Ballester J, Robine JM, Herrmann FR, Rodó X. Long-term projections and acclimatization scenarios of temperature-related mortality in Europe. Nat Commun. 2011;2(1):1–8.
Google Scholar
WMO, WHO. Heatwaves and Health: Guidance on Warning-System Development, vol. 44; 2015. p. 114. Available from: http://www.who.int/globalchange/publications/WMO_WHO_Heat_Health_Guidance_2015.pdf.
Google Scholar
IPCC. National systems for managing the risks from climate extremes and disasters. Vol. 9781107025, Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. 2012. 339–92.
Watts N, Amann M, Ayeb-Karlsson S, Belesova K, Boykoff M, Byass P, et al. The 2019 report of the lancet Countown on health and climate change. Lancet. 2019;394(10211):1836–78.
Google Scholar
Hooyberghs H, Lauwaet D, Lefebvre W, Maiheu B, De Ridder K, Gonzalez-Aparicio I, et al. D 4.2 Aggolomeration-scale urban climate and air quality projections. RAMSES Proj. 2015; RAMSES-D.
Zollo AL, Rillo V, Bucchignani E. Extreme temperature and precipitation events over Italy : assessment of high-resolution simulations with COSMO-CLM and future scenarios; 2015.
Google Scholar
Araya-Muñoz D, Metzger MJ, Stuart N, Wilson AMW, Alvarez L. Assessing urban adaptive capacity to climate change. J Environ Manag. 2016;183(1):314–24.
Google Scholar
Dong W, Liu Z, Zhang L, Tang Q, Liao H, Li X. Assessing heat health risk for sustainability in Beijing’s urban heat island. Sustain. 2014;6(10):7334–57.
Google Scholar
Giorgi F. Climate change hot-spots. Geophys Res Lett. 2006;33(8):1–4.
Google Scholar
De’Donato F, Leone M, Scortichini M, De Sario M, Katsouyanni K, Gasparrini A, et al. Changes in the, Effect of Heat on Mortality in the Last 20 Years in Nine European Cities. Results from the PHASE Project. Int J Environ Res Public Health. 2015;12:15567–83.
Google Scholar
Linares C, Díaz J, Negev M, Martínez GS, Debono R, Paz S. Impacts of climate change on the public health of the Mediterranean Basin population - current situation, projections, preparedness and adaptation. Environ Res. 2020;182(October 2019):109107 Available from: https://doi.org/10.1016/j.envres.2019.109107.
CAS
Google Scholar
Guo Y, Gasparrini A, Armstrong B, Li S, Tawatsupa B, Tobias A, et al. Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology. 2014;25(6):781–9.
Google Scholar
Michelozzi P, De Sario M, Accetta G, De’Donato F, Kirchmayer U, D’Ovidio M, et al. Temperature and summer mortality: geographical and temporal variations in four Italian cities. J Epidemiol Community Health. 2006;60(5):417–23.
Google Scholar
D’Ippoliti D, Michelozzi P, Marino C, Menne B, Gonzales Cabre M, Katsouyanni K, et al. The impact of heat waves on mortality in 9 European cities, 1990-2004. Environ Health. 2010;9:37.
Google Scholar
Cervellin G, Comelli I, Lippi G, Comelli D, Rastelli G, Ossola P, Marchesi C. The number of emergency department visits for psychiatric emergencies is strongly associated with mean temperature and humidity variations. Results of a nine year survey. Emerg Care J. 2014;10(1).
Michelozzi P, de Donato F, Bisanti L, Russo A, Cadum E, DeMaria M, et al. The impact of the summer 2003 heat waves on mortality in four Italian cities. Euro Surveill. 2005;10(7):161–5.
CAS
Google Scholar
Breil M, Ukcip CD, Kazmierczak A, Syke KM, Ft LR, Syke ET, et al. Social vulnerability to climate change in European cities – state of play in policy and practice. Eur Top Cent Climate Chang Impacts, Vulnerability Adapt. 2018;(Fondazione CMCC):1–86 Available from: https://www.adaptecca.es/sites/default/files/u50/eea_social_vulnerability_to_climate_change_european_cities.pdf.
Tapia C, Abajo B, Feliu E, Mendizabal M, Martinez JA, Fernández JG, et al. Profiling urban vulnerabilities to climate change: an indicator-based vulnerability assessment for European cities. Ecol Indic. 2017;78:142–55.
Google Scholar
O’Neill MS, Carter R, Kish JK, Gronlund CJ, White-Newsome JL, Manarolla X, et al. Preventing heat-related morbidity and mortality: new approaches in a changing climate. Maturitas. 2009;64(2):98–103.
Google Scholar
Ebi KL, Kovats RS, Menne B. An approach for assessing human health vulnerability and public health interventions to adapt to climate change. Environ Health Perspect. 2006;114(12):1930–4.
Google Scholar
Marí-Dell’Olmo M, Tobías A, Gómez-Gutiérrez A, Rodríguez-Sanz M, García de Olalla P, Camprubí E, et al. Social inequalities in the association between temperature and mortality in a south European context. Int J Public Health. 2019;64(1):27–37.
Google Scholar
Yu W, Vaneckova P, Mengersen K, Pan X, Tong S. Is the association between temperature and mortality modified by age, gender and socio-economic status? Sci Total Environ. 2010;408(17):3513–8 Available from: https://doi.org/10.1016/j.scitotenv.2010.04.058.
CAS
Google Scholar
Achebak H, Devolder D, Ballester J. Heat-related mortality trends under recent climate warming in Spain: A 36-year observational study. PLoS Med. 2018;15(7) Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051143672&doi=10.1371%2Fjournal.pmed.1002617&partnerID=40&md5=2380af70933bff0267d292c0ad6343bd.
Achebak H, Devolder D, Ballester J. Trends in temperature-related age-specific and sex-specific mortality from cardiovascular diseases in Spain: a national time-series analysis. Lancet Planet Heal. 2019;3(7):e297–306 Available from: https://doi.org/10.1016/S2542-5196(19)30090-7.
Google Scholar
Urban A, Hanzlíková H, Kyselý J, Plavcová E. Impacts of the 2015 heat waves on mortality in the Czech Republic-a comparison with previous heat waves. Int J Environ Res Public Health. 2017;14(12):1–19.
Google Scholar
Gabriel KMA, Endlicher WR. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environ Pollut. 2011;159(8–9):2044–50 Available from: https://doi.org/10.1016/j.envpol.2011.01.016.
CAS
Google Scholar
Zanobetti A, O’Neill MS, Gronlund CJ, Schwartz JD. Susceptibility to mortality in weather extremes. Epidemiology. 2013;24(6):809–19.
Google Scholar
Onozuka D, Hagihara A. Variation in vulnerability to extreme-temperature-related mortality in Japan: A 40-year time-series analysis. Environ Res. 2015;140:177–84 Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926328658&doi=10.1016%2Fj.envres.2015.03.031&partnerID=40&md5=9ff0587c74651fe7bbf50bdcfa95db7f.
CAS
Google Scholar
Leone M, D’Ippoliti D, De Sario M, Analitis A, Menne B, Katsouyanni K, et al. A time series study on the effects of heat on mortality and evaluation of heterogeneity into European and Eastern-Southern Mediterranean cities: Results of EU CIRCE project. Environ Heal A Glob Access Sci Source. 2013;12(1) Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880432765&doi=10.1186%2F1476-069X-12-55&partnerID=40&md5=b3cba7953913be059390476946c0d819.
Seebaß K. Who is feeling the heat?: vulnerabilities and exposures to heat stress- individual, social, and housing explanations. Nat Cult. 2017;12(2):137–61.
Google Scholar
Savić S, Marković V, Šećerov I, Pavić D, Arsenović D, Milošević D, et al. Heat wave risk assessment and mapping in urban areas: case study for a midsized central European city, Novi Sad (Serbia). Nat Hazards. 2018;91(3):891–911 Available from: https://doi.org/10.1007/s11069-017-3160-4.
Google Scholar
Sagris V, Sepp M. Landsat-8 TIRS data for assessing Urban Heat Island effect and its impact on human health. IEEE Geosci Remote Sens Lett. 2017;14(12):2385–9.
Google Scholar
Van Der Hoeven F, Wandl A. Amsterwarm: mapping the landuse, health and energy-efficiency implications of the Amsterdam urban heat island. Build Serv Eng Res Technol. 2015;36(1):67–88.
Google Scholar
Hondula DM, Davis RE, Leisten MJ, Saha M V., Veazey LM, Wegner CR. Fine-scale spatial variability of heat-related mortality in Philadelphia County, USA, from 1983-2008: a case-series analysis. Environ Heal A Glob Access Sci Source 2012;11(1):1–11.
Aubrecht C, Özceylan D. Identification of heat risk patterns in the U.S. National Capital Region by integrating heat stress and related vulnerability. Environ Int. 2013;56:65–77 Available from: https://doi.org/10.1016/j.envint.2013.03.005.
Google Scholar
Méndez-Lázaro P, Muller-Karger FE, Otis D, McCarthy MJ, Rodríguez E. A heat vulnerability index to improve urban public health management in San Juan. Puerto Rico. Int J Biometeorol. 2018;62(5):709–22.
Google Scholar
Klein Rosenthal J, Kinney PL, Metzger KB. Intra-urban vulnerability to heat-related mortality in New York City, 1997-2006. Heal Place. 2014;30:45–60.
Google Scholar
Hondula DM, Barnett AG. Heat-related morbidity in Brisbane, Australia: spatial variation and area-level predictors. Environ Health Perspect. 2014;122(8):831–6.
Google Scholar
Gronlund CJ, Berrocal VJ, White-Newsome JL, Conlon KC, O’Neill MS. Vulnerability to extreme heat by socio-demographic characteristics and area green space among the elderly in Michigan, 1990-2007. Environ Res. 2015;136:449–61 Available from: https://doi.org/10.1016/j.envres.2014.08.042.
CAS
Google Scholar
Inostroza L, Palme M, De La Barrera F. A heat vulnerability index: spatial patterns of exposure, sensitivity and adaptive capacity for Santiago de Chile. PLoS One. 2016;11(9):1–26.
Google Scholar
Macintyre HL, Heaviside C, Taylor J, Picetti R, Symonds P, Cai XM, et al. Assessing urban population vulnerability and environmental risks across an urban area during heatwaves – implications for health protection. Sci Total Environ. 2018;610–611:678–90.
Google Scholar
Nayak SG, Shrestha S, Kinney PL, Ross Z, Sheridan SC, Pantea CI, et al. Development of a heat vulnerability index for New York state. Public Health. 2018;161:127–37 Available from: https://doi.org/10.1016/j.puhe.2017.09.006.
CAS
Google Scholar
Hatvani-Kovacs G, Belusko M, Skinner N, Pockett J, Boland J. Drivers and barriers to heat stress resilience. Sci Total Environ. 2016;571:603–14 Available from: https://doi.org/10.1016/j.scitotenv.2016.07.028.
CAS
Google Scholar
Uejio CK, Wilhelmi OV, Golden JS, Mills DM, Gulino SP, Samenow JP. Intra-urban societal vulnerability to extreme heat: The role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Heal Place. 2011;17(2):498–507 Available from: https://doi.org/10.1016/j.healthplace.2010.12.005.
Google Scholar
Costa G, Stroscia M, Zengarini N, Moreno D. 40 anni di salute a Torino. Spunti per leggere i bisogni e i risultati delle politiche. Milan: Inferenze; 2017. Available from: http://www.epiprev.it/materiali/2017/Torino_40_anni/40anni_singole.pdf.
Google Scholar
Galobardes B, Shaw M, Lawlor DA, Lynch JW, Smith GD. Indicators of socioeconomic position (part 1). J Epidemiol Community Health. 2006;60(1):7–12.
Google Scholar
Bazile E, Abida R, Verrelle A, Le Moigne P, Szczypta C. MESCAN-SURFEX surface analysis; 2017. p. 1–11. Available from: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-uerra-europe-single-levels?tab=form.
Google Scholar
Bhaskaran K, Gasparrini A, Hajat S, Smeeth L, Armstrong B. Time series regression studies in environmental epidemiology. Int J Epidemiol. 2013;42(4):1187–95.
Google Scholar
Gasparrini A, Armstrong B, Kenward MG. Distributed lag non-linear models. Stat Med. 2010;29(21):2224–34.
CAS
Google Scholar
Gasparrini A. Distributed lag linear and non-linear models for time series data. 14310721250; 2014. p. 1–12. Available from: http://143.107.212.50/web/packages/dlnm/vignettes/dlnmTS.pdf.
Google Scholar
Gasparrini A. Distributed lag linear and non-linear models in R: the package dlnm. J Stat Softw. 2011;43(8):1–20.
Google Scholar
Hajat S, Armstrong BG, Gouveia N, Wilkinson P. Mortality displacement of heat-related deaths: a comparison of Delhi, São Paulo, and London. Epidemiology. 2005;16(5):613–20.
Google Scholar
Vicedo-Cabrera AM, Forsberg B, Tobias A, Zanobetti A, Schwartz J, Armstrong B, et al. Associations of inter- and intraday temperature change with mortality. Am J Epidemiol. 2016;183(4):286–93.
Google Scholar
Armstrong B, Sera F, Gasparrini A. The role of humidity in associations of high temperature with mortality: a Multi-City multi-country study. ISEE Conf Abstr. 2018;2018(1):1–8.
Google Scholar
Tobías A, Armstrong B, Gasparrini A. Investigating uncertainty in the minimum mortality temperature. Epidemiology. 2017;28(1):72–6.
Google Scholar
Gasparrini A, Leone M. Attributable risk from distributed lag models. BMC Med Res Methodol. 2014;14(1):1–8.
Google Scholar
Costa G, Bassi M, Gensini GF, Marra M, Nicelli AL, Zingarini N. Equità nella salute in Italia. Secondo rapporto sulle diseguaglianze sociali in Sanità. MIlano: Fondazione Smith Kline; 2014.
Google Scholar
Veronese N, Siri G, Cella A, Daragjati J, Cruz-jentoft AJ, Cristina M, et al. Maturitas Older women are frailer , but less often die than men : a prospective study of older hospitalized people. Maturitas. 2019;128(March):81–6 Available from: https://doi.org/10.1016/j.maturitas.2019.07.025.
Google Scholar
Stafoggia M, Forastiere F, Agostini D, Biggeri A, Bisanti L, Cadum E, et al. Vulnerability to heat-related mortality: a multicity, population-based, case-crossover analysis. Epidemiology. 2006;17(3):315–23.
Google Scholar
Basu R. High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008. Environ Health. 2009;8(1):40.
Google Scholar
Hajat S, Kovats RS, Lachowycz K. Heat-related and cold-related deaths in England and Wales: who is at risk ? 2007. p. 93–100.
Google Scholar
Burse R. Sex differences in human thermoregulatory response to cold. J Hum Ergol (Tokyo). 1979;17(1):57–65.
Google Scholar
Koppe C, Sari Kovats R, Menne B, Jendritzky G. Heat-waves: risks and responces, vol. 2: WHO Regional Office for Europe; 2004. p. 121.
Huang Z, Lin H, Liu Y, Zhou M, Liu T, Xiao J, et al. Individual-level and community-level effect modifiers of the temperature – mortality relationship in 66 Chinese communities; 2015. p. 1–8.
Google Scholar
O’Neill MS, Zanobetti A, Schwartz J. Modifiers of the temperature and mortality association in seven US cities. Am J Epidemiol. 2003;157(12):1074–82.
Google Scholar
Son JY, Lee JT, Anderson GB, Bell ML. Vulnerability to temperature-related mortality in Seoul, Korea. Environ Res Lett. 2011;6(3) Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80053555051&doi=10.1088%2F1748-9326%2F6%2F3%2F034027&partnerID=40&md5=d500a5e8c6724d320316e94dbf31b426.
Urban A, Burkart K, Kyselý J, Schuster C, Plavcová E, Hanzlíková H, Lakes T. Spatial patterns of heat-related cardiovascularmortality in the Czech Republic. Int J Environ Res Public Health. 2016;13(3):284.
Google Scholar
Török I. Assessment of social vulnerability to natural hazards in Nepal. Nat Hazards Earth Syst Sci. 2017;17(12):2313–20.
Google Scholar
Loughnan ME, Nicholls N, Tapper NJ. The effects of summer temperature, age and socioeconomic circumstance on Acute Myocardial Infarction admissions in Melbourne, Australia. Int J Health Geogr. 2010;9 Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77955357684&doi=10.1186%2F1476-072X-9-41&partnerID=40&md5=cf57271d5a281498945b1fb41897c950.
Wood RG, Goesling B, Avellar S. The Effects of Marriage on Health: A Synthesis of Recent Research Evidence. 2007;(609).
Zheng H, Thomas PA. Marital Status, Self- Rated Health , and Mortality : Overestimation of Health or Diminishing Protection of Marriage ? 2013.
Google Scholar
Ambrosini M. Manuale di sociologia delle migrazioni. Il Mulino. 2005.
Carr D, Springer KW. Advances in families and health research in the 21st century. 2010;72:2010.
Fofi G. L’immigrazione meridionale a Torino: Feltrinelli; 1964. p. Vol. 117.
Robards J, Evandrou M, Falkingham J, Vlachantoni A. Marital status, health and mortality. Maturitas. 2012;73(4):295–9 Available from: https://doi.org/10.1016/j.maturitas.2012.08.007.
Google Scholar
van den Berg G, Gupta S. Early Life Conditions and Later Life Mortality; 2011. p. 187–206.
Google Scholar
de Jong GJ, Arber S, Davidson K, Ginn K. Social networks and social well-being of older men and women living alone. Gend Ageing Chang Roles Relationships. 2003:95–110.
Fouillet A, Rey G, Laurent F, Pavillon G, Bellec S, Guihenneuc-Jouyaux C, et al. Excess mortality related to the August 2003 heat wave in France. Int Arch Occup Environ Health. 2006;80(1):16–24 Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33749318285&doi=10.1007%2Fs00420-006-0089-4&partnerID=40&md5=957b676afa4bbdfdf67d1ad7fce032f0.
CAS
Google Scholar
Loughnan M, Carroll M, Tapper NJ. The relationship between housing and heat wave resilience in older people. Int J Biometeorol. 2015;59(9):1291–8.
Google Scholar
Boyle P, Feng J, Z. Raab GM. Does widowhood increase mortality risk? Testing for selection effects by comparing causes of spousal death. Epidemiology. 2011:1–5.
Van Poppel F, Joung I. Long-term trends in marital status mortality differences in the Netherlands 1850-1970. J Biosoc Sci. 2001;33(2):279–303.
Google Scholar
Zhang J, Liu S, Han J. Impact of heat waves on nonaccidental deaths in Jinan, China, and associated risk factors; 2015.
Google Scholar
Manzoli L, Villari P, Pirone GM, Boccia A. Marital status and mortality in the elderly: A systematic review and meta-analysis. 2007;64:77–94.
Harlan SL, Brazel AJ, Prashad L, Stefanov WL, Larsen L. Neighborhood microclimates and vulnerability to heat stress. Soc Sci Med. 2006;63(11):2847–63.
Google Scholar
Klinenberg E. Denaturalizing disaster: a social autopsy of the 1995 Chicago heat wave. Theory Soc. 1999;28(2):239–95.
Google Scholar
Blättner B, Heckenhahn M, Georgy S, Grewe HA, Kupski S. Wohngebiete mit hitzeabhängigen Gesundheitsrisiken ermitteln: Soziodemografische und klimatische Kartierung als Planungsinstrument gezielter Prävention. Bundesgesundheitsblatt - Gesundheitsforsch - Gesundheitsschutz. 2010;53(1):75–81.
Google Scholar