Zhang K, Oswald EM, Brown DG, Brines SJ, Gronlund CJ, White-Newsome JL, et al. Geostatistical exploration of spatial variation of summertime temperatures in the Detroit metropolitan region. Environ Res. 2011;111(8):1046–53. https://doi.org/10.1016/j.envres.2011.08.012 Epub 2011 Sept 14.
Article
CAS
Google Scholar
Johnson S, Ross Z, Kheirbek I, Ito K. Characterization of intra-urban spatial variation in observed summer ambient temperature from the New York City Community air survey. Urban Clim. 2020;31:100583. https://doi.org/10.1016/j.uclim.2020.100583.
Article
Google Scholar
Li D, Bou-Zeid E. Synergistic interactions between urban Heat Islands and heat waves: the impact in cities is larger than the sum of its parts. J Appl Meteorol Climatol. 2013;52(9):2051–6. https://doi.org/10.1175/JAMC-D-13-02.1.
Article
Google Scholar
Diem JE, Stauber CE, Rothenberg R. Heat in the southeastern United States: characteristics, trends, and potential health impact. PLoS One. 2017;12(5):e0177937. https://doi.org/10.1371/journal.pone.0177937.
Article
CAS
Google Scholar
Goldman GT, Mulholland JA, Russell AG, Strickland MJ, Klein M, Waller LA, et al. Impact of exposure measurement error in air pollution epidemiology: effect of error type in time-series studies. Environ Health. 2011;10(1):61. https://doi.org/10.1186/1476-069X-10-61.
Article
Google Scholar
Dionisio KL, Baxter LK, Chang HH. An empirical assessment of exposure measurement error and effect attenuation in bipollutant epidemiologic models. Environ Health Perspect. 2014;122(11):1216–24. https://doi.org/10.1289/ehp.1307772 Epub 2014 July 8.
Article
CAS
Google Scholar
Sarnat SE, Sarnat JA, Mulholland J, Isakov V, Özkaynak H, Chang HH, et al. Application of alternative spatiotemporal metrics of ambient air pollution exposure in a time-series epidemiological study in Atlanta. J Expo Sci Environ Epidemiol. 2013;23(6):593–605. https://doi.org/10.1038/jes.2013.41 Epub 2013 Aug 21.
Article
Google Scholar
Xiao Q, Chen H, Strickland MJ, Kan H, Chang HH, Klein M, et al. Associations between birth outcomes and maternal PM2.5 exposure in Shanghai: a comparison of three exposure assessment approaches. Environ Int. 2018;117:226–36. https://doi.org/10.1016/j.envint.2018.04.050 Epub 2018 May 12.
Article
CAS
Google Scholar
Mohegh A, Goldberg D, Achakulwisut P, Anenberg SC. Sensitivity of estimated NO2-attributable pediatric asthma incidence to grid resolution and urbanicity. Environ Res Lett. 2020;16(1):014019. https://doi.org/10.1088/1748-9326/abce25.
Article
CAS
Google Scholar
Field CB, Barros VR, Dokken DJ, et al. Climate change 2014 impacts, adaptation and vulnerability: part a: global and Sectoral aspects: working group II contribution to the fifth assessment report of the intergovernmental panel on. Climate Change. 2014. https://doi.org/10.1017/CBO9781107415379.
Hsiang S, Kopp R, Jina A, Rising J, Delgado M, Mohan S, et al. Estimating economic damage from climate change in the United States. Science. 2017;356(6345):1362–9. https://doi.org/10.1126/science.aal4369.
Article
CAS
Google Scholar
Guo Y, Barnett AG, Tong S. Spatiotemporal model or time series model for assessing city-wide temperature effects on mortality? Environ Res. 2013;120:55–62. https://doi.org/10.1016/j.envres.2012.09.001 Epub 2012 Sept 29.
Article
CAS
Google Scholar
Lee M, Shi L, Zanobetti A, Schwartz JD. Study on the association between ambient temperature and mortality using spatially resolved exposure data. Environ Res. 2016;151:610–7. https://doi.org/10.1016/j.envres.2016.08.029 Epub 2016 Sept 7.
Article
CAS
Google Scholar
Weinberger KR, Spangler KR, Zanobetti A, Schwartz JD, Wellenius GA. Comparison of temperature-mortality associations estimated with different exposure metrics. Environ Epidemiol. 2019;3(5):e072. https://doi.org/10.1097/EE9.0000000000000072.
Article
Google Scholar
Laaidi K, Zeghnoun A, Dousset B, Bretin P, Vandentorren S, Giraudet E, et al. The impact of heat islands on mortality in Paris during the august 2003 heat wave. Environ Health Perspect. 2012;120(2):254–9. https://doi.org/10.1289/ehp.1103532 Epub 2011 Sept 1.
Article
Google Scholar
Harlan SL, Declet-Barreto JH, Stefanov WL, Petitti DB. Neighborhood effects on heat deaths: social and environmental predictors of vulnerability in Maricopa County, Arizona. Environ Health Perspect. 2013;121(2):197–204. https://doi.org/10.1289/ehp.1104625 Epub 2012 Nov 16.
Article
Google Scholar
Klein Rosenthal J, Kinney PL, Metzger KB. Intra-urban vulnerability to heat-related mortality in New York City, 1997-2006. Health Place. 2014;30:45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Epub 2014 Sept 6.
Article
Google Scholar
Jenerette GD, Harlan SL, Buyantuev A, Stefanov WL, Declet-Barreto J, Ruddell BL, et al. Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landscape Ecol. 2016;31(4):745–60. https://doi.org/10.1007/s10980-015-0284-3.
Article
Google Scholar
Anderson GB, Bell ML. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environ Health Perspect. 2011;119(2):210–8. https://doi.org/10.1289/ehp.1002313 Epub 2010 Oct 7.
Article
Google Scholar
Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet. 2015;386(9991):369–75. https://doi.org/10.1016/S0140-6736(14)62114-0 Epub 2015 May 20.
Article
Google Scholar
Luo Q, Li S, Guo Y, Han X, Jaakkola JJK. A systematic review and meta-analysis of the association between daily mean temperature and mortality in China. Environ Res. 2019;173:281–99. https://doi.org/10.1016/j.envres.2019.03.044 Epub 2019 Mar 22.
Article
CAS
Google Scholar
Ye X, Wolff R, Yu W, Vaneckova P, Pan X, Tong S. Ambient temperature and morbidity: a review of epidemiological evidence. Environ Health Perspect. 2012;120(1):19–28. https://doi.org/10.1289/ehp.1003198 Epub 2011 Aug 8.
Article
Google Scholar
Bobb JF, Obermeyer Z, Wang Y, Dominici F. Cause-specific risk of hospital admission related to extreme heat in older adults. JAMA. 2014;312(24):2659–67. https://doi.org/10.1001/jama.2014.15715.
Article
CAS
Google Scholar
Phung D, Thai PK, Guo Y, Morawska L, Rutherford S, Chu C. Ambient temperature and risk of cardiovascular hospitalization: an updated systematic review and meta-analysis. Sci Total Environ. 2016;550:1084–102. https://doi.org/10.1016/j.scitotenv.2016.01.154 Epub 2016 Feb 9.
Article
CAS
Google Scholar
Vaidyanathan A, Saha S, Vicedo-Cabrera AM, Gasparrini A, Abdurehman N, Jordan R, et al. Assessment of extreme heat and hospitalizations to inform early warning systems. Proc Natl Acad Sci U S A. 2019;116(12):5420–7. https://doi.org/10.1073/pnas.1806393116 Epub 2019 Mar 4.
Article
CAS
Google Scholar
Thornton PE, Running SW, White MA. Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol. 1997;190(3):214–51. https://doi.org/10.1016/S0022-1694(96)03128-9.
Article
Google Scholar
Spangler KR, Weinberger KR, Wellenius GA. Suitability of gridded climate datasets for use in environmental epidemiology. J Expo Sci Environ Epidemiol. 2019;29(6):777–89. https://doi.org/10.1038/s41370-018-0105-2 Epub 2018 Dec 11.
Article
CAS
Google Scholar
Ivy D, Mulholland JA, Russell AG. Development of ambient air quality population-weighted metrics for use in time-series health studies. J Air Waste Manag Assoc. 2008;58(5):711–20. https://doi.org/10.3155/1047-3289.58.5.711.
Article
CAS
Google Scholar
Winquist A, Grundstein A, Chang HH, Hess J, Sarnat SE. Warm season temperatures and emergency department visits in Atlanta, Georgia. Environ Res. 2016;147:314–23. https://doi.org/10.1016/j.envres.2016.02.022 Epub 2016 Feb 27.
Article
CAS
Google Scholar
Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 2018;5:180214. doi: https://doi.org/10.1038/sdata.2018.214. Erratum in: Sci Data. 2020 Aug 17;7(1):274.
Lippmann SJ, Fuhrmann CM, Waller AE, Richardson DB. Ambient temperature and emergency department visits for heat-related illness in North Carolina, 2007-2008. Environ Res. 2013;124:35–42. https://doi.org/10.1016/j.envres.2013.03.009 Epub 2013 Apr 30.
Article
CAS
Google Scholar
Tobías A, Armstrong B, Gasparrini A. Brief report: investigating uncertainty in the minimum mortality temperature: methods and application to 52 Spanish cities. Epidemiology. 2017;28(1):72–6. https://doi.org/10.1097/EDE.0000000000000567.
Article
Google Scholar
Patzert W, LaDochy S, Ramirez P, Willis J. Los Angeles Weather Station’s relocation impacts climate and weather records. The California Geographer, vol. 55; 2016.
Google Scholar
Napoli C, Pappenberger F, Cloke H. Verification of heat stress thresholds for a health-based heat-wave definition. J Appl Meteorol Climatol. 2019;58(6):1177–94. https://doi.org/10.1175/JAMC-D-18-0246.1.
Article
Google Scholar
Loughnan M, Nicholls N, Tapper N. Mortality-temperature thresholds for ten major population centres in rural Victoria, Australia. Health Place. 2010;16(6):1287–90. https://doi.org/10.1016/j.healthplace.2010.08.008 Epub 2010 Aug 14.
Article
Google Scholar
Murage P, Hajat S, Kovats RS. Effect of night-time temperatures on cause and age-specific mortality in London. Environ Epidemiol. 2017;1(2):e005. https://doi.org/10.1097/EE9.0000000000000005 Epub 2017 Dec 13.
Article
Google Scholar
Osilla EV, Marsidi JL, Sharma S. Physiology, Temperature Regulation. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021.
Google Scholar
Kenney WL, Craighead DH, Alexander LM. Heat waves, aging, and human cardiovascular health. Med Sci Sports Exerc. 2014;46(10):1891–9. https://doi.org/10.1249/MSS.0000000000000325.
Article
Google Scholar
Davis RE, Hondula DM, Patel AP. Temperature observation time and type influence estimates of heat-related mortality in seven U.S. cities. Environ Health Perspect. 2016;124(6):795–804. https://doi.org/10.1289/ehp.1509946.
Article
CAS
Google Scholar
Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG. An overview of the global historical climatology network-daily database. J Atmos Ocean Technol. 2012;29(7):897–910. https://doi.org/10.1175/JTECH-D-11-00103.1.
Article
Google Scholar
Kusaka H, Kondo H, Kikegawa Y, Kimura F. A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound-Layer Meteorol. 2001;101(3):329–58. https://doi.org/10.1023/A:1019207923078.
Article
Google Scholar
Monaghan AJ, Hu L, Brunsell NA, Barlage M, Wilhelmi OV. Evaluating the impact of urban morphology configurations on the accuracy of urban canopy model temperature simulations with MODIS. J Geophys Res. 2014;119(11):6376–92. https://doi.org/10.1002/2013JD021227.
Article
Google Scholar
Newman AJ, Monaghan AM, Holmes H, Chang H, Darrow L, Warren J, et al. Development of a novel high-resolution long-term gridded meteorology dataset including urban heat islands over the contiguous United States for health studies. San Francisco: AGU Fall Meeting; 2019.
Google Scholar
Buckley JP, Samet JM, Richardson DB. Commentary: does air pollution confound studies of temperature? Epidemiology. 2014;25(2):242–5. https://doi.org/10.1097/EDE.0000000000000051.
Article
Google Scholar
Anderson BG, Bell ML. Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology. 2009;20(2):205–13. https://doi.org/10.1097/EDE.0b013e318190ee08.
Article
Google Scholar
Chen R, Yin P, Wang L, Liu C, Niu Y, Wang W, et al. Association between ambient temperature and mortality risk and burden: time series study in 272 main Chinese cities. BMJ. 2018;363:k4306. https://doi.org/10.1136/bmj.k4306.
Article
Google Scholar