N Howlader, AM Noone, M Krapcho, D Miller, A Brest, M Yu, J Ruhl, Z Tatalovich, A Mariotto, DR Lewis, HS Chen, EJ Feuer, KA Cronin eds. SEER Cancer Statistics Review, 1975–2017. Bethesda, MD: National Cancer Institute (2020). Available at: https://seer.cancer.gov/csr/1975_2017/. based on November 2019 SEER data submission, posted to the SEER web site, April 2020.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.
Article
Google Scholar
Berwick M, Buller DB, Cust A, Gallagher R, Lee TK, Meyskens F, Pandey S, Thomas NE, Veierød MB, Ward S. Melanoma epidemiology and prevention. Cancer Treat Res. 2016;167:17–49. https://doi.org/10.1007/978-3-319-22539-5_2.
Article
Google Scholar
Dika E, Fanti PA, Vaccari S, Patrizi A, Maibach HI. Causal relationship between exposure to chemicals and malignant melanoma? a review and study proposal. Rev Environ Health. 2010;25(3):255–9. https://doi.org/10.1515/reveh.2010.25.3.255.
Article
CAS
Google Scholar
Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag. 2011;7(4):513–41.
Article
CAS
Google Scholar
Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol. 2019;29(2):131–47.
Article
CAS
Google Scholar
Ward-Caviness CK, Moyer J, Weaver A, Devlin R, Diaz-Sanchez D. Associations between PFAS occurrence and multimorbidity as observed in an electronic health record cohort. Environ Epidemiol. 2022;6(4): e217.
Article
Google Scholar
Steenland K, Winquist A. PFAS and cancer, a scoping review of the epidemiologic evidence. Environ Res. 2021;194: 110690. https://doi.org/10.1016/j.envres.2020.110690.
Article
CAS
Google Scholar
Mazzola M., Saccardo I., Cappellin R. 2013. Stato dell‘inquinamento da sostanze perfluoroalchiliche (PFAS) in provincia di Vicenza, Padova, Verona – Aspetti geologici e idrogeologici, la rete idrografica, il sito potenzialmente inquinato e prima delimitazione dell’inquinamento al 30.09.2013. Rapporto ARPAV
Valsecchi S., Polesello S. 2013. Rischio associato alla presenza di sostanze perfluoro-alchiliche (PFAS) nelle acque potabili e nei corpi idrici recettori di aree industriali nella Provincia di Vicenza e aree limitrofe. IRSA-CNR 25 marzo 2013.
Moreno-Arrones OM, Zegeer J, Gerbo M, Manrique-Silva E, Requena C, Traves V, Nagore E. Decreased vitamin D serum levels at melanoma diagnosis are associated with tumor ulceration and high tumor mitotic rate. Melanoma Res. 2019;29(6):664–7. https://doi.org/10.1097/CMR.0000000000000638.
Article
CAS
Google Scholar
Veneto Regional Deliberation no. 691 of 21 May 2018. Available online: https://bur.regione.veneto.it/BurvServices/pubblica/DettaglioDgr.aspx?id=370611 (accessed on 23 June 2022)
Elder DE, Massi D, Scolyer RA, Willemze R, World Health Organization classification of skin tumours. Lyon: International Agency for Research on Cancer; 2018.
Gershenwald JE, Scolyer RA. Melanoma Staging: American Joint Committee on Cancer (AJCC) 8th Edition and Beyond [Published Correction Appears in Ann Surg Oncol. 2018 Dec;25(Suppl 3):993–994]. Ann Surg Oncol. 2018;25(8):2105–10. doi: https://doi.org/10.1245/s10434-018-6513-7
Melanoma AIOM guidelines, update 2021. Available online : https://snlg.iss.it/wp-content/uploads/2021/10/LG-127_Melanoma_agg2021.pdf (accessed on 23 June 2022)
R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing (2021).
Wolf CJ, Takacs ML, Schmid JE, Lau C, Abbott BD. Activation of mouse and human peroxisome proliferator-activated receptor alpha by perfluoroalkyl acids of different functional groups and chain lengths. Toxicol Sci. 2008;106(1):162–71. https://doi.org/10.1093/toxsci/kfn166.
Article
CAS
Google Scholar
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 110: Some Chemicals Used as Solvents and in Polymer Manufacture. Lyon, France: International Agency for Research on Cancer (IARC); 2017. p. 37–110. Available online: https://www.ncbi.nlm.nih.gov/books/NBK436263/pdf/Bookshelf_NBK436263.pdf (accessed on 23 June 2022)
Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci. 2007;99(2):366–94. https://doi.org/10.1093/toxsci/kfm128 (Epub 2007 May 22 PMID: 17519394).
Article
CAS
Google Scholar
Xu Y, Jurkovic-Mlakar S, Li Y, Wahlberg K, Scott K, Pineda D, et al. Association between serum concentrations of perfluoroalkyl substances (PFAS) and expression of serum microRNAs in a cohort highly exposed to PFAS from drinking water. Environ Int. 2020;136: 105446.
Article
CAS
Google Scholar
Zhu Y, Bartell SM. Per- and polyfluoroalkyl substances in drinking water and hypertensive disorders of pregnancy in the United States during 2013–2015. Environ Epidemiol. 2022;6(3):e209. Published 2022 May 4. doi:https://doi.org/10.1097/EE9.0000000000000209
Messmer MF, Salloway J, Shara N, Locwin B, Harvey MW, Traviss N. Risk of cancer in a community exposed to Per- and Poly-Fluoroalkyl Substances. Environ Health Insights. 2022;16:11786302221076708. https://doi.org/10.1177/11786302221076707.
Article
Google Scholar
Li H, Hammarstrand S, Midberg B, et al. Cancer incidence in a Swedish cohort with high exposure to perfluoroalkyl substances in drinking water. Environ Res. 2022;204(Pt C): 112217. https://doi.org/10.1016/j.envres.2021.112217.
Article
CAS
Google Scholar
Di Nisio A, De Rocco PM, Giadone A, Rocca MS, Guidolin D, Foresta C. Perfluoroalkyl substances and bone health in young men: a pilot study. Endocrine. 2020;67(3):678–84. https://doi.org/10.1007/s12020-019-02096-4.
Article
CAS
Google Scholar
Di Nisio A, Rocca MS, Sabovic I, et al. Perfluorooctanoic acid alters progesterone activity in human endometrial cells and induces reproductive alterations in young women. Chemosphere. 2020;242: 125208. https://doi.org/10.1016/j.chemosphere.2019.125208.
Article
CAS
Google Scholar
Wang F, Liu W, Jin Y, Wang F, Ma J. Prenatal and neonatal exposure to perfluorooctane sulfonic acid results in aberrant changes in miRNA expression profile and levels in developing rat livers. Environ Toxicol. 2015;30(6):712–23.
Article
CAS
Google Scholar
Rachakonda S, Kong H, Srinivas N, Garcia-Casado Z, Requena C, Fallah M, Heidenreich B, Planelles D, Traves V, Schadendorf D, Nagore E, Kumar R. Telomere length, telomerase reverse transcriptase promoter mutations, and melanoma risk. Genes Chromosomes Cancer. 2018;57(11):564–72. https://doi.org/10.1002/gcc.22669.
Article
CAS
Google Scholar
Clarity C, Trowbridge J, Gerona R, Ona K, McMaster M, Bessonneau V, et al. Associations between polyfluoroalkyl substance and organophosphate flame retardant exposures and telomere length in a cohort of women firefighters and office workers in San Francisco. medRxiv 2020 Nov 10.
Di Nisio A, Rocca MS, De Toni L, Sabovic I, Guidolin D, Dall'Acqua S, et al. Endocrine disruption of vitamin D activity by perfluoro-octanoic acid (PFOA). Sci Rep. 2020;10(1):16789–020–74026–8.
Caini S, Raimondi S, Johansson H, De Giorgi V, Zanna I, Palli D, et al. Telomere length and the risk of cutaneous melanoma and non-melanoma skin cancer: a review of the literature and meta-analysis. J Dermatol Sci. 2015;80(3):168–74.
Article
CAS
Google Scholar
Vasilovici AF, Grigore LE, Ungureanu L, Fechete O, Candrea E, Trifa AP, Vișan S, Șenilă S, Cosgarea R. Vitamin D receptor polymorphisms and melanoma. Oncol Lett. 2019;17(5):4162–9. https://doi.org/10.3892/ol.2018.9733.
Article
CAS
Google Scholar
Lombardo M, Vigezzi A, Ietto G, Franchi C, Iori V, Masci F, et al. Role of vitamin D serum levels in prevention of primary and recurrent melanoma. Sci Rep. 2021;11(1):5815–021–85294–3.
Lim A, Shayan R, Varigos G. High serum vitamin D level correlates with better prognostic indicators in primary melanoma: a pilot study. Aust J Dermatol. 2018;59(3):182–7.
Article
Google Scholar
Brozyna AA, Hoffman RM, Slominski AT. Relevance of Vitamin D in melanoma development. Progression and Therapy Anticancer Res. 2020;40(1):473–89.
Article
CAS
Google Scholar
Thompson JF, Soong SJ, Balch CM, Gershenwald JE, Ding S, Coit DG, Flaherty KT, Gimotty PA, Johnson T, Johnson MM, Leong SP, Ross MI, Byrd DR, Cascinelli N, Cochran AJ, Eggermont AM, McMasters KM, Mihm MC Jr, Morton DL, Sondak VK. Prognostic significance of mitotic rate in localized primary cutaneous melanoma: an analysis of patients in the multi-institutional American Joint Committee on Cancer melanoma staging database. J Clin Oncol. 2011;29(16):2199–205. Erratum in: J Clin Oncol. 2011;29(21):2949.
Buja A, Bardin A, Damiani G, et al. Prognosis for cutaneous melanoma by clinical and pathological profile: a population-based study. Front Oncol. 2021;11: 737399. https://doi.org/10.3389/fonc.2021.737399.
Article
Google Scholar
Evans JL, Vidri RJ, MacGillivray DC, Fitzgerald TL. Tumor mitotic rate is an independent predictor of survival for nonmetastatic melanoma. Surgery. 2018;164(3):589–93. https://doi.org/10.1016/j.surg.2018.04.016.
Article
Google Scholar
Kashani-Sabet M, Miller JR 3rd, Lo S, et al. Reappraisal of the prognostic significance of mitotic rate supports its reincorporation into the melanoma staging system. Cancer. 2020;126(21):4717–25. https://doi.org/10.1002/cncr.33088.
Article
Google Scholar