Heyer DB, Meredith RM. Environmental toxicology: sensitive periods of development and neurodevelopmental disorders. Neurotoxicology. 2017;58:23–41.
Article
CAS
Google Scholar
Andersen HR, Nielsen JB, Grandjean P. Toxicologic evidence of developmental neurotoxicity of environmental chemicals. Toxicology. 2000;144(1–3):121–7.
Article
CAS
Google Scholar
Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet. 2006;368(9553):2167–78.
Article
CAS
Google Scholar
Silveira PP, Portella AK, Goldani MZ, Barbieri MA. Developmental origins of health and disease (DOHaD). J Pediatr. 2007;83(6):494–504.
Article
Google Scholar
Tsoi MF, Cheung CL, Cheung TT, Cheung BM. Continual decrease in blood Lead level in Americans: United States National Health Nutrition and examination survey 1999-2014. Am J Med. 2016;129(11):1213–8.
Article
CAS
Google Scholar
Canada Go: Mercury: your health and the environment: a resource tool in. Edited by Group HCMIT; 2004.
Harada M. Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol. 1995;25(1):1–24.
Article
CAS
Google Scholar
Shah-Kulkarni S, Ha M, Kim BM, Kim E, Hong YC, Park H, Kim Y, Kim BN, Chang N, Oh SY, et al. Neurodevelopment in early childhood affected by prenatal Lead exposure and Iron intake. Medicine (Baltimore). 2016;95(4):e2508.
Article
CAS
Google Scholar
Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, Murata K, Sorensen N, Dahl R, Jorgensen PJ. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol. 1997;19(6):417–28.
Article
CAS
Google Scholar
Jacobson JL, Muckle G, Ayotte P, Dewailly E, Jacobson SW. Relation of prenatal Methylmercury exposure from environmental sources to childhood IQ. Environ Health Perspect. 2015;123(8):827–33.
Article
CAS
Google Scholar
Fillion M, Lemire M, Philibert A, Frenette B, Weiler HA, Deguire JR, Guimaraes JR, Larribe F, Barbosa F Jr, Mergler D. Toxic risks and nutritional benefits of traditional diet on near visual contrast sensitivity and color vision in the Brazilian Amazon. Neurotoxicology. 2013;37:173–81.
Article
CAS
Google Scholar
Altmann L, Sveinsson K, Kramer U, Weishoff-Houben M, Turfeld M, Winneke G, Wiegand H. Visual functions in 6-year-old children in relation to lead and mercury levels. Neurotoxicol Teratol. 1998;20(1):9–17.
Article
CAS
Google Scholar
Yorifuji T, Murata K, Bjerve KS, Choi AL, Weihe P, Grandjean P. Visual evoked potentials in children prenatally exposed to methylmercury. Neurotoxicology. 2013;37:15–8.
Article
CAS
Google Scholar
Murata K, Weihe P, Renzoni A, Debes F, Vasconcelos R, Zino F, Araki S, Jorgensen PJ, White RF, Grandjean P. Delayed evoked potentials in children exposed to methylmercury from seafood. Neurotoxicol Teratol. 1999;21(4):343–8.
Article
CAS
Google Scholar
Ethier AA, Muckle G, Bastien C, Dewailly E, Ayotte P, Arfken C, Jacobson SW, Jacobson JL, Saint-Amour D. Effects of environmental contaminant exposure on visual brain development: a prospective electrophysiological study in school-aged children. Neurotoxicology. 2012;33(5):1075–85.
Article
CAS
Google Scholar
Saint-Amour D, Roy MS, Bastien C, Ayotte P, Dewailly E, Despres C, Gingras S, Muckle G. Alterations of visual evoked potentials in preschool Inuit children exposed to methylmercury and polychlorinated biphenyls from a marine diet. Neurotoxicology. 2006;27(4):567–78.
Article
CAS
Google Scholar
Fox DA. Retinal and visual system: occupational and environmental toxicology. Handb Clin Neurol. 2015;131:325–40.
Article
Google Scholar
Canada: PCBs It’s Your Health. In. Edited by Departments and agencies HC. Canada; 2006.
Ulbrich B, Stahlmann R. Developmental toxicity of polychlorinated biphenyls (PCBs): a systematic review of experimental data. Arch Toxicol. 2004;78(5):252–68.
Article
CAS
Google Scholar
Canada: Polybrominated Diphenyl Ethers (PBDEs) Public summary. In. Edited by Product safety cs. Canada: Gouvernement du Canada; 2016.
Toms LM, Sjodin A, Harden F, Hobson P, Jones R, Edenfield E, Mueller JF. Serum polybrominated diphenyl ether (PBDE) levels are higher in children (2-5 years of age) than in infants and adults. Environ Health Perspect. 2009;117(9):1461–5.
Article
CAS
Google Scholar
Rogan WJ, Gladen BC, Hung KL, Koong SL, Shih LY, Taylor JS, Wu YC, Yang D, Ragan NB, Hsu CC. Congenital poisoning by polychlorinated biphenyls and their contaminants in Taiwan. Science. 1988;241(4863):334–6.
Article
CAS
Google Scholar
Zhang H, Yolton K, Webster GM, Sjodin A, Calafat AM, Dietrich KN, Xu Y, Xie C, Braun JM, Lanphear BP, et al. Prenatal PBDE and PCB exposures and Reading, cognition, and externalizing behavior in children. Environ Health Perspect. 2017;125(4):746–52.
Article
CAS
Google Scholar
Ethier AA, Muckle G, Jacobson SW, Ayotte P, Jacobson JL, Saint-Amour D. Assessing new dimensions of attentional functions in children prenatally exposed to environmental contaminants using an adapted Posner paradigm. Neurotoxicol Teratol. 2015;51:27–34.
Article
CAS
Google Scholar
Silver MK, Li X, Liu Y, Li M, Mai X, Kaciroti N, Kileny P, Tardif T, Meeker JD, Lozoff B. Low-level prenatal lead exposure and infant sensory function. Environ Health. 2016;15(1):65.
Article
CAS
Google Scholar
Silver MK, Shao J, Ji C, Zhu B, Xu L, Li M, Chen M, Xia Y, Kaciroti N, Lozoff B, et al. Prenatal organophosphate insecticide exposure and infant sensory function. Int J Hyg Environ Health. 2018;221(3):469–78.
Article
CAS
Google Scholar
Courage ML, Adams RJ. Visual acuity assessment from birth to three years using the acuity card procedure: cross-sectional and longitudinal samples. Optom Vis Sci. 1990;67(9):713–8.
Article
CAS
Google Scholar
Watanabe C, Yin K, Kasanuma Y, Satoh H. In utero exposure to methylmercury and se deficiency converge on the neurobehavioral outcome in mice. Neurotoxicol Teratol. 1999;21(1):83–8.
Article
CAS
Google Scholar
Arbuckle TE, Fraser WD, Fisher M, Davis K, Liang CL, Lupien N, Bastien S, Velez MP, von Dadelszen P, Hemmings DG, et al. Cohort profile: the maternal-infant research on environmental chemicals research platform. Paediatr Perinat Epidemiol. 2013;27(4):415–25.
Article
Google Scholar
Eventov-Friedman S, Leiba H, Flidel-Rimon O, Juster-Reicher A, Shinwell ES. The red reflex examination in neonates: an efficient tool for early diagnosis of congenital ocular diseases. Isr Med Assoc J. 2010;12(5):259–61.
Google Scholar
Ribas-Fito N, Sala M, Cardo E, Mazon C, De Muga ME, Verdu A, Marco E, Grimalt JO, Sunyer J. Association of hexachlorobenzene and other organochlorine compounds with anthropometric measures at birth. Pediatr Res. 2002;52(2):163–7.
Article
CAS
Google Scholar
Chen Zee E, Cornet P, Lazimi G, Rondet C, Lochard M, Magnier AM, Ibanez G. Impact of endocrine disrupting chemicals on birth outcomes. Gynecol Obstet Fertil. 2013;41(10):601–10.
Article
CAS
Google Scholar
Fisher M, Arbuckle TE, Liang CL, LeBlanc A, Gaudreau E, Foster WG, Haines D, Davis K, Fraser WD. Concentrations of persistent organic pollutants in maternal and cord blood from the maternal-infant research on environmental chemicals (MIREC) cohort study. Environ Health. 2016;15(1):59.
Article
CAS
Google Scholar
Vreugdenhil HJ, Mulder PG, Emmen HH, Weisglas-Kuperus N. Effects of perinatal exposure to PCBs on neuropsychological functions in the Rotterdam cohort at 9 years of age. Neuropsychology. 2004;18(1):185–93.
Article
Google Scholar
Shy CG, Huang HL, Chang-Chien GP, Chao HR, Tsou TC. Neurodevelopment of infants with prenatal exposure to polybrominated diphenyl ethers. Bull Environ Contam Toxicol. 2011;87(6):643–8.
Article
CAS
Google Scholar
Patterson DG Jr, Isaacs SG, Alexander LR, Turner WE, Hampton L, Bernert JT, Needham LL. Determination of specific polychlorinated dibenzo-p-dioxins and dibenzofurans in blood and adipose tissue by isotope dilution-high-resolution mass spectrometry. IARC Sci Publ. 1991;108:299–342.
CAS
Google Scholar
Arbuckle TE, Liang CL, Morisset AS, Fisher M, Weiler H, Cirtiu CM, Legrand M, Davis K, Ettinger AS, Fraser WD. Maternal and fetal exposure to cadmium, lead, manganese and mercury: the MIREC study. Chemosphere. 2016;163:270–82.
Article
CAS
Google Scholar
Levander OA, Moser PB, Morris VC. Dietary selenium intake and selenium concentrations of plasma, erythrocytes, and breast milk in pregnant and postpartum lactating and nonlactating women. Am J Clin Nutr. 1987;46(4):694–8.
Article
CAS
Google Scholar
Schramel P, Hasse S, O’vcar-Pavlu J. Selenium, cadmium, Lead, and mercury concentrations in human breast Milk, in placenta, maternal blood, and the blood of the newborn. Biol Trace Elem Res. 1988;15(1):111–24.
Article
CAS
Google Scholar
Polevoy C, Muckle G, Seguin JR, Ouellet E, Saint-Amour D. Similarities and differences between behavioral and electrophysiological visual acuity thresholds in healthy infants during the second half of the first year of life. Doc Ophthalmol. 2017;134(2):99–110.
Article
Google Scholar
Hall HL, Courage ML, Adams RJ. The predictive utility of the Teller acuity cards for assessing visual outcome in children with preterm birth and associated perinatal risks. Vis Res. 2000;40:2067–76.
Article
CAS
Google Scholar
Teller DY, McDonald M, Preston K, Sebris L, V. D. Assessment of visual acuity in infants and children: the acuity card procedure. Dev Med Child Neurol. 1986;28:779–89.
Article
CAS
Google Scholar
Fantz RL. Pattern vision in young infants. Psychol Rec. 1958;8:43–7.
Article
Google Scholar
Tyler CW, Apkarian P, Levi D, Nakayama K. Rapid assessment of visual function: an electric sweep technique for the pattern evoked potential. Invest Ophthalmol Vis Sci. 1979;18:703–13.
CAS
Google Scholar
Helsel DR: Nondetects and data analysis: statistics for censored environmental data. Hoboken, NJ: Wiley; 2004.
Shumway RH, Azari RS, Kayhanian M. Statistical approaches to estimating mean water quality concentrations with detection limits. Environ Sci Technol. 2002;36(15):3345–53.
Article
CAS
Google Scholar
Phillips DL, Smith AB, Burse VW, Steele GK, Needham LL, Hannon WH. Half-life of polychlorinated biphenyls in occupationally exposed workers. Arch Environ Health. 1989;44(6):351–4.
Article
CAS
Google Scholar
Choi AL, Budtz-Jorgensen E, Jorgensen PJ, Steuerwald U, Debes F, Weihe P, Grandjean P. Selenium as a potential protective factor against mercury developmental neurotoxicity. Environ Res. 2008;107(1):45–52.
Article
CAS
Google Scholar
Desrochers-Couture M, Oulhote Y, Arbuckle TE, Fraser WD, Seguin JR, Ouellet E, Forget-Dubois N, Ayotte P, Boivin M, Lanphear BP, et al. Prenatal, concurrent, and sex-specific associations between blood lead concentrations and IQ in preschool Canadian children. Environ Int. 2018;121(Pt 2):1235–42.
Article
CAS
Google Scholar
Cuvin-Aralar ML, Furness RW. Mercury and selenium interaction: a review. Ecotoxicol Environ Saf. 1991;21(3):348–64.
Article
CAS
Google Scholar
Sciences NAo: Dietay Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids Washington, D.C. : National Academy Press; 2000.
Roze E, Meijer L, Bakker A, Van Braeckel KN, Sauer PJ, Bos AF. Prenatal exposure to organohalogens, including brominated flame retardants, influences motor, cognitive, and behavioral performance at school age. Environ Health Perspect. 2009;117(12):1953–8.
Article
CAS
Google Scholar
Boucher O, Bastien CH, Saint-Amour D, Dewailly E, Ayotte P, Jacobson JL, Jacobson SW, Muckle G. Prenatal exposure to methylmercury and PCBs affects distinct stages of information processing: an event-related potential study with inuit children. Neurotoxicology. 2010;31(4):373–84.
Article
CAS
Google Scholar
Grandjean P, Weihe P, Burse VW, Needham LL, Storr-Hansen E, Heinzow B, Debes F, Murata K, Simonsen H, Ellefsen P, et al. Neurobehavioral deficits associated with PCB in 7-year-old children prenatally exposed to seafood neurotoxicants. Neurotoxicol Teratol. 2001;23(4):305–17.
Article
CAS
Google Scholar
Dallaire R, Muckle G, Rouget F, Kadhel P, Bataille H, Guldner L, Seurin S, Chajes V, Monfort C, Boucher O, et al. Cognitive, visual, and motor development of 7-month-old Guadeloupean infants exposed to chlordecone. Environ Res. 2012;118:79–85.
Article
CAS
Google Scholar
Riva E, Grandi F, Massetto N, Radaelli G, Giovannini M, Zetterstrom R, Agostoni C. Polychlorinated biphenyls in colostral milk and visual function at 12 months of life. Acta Paediatr. 2004;93(8):1103–7.
Article
CAS
Google Scholar
Kilburn KH. Visual and neurobehavioral impairment associated with polychlorinated biphenyls. Neurotoxicology. 2000;21(4):489–99.
CAS
Google Scholar
Boucher O, Muckle G, Jacobson JL, Carter RC, Kaplan-Estrin M, Ayotte P, Dewailly E, Jacobson SW. Domain-specific effects of prenatal exposure to PCBs, mercury, and lead on infant cognition: results from the environmental contaminants and child development study in Nunavik. Environ Health Perspect. 2014;122(3):310–6.
Article
CAS
Google Scholar
Forns J, Torrent M, Garcia-Esteban R, Grellier J, Gascon M, Julvez J, Guxens M, Grimalt JO, Sunyer J. Prenatal exposure to polychlorinated biphenyls and child neuropsychological development in 4-year-olds: an analysis per congener and specific cognitive domain. Sci Total Environ. 2012;432:338–43.
Article
CAS
Google Scholar
Linares V, Belles M, Domingo JL. Human exposure to PBDE and critical evaluation of health hazards. Arch Toxicol. 2015;89(3):335–56.
Article
CAS
Google Scholar
Lam J, Lanphear B, Bellinger D, Axelrad D, McPartland J, Sutton P, Davidson L, Daniels N, Sen S, Woodruff TJ. Developmental PBDE Exposure and IQ/ADHD in Childhood: A Systematic Review and Meta-Analysis. Environ Health Perspect. 2017:125(8).
Oulhote Y, Tremblay E, Arbuckle TE, Fraser WD, Lemelin JP, Seguin JR, Ouellet E, Forget-Dubois N, Ayotte P, Boivin M, et al. Prenatal exposure to polybrominated diphenyl ethers and predisposition to frustration at 7months: results from the MIREC study. Environ Int. 2018;119:79–88.
Article
CAS
Google Scholar
Barboni MT, Feitosa-Santana C, Zachi EC, Lago M, Teixeira RA, Taub A, da Costa MF, Silveira LC, Ventura DF. Preliminary findings on the effects of occupational exposure to mercury vapor below safety levels on visual and neuropsychological functions. J Occup Environ Med. 2009;51(12):1403–12.
Article
CAS
Google Scholar
Ekinci M, Ceylan E, Keles S, Cagatay HH, Apil A, Tanyildiz B, Uludag G. Toxic effects of chronic mercury exposure on the retinal nerve fiber layer and macular and choroidal thickness in industrial mercury battery workers. Med Sci Monit. 2014;20:1284–90.
Article
CAS
Google Scholar
Mulak M, Misiuk-Hojlo M, Markuszewski B, Dembska K. Influence of chronic exposure to heavy metals on eyesight. Klin Ocz. 2008;110(4–6):176–82.
CAS
Google Scholar
Korogi Y, Takahashi M, Hirai T, Ikushima I, Kitajima M, Sugahara T, Shigematsu Y, Okajima T, Mukuno K. Representation of the visual field in the striate cortex: comparison of MR findings with visual field deficits in organic mercury poisoning (Minamata disease). AJNR Am J Neuroradiol. 1997;18(6):1127–30.
CAS
Google Scholar
Pojda-Wilczek D, Herba E, Schneiberg B. Visual evoked potentials in children with high blood lead level. Klin Ocz. 2005;107(10–12):658–61.
Google Scholar
Hudnell HK, Skalik I, Otto D, House D, Subrt P, Sram R. Visual contrast sensitivity deficits in bohemian children. Neurotoxicology. 1996;17(3–4):615–28.
CAS
Google Scholar
Dahl R, White RF, Weihe P, Sorensen N, Letz R, Hudnell HK, Otto DA, Grandjean P. Feasibility and validity of three computer-assisted neurobehavioral tests in 7-year-old children. Neurotoxicol Teratol. 1996;18(4):413–9.
Article
CAS
Google Scholar
Walkowiak J, Altmann L, Kramer U, Sveinsson K, Turfeld M, Weishoff-Houben M, Winneke G. Cognitive and sensorimotor functions in 6-year-old children in relation to lead and mercury levels: adjustment for intelligence and contrast sensitivity in computerized testing. Neurotoxicol Teratol. 1998;20(5):511–21.
Article
CAS
Google Scholar
Till C, Westall CA, Koren G, Nulman I, Rovet JF. Vision abnormalities in young children exposed prenatally to organic solvents. Neurotoxicology. 2005;26(4):599–613.
Article
CAS
Google Scholar
Kim YM, Chung JY, An HS, Park SY, Kim BG, Bae JW, Han M, Cho YJ, Hong YS. Biomonitoring of Lead, cadmium, Total mercury, and Methylmercury levels in maternal blood and in umbilical cord blood at birth in South Korea. Int J Environ Res Public Health. 2015;12(10):13482–93.
Article
CAS
Google Scholar
Kopp RS, Kumbartski M, Harth V, Bruning T, Kafferlein HU. Partition of metals in the maternal/fetal unit and lead-associated decreases of fetal iron and manganese: an observational biomonitoring approach. Arch Toxicol. 2012;86(10):1571–81.
Article
CAS
Google Scholar
Hertz-Picciotto I, Schramm M, Watt-Morse M, Chantala K, Anderson J, Osterloh J. Patterns and determinants of blood lead during pregnancy. Am J Epidemiol. 2000;152(9):829–37.
Article
CAS
Google Scholar
Hu H, Tellez-Rojo MM, Bellinger D, Smith D, Ettinger AS, Lamadrid-Figueroa H, Schwartz J, Schnaas L, Mercado-Garcia A, Hernandez-Avila M. Fetal lead exposure at each stage of pregnancy as a predictor of infant mental development. Environ Health Perspect. 2006;114(11):1730–5.
Article
CAS
Google Scholar
Schnaas L, Rothenberg SJ, Flores MF, Martinez S, Hernandez C, Osorio E, Velasco SR, Perroni E. Reduced intellectual development in children with prenatal lead exposure. Environ Health Perspect. 2006;114(5):791–7.
Article
CAS
Google Scholar
Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13(3):330–8.
Article
CAS
Google Scholar
Beyrouty P, Chan HM. Co-consumption of selenium and vitamin E altered the reproductive and developmental toxicity of methylmercury in rats. Neurotoxicol Teratol. 2006;28(1):49–58.
Article
CAS
Google Scholar
Li P, Li Y, Feng X. Mercury and selenium interactions in human blood in the Wanshan mercury mining area, China. Sci Total Environ. 2016;573:376–81.
Article
CAS
Google Scholar
Rayman MP. The importance of selenium to human health. Lancet. 2000;356(9225):233–41.
Article
CAS
Google Scholar
Costa LG, Aschner M, Vitalone A, Syversen T, Soldin OP. Developmental neuropathology of environmental agents. Annu Rev Pharmacol Toxicol. 2004;44:87–110.
Article
CAS
Google Scholar
Mayer DL, Dobson V. Visual acuity development in infants and young children, as assessed by operant preferential looking. Vis Res. 1982;22(9):1141–51.
Article
CAS
Google Scholar
Rice DC. Evidence for delayed neurotoxicity produced by methylmercury. Neurotoxicology. 1996;17(3–4):583–96.
CAS
Google Scholar
Huttenlocher CD, Garey LV. Synaptogenesis in human visual cortex-evidence for synapse elimination during normal development. Neurosci Lett. 1982;33(3):247–52.
Article
CAS
Google Scholar
Jeong KS, Ha E, Shin JY, Park H, Hong YC, Ha M, Kim S, Lee SJ, Lee KY, Kim JH, et al. Blood heavy metal concentrations in pregnant Korean women and their children up to age 5years: Mothers’ and Children’s environmental health (MOCEH) birth cohort study. Sci Total Environ. 2017;605-606:784–91.
Article
CAS
Google Scholar
C.M. T, Golding J, A.M E. Lead, cadmium and mercury levels in pregnancy: the need for international consensus on levels of concern. J Dev Orig Health Dis. 2014;5(1):16–30.
Article
CAS
Google Scholar
Garcia-Esquinas E, Perez-Gomez B, Fernandez-Navarro P, Fernandez MA, de Paz C, Perez-Meixeira AM, Gil E, Iriso A, Sanz JC, Astray J, et al. Lead, mercury and cadmium in umbilical cord blood and its association with parental epidemiological variables and birth factors. BMC Public Health. 2013;13:841.
Article
CAS
Google Scholar
Foster WG, Cheung AP, Davis K, Graves G, Jarrell J, Leblanc A, Liang CL, Leech T, Walker M, Weber JP, et al. Circulating metals and persistent organic pollutant concentrations in Canadian and non-Canadian born primiparous women from five Canadian centres: result of a pilot biomonitoring study. Sci Total Environ. 2012;435-436:326–36.
Article
CAS
Google Scholar
Sanders AP, Flood K, Chiang S, Herring AH, Wolf L, Fry RC. Towards prenatal biomonitoring in North Carolina: assessing arsenic, cadmium, mercury, and lead levels in pregnant women. PLoS One. 2012;7(3):e31354.
Article
CAS
Google Scholar
Bloom MS, Fujimoto VY, Steuerwald AJ, Cheng G, Browne RW, Parsons PJ. Background exposure to toxic metals in women adversely influences pregnancy during in vitro fertilization (IVF). Reprod Toxicol. 2012;34(3):471–81.
Article
CAS
Google Scholar
Gray KA, Klebanoff MA, Brock JW, Zhou H, Darden R, Needham L, Longnecker MP. In utero exposure to background levels of polychlorinated biphenyls and cognitive functioning among school-age children. Am J Epidemiol. 2005;162(1):17–26.
Article
Google Scholar
Ibarluzea J, Alvarez-Pedrerol M, Guxens M, Marina LS, Basterrechea M, Lertxundi A, Etxeandia A, Goni F, Vioque J, Ballester F, et al. Sociodemographic, reproductive and dietary predictors of organochlorine compounds levels in pregnant women in Spain. Chemosphere. 2011;82(1):114–20.
Article
CAS
Google Scholar
Meijer L, Weiss J, Van Velzen M, Brouwer A, Bergman A, Sauer PJ. Serum concentrations of neutral and phenolic organohalogens in pregnant women and some of their infants in the Netherlands. Environ Sci Technol. 2008;42(9):3428–33.
Article
CAS
Google Scholar
Chen A, Yolton K, Rauch SA, Webster GM, Hornung R, Sjodin A, Dietrich KN, Lanphear BP. Prenatal Polybrominated Diphenyl Ether Exposures and Neurodevelopment in U.S. Children through 5 Years of Age: The HOME Study. Environ Health Perspect. 2014.
Vuong AM, Webster GM, Romano ME, Braun JM, Zoeller RT, Hoofnagle AN, Sjodin A, Yolton K, Lanphear BP, Chen A. Maternal Polybrominated Diphenyl ether (PBDE) exposure and thyroid hormones in maternal and cord sera: the HOME study, Cincinnati, USA. Environ Health Perspect. 2015;123(10):1079–85.
Article
CAS
Google Scholar
Caspersen IH, Aase H, Biele G, Brantsaeter AL, Haugen M, Kvalem HE, Skogan AH, Zeiner P, Alexander J, Meltzer HM, et al. The influence of maternal dietary exposure to dioxins and PCBs during pregnancy on ADHD symptoms and cognitive functions in Norwegian preschool children. Environ Int. 2016;94:649–60.
Article
CAS
Google Scholar
Abdelouahab N, Langlois MF, Lavoie L, Corbin F, Pasquier JC, Takser L. Maternal and cord-blood thyroid hormone levels and exposure to polybrominated diphenyl ethers and polychlorinated biphenyls during early pregnancy. Am J Epidemiol. 2013;178(5):701–13.
Article
Google Scholar
Sokol S, Moskowitz A, McCormack G. Infant VEP and preferential looking acuity measured with phase alternating gratings. Invest Ophthalmol Vis Sci. 1992;33(11):3156–61.
CAS
Google Scholar