Schraufnagel DE, Balmes JR, Cowl CT, De Matteis S, Jung S-H, Mortimer K, Perez-Padilla R, Rice MB, Riojas-Rodriguez H, Sood A. Air pollution and noncommunicable diseases: a review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air pollution and organ systems. Chest. 2019;155(2):417–26.
Google Scholar
State of the Air. American Lung Association. 2021.
Google Scholar
Dedoussi IC, Eastham SD, Monier E, Barrett SR. Premature mortality related to United States cross-state air pollution. Nature. 2020;578(7794):261–5.
Google Scholar
Hayes RB, Lim C, Zhang Y, Cromar K, Shao Y, Reynolds HR, Silverman DT, Jones RR, Park Y, Jerrett M, Ahn J, Thurston GD. PM2.5 air pollution and cause-specific cardiovascular disease mortality. Int J Epidemiol. 2020;49(1):25–35.
Google Scholar
Lefler JS, Higbee JD, Burnett RT, Ezzati M, Coleman NC, Mann DD, Marshall JD, Bechle M, Wang Y, Robinson AL. Air pollution and mortality in a large, representative US cohort: multiple-pollutant analyses, and spatial and temporal decompositions. Environ Health. 2019;18(1):1–11.
Google Scholar
Tessum CW, Paolella DA, Chambliss SE, Apte JS, Hill JD, Marshall JD. PM2. 5 polluters disproportionately and systemically affect people of color in the United States. Sci Adv. 2021;7(18):eabf4491.
Google Scholar
Mohai P, Saha R. Racial inequality in the distribution of hazardous waste: a national-level reassessment. Soc Probl. 2007;54(3):343–70.
Google Scholar
Zwickl K, Ash M, Boyce JK. Regional variation in environmental inequality: industrial air toxics exposure in US cities. Ecol Econ. 2014;107:494–509.
Google Scholar
Weaver GM, Gauderman WJ. Traffic-related pollutants: Exposure and Health effects among Hispanic children. Am J Epidemiol. 2018;187(1):45–52.
Google Scholar
Martin JA, Hamilton BE, Osterman MJK, Driscoll AK. Births: Final Data for 2019. Nat Vital Stat Rep. 2021;70(2):1–51.
Google Scholar
Alhusen JL, Bower KM, Epstein E, Sharps P. Racial discrimination and adverse birth outcomes: an integrative review. J Midwifery Womens Health. 2016;61(6):707–20.
Google Scholar
Howell EA. Reducing disparities in severe maternal morbidity and mortality. Clin Obstet Gynecol. 2018;61(2):387–99.
Google Scholar
Bekkar B, Pacheco S, Basu R, DeNicola N. Association of air pollution and heat exposure with preterm birth, low birth weight, and stillbirth in the US: a systematic review. JAMA Netw Open. 2020;3(6):e208243-e.
Google Scholar
Brauer M, Lencar C, Tamburic L, Koehoorn M, Demers P, Karr C. A cohort study of traffic-related air pollution impacts on birth outcomes. Environ Health Perspect. 2008;116(5):680–6.
Google Scholar
Fu L, Chen Y, Yang X, Yang Z, Liu S, Pei L, Feng B, Cao G, Liu X, Lin H, Li X, Ye Y, Zhang B, Sun J, Xu X, Liu T, Ma W. The associations of air pollution exposure during pregnancy with fetal growth and anthropometric measurements at birth: a systematic review and meta-analysis. Environ Sci Pollut Res Int. 2019;26(20):20137–47.
Google Scholar
Ha S, Hu H, Roussos-Ross D, Haidong K, Roth J, Xu X. The effects of air pollution on adverse birth outcomes. Environ Res. 2014;134:198–204.
Google Scholar
Lee PC, Roberts JM, Catov JM, Talbott EO, Ritz B. First trimester exposure to ambient air pollution, pregnancy complications and adverse birth outcomes in Allegheny County, PA. Matern Child Health J. 2013;17(3):545–55.
Google Scholar
Rosa MJ, Pajak A, Just AC, Sheffield PE, Kloog I, Schwartz J, Coull B, Enlow MB, Baccarelli AA, Huddleston K. Prenatal exposure to PM2. 5 and birth weight: a pooled analysis from three North American longitudinal pregnancy cohort studies. Environ Internat. 2017;107:173–80.
Google Scholar
Salam MT, Millstein J, Li YF, Lurmann FW, Margolis HG, Gilliland FD. Birth outcomes and prenatal exposure to ozone, carbon monoxide, and particulate matter: results from the Children’s Health Study. Environ Health Perspect. 2005;113(11):1638–44.
Stieb DM, Chen L, Eshoul M, Judek S. Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. Environ Res. 2012;117:100–11.
Google Scholar
Blake BE, Fenton SE. Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: a review including the placenta as a target tissue and possible driver of peri- and postnatal effects. Toxicology. 2020;443:152565.
Google Scholar
Bové H, Bongaerts E, Slenders E, Bijnens EM, Saenen ND, Gyselaers W, Van Eyken P, Plusquin M, Roeffaers MB, Ameloot M. Ambient black carbon particles reach the fetal side of human placenta. Nat Commun. 2019;10(1):1–7.
Google Scholar
Perera F, Herbstman J. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol. 2011;31(3):363–73.
Google Scholar
Saenen N, Martens D, Neven K, Alfano R, Bové H, Janssen B, Roels H, Plusquin M, Vrijens K, Nawrot T. Air pollution-induced placental alterations: an interplay of oxidative stress, epigenetics, and the aging phenotype? Clin Epigenetics. 2019;11(1):1–14.
Google Scholar
Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36(1):62–7.
Google Scholar
Barker DJ, Osmond C, Forsén TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults. N Engl J Med. 2005;353(17):1802–9.
Google Scholar
Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61–73.
Google Scholar
Aguilera I, Garcia-Esteban R, Iñiguez C, Nieuwenhuijsen MJ, Rodríguez À, Paez M, Ballester F, Sunyer J. Prenatal exposure to traffic-related air pollution and ultrasound measures of fetal growth in the INMA Sabadell cohort. Environ Health Perspect. 2010;118(5):705–11.
Google Scholar
Iñiguez C, Ballester F, Estarlich M, Esplugues A, Murcia M, Llop S, Plana A, Amorós R, Rebagliato M. Prenatal exposure to traffic-related air pollution and fetal growth in a cohort of pregnant women. Occup Environ Med. 2012;69(10):736–44.
Google Scholar
Iñiguez C, Esplugues A, Sunyer J, Basterrechea M, Fernández-Somoano A, Costa O, Estarlich M, Aguilera I, Lertxundi A, Tardón A, Guxens M, Murcia M, Lopez-Espinosa MJ, Ballester F. Prenatal exposure to NO2 and ultrasound measures of fetal growth in the Spanish INMA Cohort. Environ Health Perspect. 2016;124(2):235–42.
Google Scholar
Ritz B, Qiu J, Lee PC, Lurmann F, Penfold B, Erin Weiss R, McConnell R, Arora C, Hobel C, Wilhelm M. Prenatal air pollution exposure and ultrasound measures of fetal growth in Los Angeles, California. Environ Res. 2014;130:7–13.
Google Scholar
Wang W, Zhong C, Huang L, Zhou X, Chen R, Wu J, Li X, Xiong T, Liu C, Xiao M. Prenatal NO2 exposure and ultrasound measures of foetal growth: a prospective cohort study in Wuhan, China. Occup Environ Med. 2017;74(3):204–10.
Google Scholar
van den Hooven EH, Pierik FH, de Kluizenaar Y, Willemsen SP, Hofman A, van Ratingen SW, Zandveld PY, Mackenbach JP, Steegers EA, Miedema HM, Jaddoe VW. Air pollution exposure during pregnancy, ultrasound measures of fetal growth, and adverse birth outcomes: a prospective cohort study. Environ Health Perspect. 2012;120(1):150–6.
Google Scholar
Clemens T, Turner S, Dibben C. Maternal exposure to ambient air pollution and fetal growth in North-East Scotland: a population-based study using routine ultrasound scans. Environ Int. 2017;107:216–26.
Google Scholar
Hansen CA, Barnett AG, Pritchard G. The effect of ambient air pollution during early pregnancy on fetal ultrasonic measurements during mid-pregnancy. Environ Health Perspect. 2008;116(3):362–9.
Google Scholar
Lamichhane DK, Ryu J, Leem JH, Ha M, Hong YC, Park H, Kim Y, Jung DY, Lee JY, Kim HC, Ha EH. Air pollution exposure during pregnancy and ultrasound and birth measures of fetal growth: a prospective cohort study in Korea. Sci Total Environ. 2018;619–620:834–41.
Google Scholar
Zhao N, Qiu J, Ma S, Zhang Y, Lin X, Tang Z, Zhang H, Huang H, Ma N, Huang Y, Bell ML, Liu Q, Zhang Y. Effects of prenatal exposure to ambient air pollutant PM10 on ultrasound-measured fetal growth. Int J Epidemiol. 2018;47(4):1072–81.
Google Scholar
Cao Z, Meng L, Zhao Y, Liu C, Yang Y, Su X, Fu Q, Wang D, Hua J. Maternal exposure to ambient fine particulate matter and fetal growth in Shanghai, China. Environ Health. 2019;18(1):1–8.
Google Scholar
Leung M, Weisskopf MG, Laden F, Coull BA, Modest AM, Hacker MR, Wylie BJ, Wei Y, Schwartz J, Papatheodorou S. Exposure to PM 2.5 during pregnancy and fetal growth in Eastern Massachusetts, USA. Environ Health Perspect. 2022;130(1):017004.
Google Scholar
Lin L, Li Q, Yang J, Han N, Jin C, Xu X, Liu Z, Liu J, Luo S, Raat H, Wang H. The associations of particulate matters with fetal growth in utero and birth weight: a birth cohort study in Beijing, China. Science Total Environ. 2020;709:136246.
Google Scholar
Najafi ML, Zarei M, Gohari A, Haghighi L, Heydari H, Miri M. Preconception air pollution exposure and glucose tolerance in healthy pregnant women in a middle-income country. Environ Health. 2020;19(1):1–10.
Google Scholar
Rammah A, Whitworth KW, Symanski E. Particle air pollution and gestational diabetes mellitus in Houston, Texas. Environ Res. 2020;190:109988.
Google Scholar
Robledo CA, Mendola P, Yeung E, Männistö T, Sundaram R, Liu D, Ying Q, Sherman S, Grantz KL. Preconception and early pregnancy air pollution exposures and risk of gestational diabetes mellitus. Environ Res. 2015;137:316–22.
Google Scholar
Bastain TM, Chavez T, Habre R, Girguis MS, Grubbs B, Toledo-Corral C, Amadeus M, Farzan SF, Al-Marayati L, Lerner D, Noya D, Quimby A, Twogood S, Wilson M, Chatzi L, Cousineau M, Berhane K, Eckel SP, Lurmann F, Johnston J, Dunton GF, Gilliland F, Breton C. Study design, protocol and profile of the maternal And Developmental Risks from Environmental and Social Stressors (MADRES) pregnancy cohort: a prospective cohort study in predominantly low-income Hispanic women in Urban Los Angeles. BMC Pregnancy Childbirth. 2019;19(1):189.
Google Scholar
Abatzoglou JT. Development of gridded surface meteorological data for ecological applications and modelling. Int J Climatol. 2013;33(1):121–31.
Google Scholar
Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurements–a prospective study. Am J Obstet Gynecol. 1985;151(3):333–7.
Google Scholar
Marsál K, Persson PH, Larsen T, Lilja H, Selbing A, Sultan B. Intrauterine growth curves based on ultrasonically estimated foetal weights. Acta Paediatr. 1996;85(7):843–8.
Google Scholar
To M, Pereira S. Routine fetal anomaly scan. Twining's Textbook of Fetal Abnormalities E-Book. 2014.
Žaliūnas B, Bartkevičienė D, Drąsutienė G, Utkus A, Kurmanavičius J. Fetal biometry: relevance in obstetrical practice. Medicina. 2017;53(6):357–64.
Google Scholar
Textor J, van der Zander B, Gilthorpe MS, Liśkiewicz M, Ellison GT. Robust causal inference using directed acyclic graphs: the R package ‘dagitty.’ Int J Epidemiol. 2016;45(6):1887–94.
Committee Opinion No 700. Methods for estimating the due date. Obstet Gynecol. 2017;129(5):e150–4.
Gasparrini A. Distributed lag linear and non-linear models in R: the package dlnm. J Stat Softw. 2011;43(8):1.
Google Scholar
Chasan-Taber L, Schmidt MD, Roberts DE, Hosmer D, Markenson G, Freedson PS. Development and validation of a pregnancy physical activity questionnaire. Med Sci Sports Exerc. 2004;36(10):1750–60. https://doi.org/10.1249/01.mss.0000142303.49306.0d.
Deguen S, Kihal-Talantikite W, Gilles M, Danzon A, Carayol M, Zmirou-Navier D. Are the effects of air pollution on birth weight modified by infant sex and neighborhood socioeconomic deprivation? A multilevel analysis in Paris (France). PLoS ONE. 2021;16(4):e0247699.
Google Scholar
Gale CR, O’Callaghan FJ, Bredow M, Martyn CN. The influence of head growth in fetal life, infancy, and childhood on intelligence at the ages of 4 and 8 years. Pediatrics. 2006;118(4):1486–92.
Alkandari F, Ellahi A, Aucott L, Devereux G, Turner S. Fetal ultrasound measurements and associations with postnatal outcomes in infancy and childhood: a systematic review of an emerging literature. J Epidemiol Community Health. 2015;69(1):41–8.
Google Scholar
Rückinger S, Beyerlein A, Jacobsen G, von Kries R, Vik T. Growth in utero and body mass index at age 5 years in children of smoking and non-smoking mothers. Early Human Dev. 2010;86(12):773–7.
Google Scholar
Kannan S, Misra DP, Dvonch JT, Krishnakumar A. Exposures to airborne particulate matter and adverse perinatal outcomes: a biologically plausible mechanistic framework for exploring potential effect modification by nutrition. Environ Health Perspect. 2006;114(11):1636–42.
Google Scholar
Cushing L, Faust J, August LM, Cendak R, Wieland W, Alexeeff G. Racial/ethnic disparities in cumulative environmental health impacts in California: Evidence from a Statewide Environmental Justice Screening Tool (CalEnviroScreen 1.1). Am J Public Health. 2015;105(11):2341–8.
Google Scholar
Benmarhnia T, Huang J, Basu R, Wu J, Bruckner TA. Decomposition analysis of Black-White disparities in birth outcomes: the relative contribution of air pollution and social factors in California. Environ Health Perspect. 2017;125(10):107003.
Google Scholar
Rivera NYR, Tamayo-Ortiz M, García AM, Just AC, Kloog I, Téllez-Rojo MM, Wright RO, Wright RJ, Rosa MJ. Prenatal and early life exposure to particulate matter, environmental tobacco smoke and respiratory symptoms in Mexican children. Environ Res. 2021;192:110365.
Google Scholar
Shen H-N, Hua S-Y, Chiu C-T, Li C-Y. Maternal exposure to air pollutants and risk of gestational diabetes mellitus in Taiwan. Int J Environ Res Public Health. 2017;14(12):1604.
Google Scholar
Leung M, Kioumourtzoglou M-A, Raz R, Weisskopf MG. Bias due to Selection on live births in studies of environmental exposures during pregnancy: a simulation study. Environ Health Perspect. 2021;129(4):047001.
Google Scholar