Fang X, Zuo J, Zhou J, Cai J, Chen C, Xiang E, et al. Childhood obesity leads to adult type 2 diabetes and coronary artery diseases: a 2-sample mendelian randomization study. Medicine (Baltimore) [Internet]. 2019;98 Available from: https://journals.lww.com/md-journal/Fulltext/2019/08090/Childhood_obesity_leads_to_adult_type_2_diabetes.76.aspx.
Bridger T. Childhood obesity and cardiovascular disease. Paediatr child health [internet]. Pulsus Group Inc. 2009;14:177–82 Available from: https://pubmed.ncbi.nlm.nih.gov/20190900.
Google Scholar
Goran MI, Ball GDC, Cruz ML. Obesity and risk of type 2 diabetes and cardiovascular disease in. Child Adolescents. 2003;88:1417–27.
CAS
Google Scholar
May AL, Kuklina EV, Yoon PW. Prevalence of cardiovascular disease risk factors among US adolescents, 1999-2008. Pediatr U S. 2012;129:1035–41.
Google Scholar
Finkelstein EA, Khavjou OA, Thompson H, Trogdon JG, Pan L, Sherry B, et al. Obesity and severe obesity forecasts through 2030. Am J Prev Med Neth. 2012;42:563–70.
Google Scholar
Chait A, den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front Cardiovasc Med [Internet]. 2020;7:22 Available from: https://pubmed.ncbi.nlm.nih.gov/32158768.
CAS
Google Scholar
Burhans MS, Hagman DK, Kuzma JN, Schmidt KA, Kratz M. Contribution of adipose tissue inflammation to the development of type 2 diabetes mellitus. Compr Physiol [Internet]. 2018;9:1–58 Available from: https://pubmed.ncbi.nlm.nih.gov/30549014.
Google Scholar
Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. In: Yull FE, Niu J, editors. ISRN Inflamm [internet], vol. 2013: Hindawi publishing corporation; 2013. p. 139239. Available from:. https://doi.org/10.1155/2013/139239.
Chapter
Google Scholar
Stern JH, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab [Internet]. 2016;23:770–84 Available from: https://pubmed.ncbi.nlm.nih.gov/27166942.
CAS
Google Scholar
Yadav A, Kataria MA, Saini V, Yadav A. Role of leptin and adiponectin in insulin resistance. Clin Chim Acta Netherlands. 2013;417:80–4.
CAS
Google Scholar
Kwon H, Pessin JE. Adipokines mediate inflammation and insulin resistance. Front Endocrinol (Lausanne) [internet]. Frontiers Media S.A. 2013;4:71 Available from: https://pubmed.ncbi.nlm.nih.gov/23781214.
Google Scholar
Rabe K, Lehrke M, Parhofer KG, Broedl UC. Adipokines and insulin resistance. Mol med [internet]. 2008/09/17. ScholarOne. 2008;14:741–51 Available from: https://pubmed.ncbi.nlm.nih.gov/19009016.
CAS
Google Scholar
La Cava A, Matarese G. The weight of leptin in immunity. Nat Rev Immunol England. 2004;4:371–9.
Google Scholar
Shangang Z, Kusminski CM, Scherer PE. Adiponectin, leptin and cardiovascular disorders. Circ Res. 2021;128:136–49. Available from:. https://doi.org/10.1161/CIRCRESAHA.120.314458.
Article
CAS
Google Scholar
Seo MY, Kim S-H, Park MJ. Air pollution and childhood obesity. Clin Exp Pediatr. 2020;63:382–8. Available from:. https://doi.org/10.3345/cep.2020.00010.
Article
Google Scholar
Fioravanti S, Porta D, Cesaroni G, Badaloni C, Michelozzi P, Forastiere F. Traffic-related air pollution and childhood obesity in an Italian birth cohort. Environ Res. 2018;160:479–86. Available from:. https://doi.org/10.1016/j.envres.2017.10.003.
Article
CAS
Google Scholar
Kim JS, Chen Z, Alderete TL, Toledo-corral C, Lurmann F, Berhane K, et al. Associations of air pollution , obesity and cardiometabolic health in young adults : The Meta-AIR study. Environ Int. 2019;133:105180. Available from:. https://doi.org/10.1016/j.envint.2019.105180.
Article
CAS
Google Scholar
Jerrett M, McConnell R, Wolch J, Chang R, Lam C, Dunton G, et al. Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis. Environ Health. 2014;13:49.
Google Scholar
Kim JS, Alderete TL, Chen Z, Lurmann F, Rappaport E, Habre R, et al. Longitudinal associations of in utero and early life near-roadway air pollution with trajectories of childhood body mass index. Environ Heal. 2018;17:64. Available from:. https://doi.org/10.1186/s12940-018-0409-7.
Article
CAS
Google Scholar
Park SK, Wang W. Ambient air pollution and type 2 diabetes: a systematic review of epidemiologic research. Curr Environ Heal Rep. 2014;1:275–86.
CAS
Google Scholar
Eze IC, Hemkens LG, Bucher HC, Hoffmann B, Schindler C, Künzli N, et al. Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis. Environ Health Perspect. 2015;123:381–9.
Google Scholar
Alderete TL, Song AY, Bastain T, Habre R, Toledo-Corral CM, Salam MT, et al. Prenatal traffic-related air pollution exposures, cord blood adipokines and infant weight. Pediatr Obes. 2018;13:348–56.
CAS
Google Scholar
Xu Z, Xu X, Zhong M, Hotchkiss IP, Lewandowski RP, Wagner JG, et al. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues. Part Fibre Toxicol. 2011;8:20.
CAS
Google Scholar
Qinghua S, Peibin Y, Deiuliis JA, Lumeng CN, Kampfrath T, Mikolaj MB, et al. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation. 2009;119:538–46. Available from:. https://doi.org/10.1161/CIRCULATIONAHA.108.799015.
Article
CAS
Google Scholar
Woodward NC, Crow AL, Zhang Y, Epstein S, Hartiala J, Johnson R, et al. Exposure to nanoscale particulate matter from gestation to adulthood impairs metabolic homeostasis in mice. Sci Rep. 2019;9:1816.
Google Scholar
Wolf K, Popp A, Schneider A, Breitner S, Hampel R, Rathmann W, et al. Association between long-term exposure to air pollution and biomarkers related to insulin resistance, subclinical inflammation, and adipokines. Diabetes. 2016;65:3314–26.
CAS
Google Scholar
Chen W, Han Y, Wang Y, Chen X, Qiu X, Li W, et al. Associations between changes in adipokines and exposure to fine and ultrafine particulate matter in ambient air in Beijing residents with and without pre-diabetes. BMJ Open Diabetes Res Care. 2020;8.
Li W, Dorans KS, Wilker EH, Rice MB, Kloog I, Schwartz JD, et al. Ambient air pollution , adipokines , and glucose homeostasis : The Framingham Heart Study. Environ Int. 2018;111:14–22. Available from:. https://doi.org/10.1016/j.envint.2017.11.010.
Article
CAS
Google Scholar
Wang Y, Eliot MN, Kuchel GA, Schwartz J, Coull BA, Mittleman MA, et al. Long-term exposure to ambient air pollution and serum leptin in older adults: results from the MOBILIZE Boston study. J Occup Environ Med. 2014;56:e73–7.
CAS
Google Scholar
Molfino A, Amabile MI, Muscaritoli M, Germano A, Alfano R, Ramaccini C, et al. Association between metabolic and hormonal derangements and professional exposure to urban pollution in a high intensity traffic area. Front Endocrinol (Lausanne). 2020;11:1–8.
Google Scholar
Teichert T, Vossoughi M, Vierkötter A, Sugiri D, Schikowski T, Schulte T, et al. Association between traffic-related air pollution, subclinical inflammation and impaired glucose metabolism: results from the SALIA study. PLoS One. 2013;8:e83042 Available from: https://pubmed.ncbi.nlm.nih.gov/24340078.
Google Scholar
Lavigne E, Ashley-Martin J, Dodds L, Arbuckle TE, Hystad P, Johnson M, et al. Air pollution exposure during pregnancy and fetal markers of metabolic function. Am J Epidemiol. 2016;183:842–51.
Google Scholar
Brook RD, Sun Z, Brook JR, Zhao X, Ruan Y, Yan J, et al. Extreme air pollution conditions adversely affect blood pressure and insulin resistance: the air pollution and Cardiometabolic disease study. Hypertension. 2016;67:77–85.
CAS
Google Scholar
Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes U S. 2005;54:2277–86.
CAS
Google Scholar
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AWJ. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.
CAS
Google Scholar
Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest. 2003;112:1785–8.
CAS
Google Scholar
Ruggiero AD, Key C-CC, Kavanagh K. Adipose tissue macrophage polarization in healthy and unhealthy obesity. Front Nutr. 2021;8:625331 Available from: https://pubmed.ncbi.nlm.nih.gov/33681276.
Google Scholar
McLaughlin T, Liu L-F, Lamendola C, Shen L, Morton J, Rivas H, et al. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arterioscler Thromb Vasc Biol. 2014;34:2637–43.
CAS
Google Scholar
Wang Q, Wu H. T cells in adipose tissue: critical players in Immunometabolism. Front Immunol. 2018;9:2509 Available from: https://pubmed.ncbi.nlm.nih.gov/30459770.
Google Scholar
Yang H, Youm Y-H, Vandanmagsar B, Ravussin A, Gimble JM, Greenway F, et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol. 2010;185:1836–45.
CAS
Google Scholar
Alderete TL, Sattler FR, Sheng X, Tucci J, Mittelman SD, Grant EG, et al. A novel biopsy method to increase yield of subcutaneous abdominal adipose tissue. Int J Obes (Lond). 2015;39:183–6 Available from: https://pubmed.ncbi.nlm.nih.gov/24849392.
CAS
Google Scholar
Lombardi V, Beuraud C, Neukirch C, Moussu H, Morizur L, Horiot S, et al. Circulating innate lymphoid cells are differentially regulated in allergic and nonallergic subjects. J Allergy Clin Immunol. 2016;138:305–8.
Google Scholar
Maazi H, Patel N, Sankaranarayanan I, Suzuki Y, Rigas D, Soroosh P, et al. ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity. Immunity. 2015;42:538–51.
CAS
Google Scholar
Sattler FR, Mert M, Sankaranarayanan I, Mack WJ, Galle-Treger L, Gonzalez E, et al. Feasibility of quantifying change in immune white cells in abdominal adipose tissue in response to an immune modulator in clinical obesity. PLoS One. 2020;15:e0237496. Available from:. https://doi.org/10.1371/journal.pone.0237496.
Article
CAS
Google Scholar
Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med. 2006;203:1693–700.
CAS
Google Scholar
Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006;203:1701–11.
CAS
Google Scholar
Gyllenhammer LE, Lam J, Alderete TL, Allayee H, Akbari O, Katkhouda N, et al. Lower omental t-regulatory cell count is associated with higher fasting glucose and lower β-cell function in adults with obesity. Obesity. 2016;24:1274–82.
CAS
Google Scholar
Hagman DK, Kuzma JN, Larson I, Foster-Schubert KE, Kuan L-Y, Cignarella A, et al. Characterizing and quantifying leukocyte populations in human adipose tissue: impact of enzymatic tissue processing. J Immunol Methods. 2012;386:50–9.
CAS
Google Scholar
Biswas P, Mantelli B, Sica A, Malnati M, Panzeri C, Saccani A, et al. Expression of CD4 on human peripheral blood neutrophils. Blood United States. 2003;101:4452–6.
CAS
Google Scholar
Oda N, Imamura S, Fujita T, Uchida Y, Inagaki K, Kakizawa H, et al. The ratio of leptin to adiponectin can be used as an index of insulin resistance. Metabolism. 2008;57:268–73.
CAS
Google Scholar
Finucane FM, Luan J, Wareham NJ, Sharp SJ, O’Rahilly S, Balkau B, et al. Correlation of the leptin:adiponectin ratio with measures of insulin resistance in non-diabetic individuals. Diabetologia [internet]. 2009/09/12. Springer-Verlag. 2009;52:2345–9 Available from: https://pubmed.ncbi.nlm.nih.gov/19756488.
CAS
Google Scholar
Frühbeck G, Catalán V, Rodríguez A, Ramírez B, Becerril S, Salvador J, et al. Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome. Sci Rep. 2017;7:6619. Available from:. https://doi.org/10.1038/s41598-017-06997-0.
Article
CAS
Google Scholar
Chulaievska I, Romanov V, Chulaievska N, Mitchenko O. Leptin/adiponectin ratio as a marker of cardiovascular diseases at the patients with metabolic syndrome. J Hypertens. 2010;28:34.430 Available from: https://journals.lww.com/jhypertension/Fulltext/2010/06001/LEPTIN_ADIPONECTIN_RATIO_AS_A_MARKER_OF.1711.aspx.
Google Scholar
Ayina CNA, Endomba FTA, Mandengue SH, Noubiap JJN, Ngoa LSE, Boudou P, et al. Association of the leptin-to-adiponectin ratio with metabolic syndrome in a sub-Saharan African population. Diabetol Metab Syndr. 2017;9:66. Available from:. https://doi.org/10.1186/s13098-017-0265-6.
Article
CAS
Google Scholar
Frithioff-Bøjsøe C, Lund MAV, Lausten-Thomsen U, Hedley PL, Pedersen O, Christiansen M, et al. Leptin, adiponectin, and their ratio as markers of insulin resistance and cardiometabolic risk in childhood obesity. Pediatr Diabetes. 2020;21:194–202. Available from:. https://doi.org/10.1111/pedi.12964.
Article
CAS
Google Scholar
Benson PE. A review of the development and application of the CALINE3 and 4 models. Atmos Environ Part B Urban Atmos [Internet]. 1992;26:379–90 Available from: https://www.sciencedirect.com/science/article/pii/095712729290013I.
Google Scholar
California air Resources Board. EMFAC2017 volume I – User’s guide V1.0.2 [internet]. California; 2018 [cited 2018 Mar 1]. Available from: https://ww3.arb.ca.gov/msei/downloads/emfac2017-volume-i-users-guide.pdf
Wong DW, Yuan L, Perlin SA. Comparison of spatial interpolation methods for the estimation of air quality data. J Expo Sci Environ Epidemiol. 2004;14:404–15. Available from:. https://doi.org/10.1038/sj.jea.7500338.
Article
CAS
Google Scholar
Eckel SP, Cockburn M, Shu Y-H, Deng H, Lurmann FW, Liu L, et al. Air pollution affects lung cancer survival. Thorax. 2016;71:891–8.
Google Scholar
Lüdecke D. ggeffects: Tidy data frames of marginal effects from regression models. J Open Source Softw [Internet] 2018;3:772. Available from: https://doi.org/10.21105/joss.00772.
Dostálová I, Kopský V, Dušková J, Papežová H, Pacák K, Nedvídková J. Leptin concentrations in the abdominal subcutaneous adipose tissue of patients with anorexia nervosa assessed by in vivo microdialysis. Regul Pept. 2005;128:63–8.
Google Scholar
McConnell R, Shen E, Gilliland FD, Jerrett M, Wolch J, Chang CC, et al. A longitudinal cohort study of body mass index and childhood exposure to secondhand tobacco smoke and air pollution: the Southern California Children’s health study. Environ Health Perspect. 2015;123:360–6.
Google Scholar
Chen Z, Newgard CB, Kim JS, Iikayeva O, Alderete TL, Thomas DC, et al. Near-roadway air pollution exposure and altered fatty acid oxidation among adolescents and young adults – the interplay with obesity. Environ Int. 2019;130:104935. Available from:. https://doi.org/10.1016/j.envint.2019.104935.
Article
CAS
Google Scholar
Chen Z, Herting MM, Chatzi L, Belcher BR, Alderete TL, McConnell R, et al. Regional and traffic-related air pollutants are associated with higher consumption of fast food and trans fat among adolescents. Am J Clin Nutr. 2019;109:99–108.
Google Scholar
McConnell R, Islam T, Shankardass K, Jerrett M, Lurmann F, Gilliland F, et al. Childhood incident asthma and traffic-related air pollution at home and school. Environ Health Perspect. 2010;118:1021–6.
CAS
Google Scholar
Urman R, Eckel S, Deng H, Berhane K, Avol E, Lurmann F, et al. Risk effects of near-roadway pollutants and asthma status on bronchitic symptoms in children. Environ Epidemiol. 2018;2:e012.
Google Scholar
Deng H, Urman R, Gilliland FD, Eckel SP. Understanding the importance of key risk factors in predicting chronic bronchitic symptoms using a machine learning approach. BMC Med Res Methodol. 2019;19:1–12.
Google Scholar
Selley L, Schuster L, Marbach H, Forsthuber T, Forbes B, Gant TW, et al. Brake dust exposure exacerbates inflammation and transiently compromises phagocytosis in macrophages. Metallomics. 2020;12:371–86.
CAS
Google Scholar
Roberts A, Brooks R, Shipway P. Internal combustion engine cold-start efficiency: a review of the problem, causes and potential solutions. Energy Convers Manag [Internet]. 2014;82:327–50 Available from: https://www.sciencedirect.com/science/article/pii/S0196890414001939.
Google Scholar
Fujita EM, Zielinska B, Campbell DE, Arnott WP, Sagebiel JC, Mazzoleni L, et al. Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California’s south coast Air Basin. J Air Waste Manag Assoc. 2007;57:705–20.
CAS
Google Scholar
Clements AL, Jia Y, Denbleyker A, McDonald-Buller E, Fraser MP, Allen DT, et al. Air pollutant concentrations near three Texas roadways, part II: chemical characterization and transformation of pollutants. Atmos Environ. 2009;43:4523–34. Available from:. https://doi.org/10.1016/j.atmosenv.2009.06.044.
Article
CAS
Google Scholar
Bates JT, Weber RJ, Abrams J, Verma V, Fang T, Klein M, et al. Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory effects. Environ Sci Technol. 2015;49:13605–12.
CAS
Google Scholar
Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. Nat Publ Group. 2009;15:930–9.
CAS
Google Scholar
Chen X, Wu Y, Wang L. Fat-resident Tregs: an emerging guard protecting from obesity-associated metabolic disorders. Obes Rev. 2013;14:568–78.
CAS
Google Scholar
Zhang WC, Wang YG, Zhu ZF, Wu FQ, Peng YD, Chen ZY, et al. Regulatory T cells protect fine particulate matter-induced inflammatory responses in human umbilical vein endothelial cells. Mediat Inflamm. 2014;2014:1–15.
Google Scholar
Russo L, Lumeng CN. Properties and functions of adipose tissue macrophages in obesity. Immunology. 2018;155:407–17.
CAS
Google Scholar
Zeyda M, Farmer D, Todoric J, Aszmann O, Speiser M, Györi G, et al. Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes. 2007;31:1420–8.
CAS
Google Scholar
Fain JN. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm U S. 2006;74:443–77.
CAS
Google Scholar
Zeyda M, Stulnig TM. Adipose tissue macrophages. Immunol Lett. 2007;112:61–7.
CAS
Google Scholar
Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med Nat Publ Group. 2009;15:914–20.
CAS
Google Scholar
Matsubara M, Maruoka S, Katayose S. Inverse relationship between plasma adiponectin and leptin concentrations in normal-weight and obese women. Eur J Endocrinol England. 2002;147:173–80.
CAS
Google Scholar
Diwan AG, Kuvalekar AA, Dharamsi S, Vora AM, Nikam VA, Ghadge AA. Correlation of Serum Adiponectin and Leptin levels in Obesity and Type 2 Diabetes Mellitus. Indian J Endocrinol Metab. 2018;22:93–9 Available from: https://pubmed.ncbi.nlm.nih.gov/29535945.
CAS
Google Scholar
Frühbeck G, Catalán V, Rodríguez A, Gómez-Ambrosi J. Adiponectin-leptin ratio: A promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte. 2018;7:57–62 Available from: https://pubmed.ncbi.nlm.nih.gov/29205099.
Google Scholar
Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45:580–5.
CAS
Google Scholar
IARC. Diesel engine exhaust carcinogenic [Internet]. 2012. Available from: https://www.iarc.who.int/wp-content/uploads/2018/07/pr213_E.pdf.
Google Scholar
Park M, Joo HS, Lee K, Jang M, Kim SD, Kim I, et al. Differential toxicities of fine particulate matters from various sources. Sci Rep. 2018;8:1–11.
Google Scholar
Kelly FJ, Fussell JC. Toxicity of airborne particles - established evidence, knowledge gaps and emerging areas of importance: topical aspects of particle toxicity. Philos trans R Soc a math Phys. Eng Sci. 2020;378.