T, Gorr M, Wold L. Early life exposure to air pollution: how bad is it? Toxicol Lett [Internet]. 2013;216(1):47–53. Available from: http://ezproxy.library.usyd.edu.au/login?url=http://ovidsp.ovid.com/ovidweb.cgi? T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=23164674.
Hsu HHL, Chiu YHM, Coull BA, Kloog I, Schwartz J, Lee A, et al. Prenatal particulate air pollution and asthma onset in urban children: identifying sensitive windows and sex differences. Am J Respir Crit Care Med. 2015;192(9):1052–9.
Article
CAS
Google Scholar
Kloog I, Chudnovsky A a., Just AC, Nordio F, Koutrakis P, Coull B a., et al. A new hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across northeastern USA using high resolution aerosol optical depth data. Atmos Environ [Internet]. 2014;95:581–90. Available from: http://dx.doi.org/10.1016/j.atmosenv.2014.07.014.
Shtein A, Karnieli A, Katra I, Raz R, Levy I, Lyapustin A, et al. Estimating daily and intra-daily PM 10 and PM 2.5 in Israel using a spatio-temporal hybrid modeling approach. Atmos environ [internet]. 2018;191(July):142–52. Available from: https://doi.org/10.1016/j.atmosenv.2018.08.002.
Kloog I, Sorek-Hamer M, Lyapustin A, Coull B, Wang Y, Just AC, et al. Estimating daily PM2.5 and PM10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD data. Atmos Environ. 2015;122(1994):409–16.
Article
CAS
Google Scholar
Lewis TC, Robins TG, Dvonch JT, Keeler GJ, Yip FY, Mentz GB, et al. Air pollution-associated changes in lung function among asthmatic children in Detroit. Environ Health Perspect. 2005;113(8):1068–75.
Article
Google Scholar
Schwartz J. Air pollution and children’s health. Pediatrics. 2004;113(4 Suppl):1037–43.
Google Scholar
Ghosh R, Topinka J, Joad JP, Dostal M, Sram RJ, Hertz-Picciotto I. Air pollutants, genes and early childhood acute bronchitis. Mutat Res [Internet] 2013;749(1–2):80–86. Available from: http://dx.doi.org/10.1016/j.mrfmmm.2013.04.001%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/23648357.
Perera FP, Rauh V, Whyatt RM, Tsai W-Y, Bernert JT, Tu Y-H, et al. Molecular evidence of an interaction between prenatal environmental exposures and birth outcomes in a multiethnic population. Environ Health Perspect. 2004;112(5):626–30.
Article
CAS
Google Scholar
Perera FP, Tang D, Tu YH, Cruz LA, Borjas M, Bernert T, et al. Biomarkers in maternal and newborn blood indicate heightened fetal susceptibility to procarcinogenic DNA damage. Environ Health Perspect. 2004;112(10):1133–6.
Article
CAS
Google Scholar
Jones P. A, Takai D. the role of DNA methylation in mammalian epigenetics. Science. 2001;293(August):1068–70.
Article
CAS
Google Scholar
Korten I, Ramsey K, Latzin P. Air pollution during pregnancy and lung development in the child. Paediatr Respir Rev [Internet] 2017;21:38–46. Available from: http://dx.doi.org/10.1016/j.prrv.2016.08.008.
Chiu Y-HM, Coull BA, Sternthal MJ, Kloog I, Schwartz J, Cohen S, et al. Effects of prenatal community violence and ambient air pollution on childhood wheeze in an urban population. J Allergy Clin Immunol. 2014;133(3):713–22.
Article
CAS
Google Scholar
Wright RJ, Brunst KJ. Programming of respiratory health in childhood: influence of outdoor air pollution. Curr Opin Pediatr. 2013;25(2):232–9.
Article
CAS
Google Scholar
Lee A, Hsu H-HL, Chiu Y-HM, Bose S, Rosa MJ, Kloog I, et al. Prenatal fine particulate exposure and early childhood asthma: effect of maternal stress and fetal gender. Allergy Clin Immunol. 2018;141(5):1880–6.
Article
CAS
Google Scholar
Daoud N, Soskolne V, Mindell JS, Roth MA, Manor O. Ethnic inequalities in health between Arabs and Jews in Israel: the relative contribution of individual-level factors and the living environment. Int J public health [internet]. 2018;63(3):313–23. Available from: https://doi.org/10.1007/s00038-017-1065-3.
Landau D, Novack L, Yitshak-Sade M, Sarov B, Kloog I, Hershkovitz R, et al. Nitrogen dioxide pollution and hazardous household environment: what impacts more congenital malformations. Chem Int 2015;139:340–348. Available from: http://dx.doi.org/10.1016/j.chemosphere.2015.06.091.
Treister-Goltzman Y, Peleg R. What is known about health and morbidity in the pediatric population of Muslim Bedouins in southern Israel: a descriptive review of the literature from the past two decades. J Immigr Minor Heal [Internet] 2015;17(3):940–946. Available from: http://dx.doi.org/10.1007/s10903-014-0001-3.
Kravitz-Wirtz N, Teixeira S, Hajat A, Woo B, Crowder K, Takeuchi D. Early-life air pollution exposure, neighborhood poverty, and childhood asthma in the United States, 1990–2014. Int J Environ Res Public Health. 2018;15(6):1–14.
Article
Google Scholar
Nikiéma B, Spencer N, Séguin L. Poverty and chronic illness in early childhood: A comparison between the United Kingdom and Quebec. Pediatrics. 2010;125(3).
Lessard LN, Alcala E, Capitman JA. Pollution, poverty, and potentially preventable childhood morbidity in Central California. J Pediatr [Internet] 2016;168:198–204. Available from: http://dx.doi.org/10.1016/j.jpeds.2015.08.007.
Levine H, Berman T, Goldsmith R, Göen T, Spungen J, Novack L, et al. Exposure to tobacco smoke based on urinary cotinine levels among Israeli smoking and nonsmoking adults: A cross-sectional analysis of the first Israeli human biomonitoring study. BMC Public Health. 2013;13(1241).