Bromilow RH. Paraquat and sustainable agriculture. Pest Manag Sci. 2004;60(4):340–9.
Article
CAS
Google Scholar
PMID: 15119596 Review.US Environmental Protection Agency. Accessed 1.29.2021: https://ofmpub.epa.gov/sor_internet/registry/substreg/searchandretrieve/substancesearch/search.do?details=displayDetails&selectedSubstanceId=40147
US Geological Survey. Estimated Agricultural Use for paraquat, 2017. Retrieved 1/20/2021. Available at: https://water.usgs.gov/nawqa/pnsp/usage/maps/show_map.php?year=2017&map=PARAQUAT&hilo=L&disp=Paraquat
Sartori F, Vidrio E. Environmental fate and ecotoxicology of paraquat: a California perspective. Toxicol Environ Chem. 2018;100:5–7 479-517.
Article
Google Scholar
Tsai WT. A review on environmental exposure and health risks of herbicide paraquat. Toxicol Environ Chem. 2013;95(2):197–206.
Article
CAS
Google Scholar
Chester G, Ward RJ. Occupational exposure and drift hazard during aerial application of paraquat to cotton. Arch Environ Contam Toxicol. 1984;13(5):551–63.
Article
CAS
Google Scholar
Brent J, Schaeffer TH. Systematic review of parkinsonian syndromes in short- and long-term survivors of paraquat poisoning. J Occup Environ Med. 2011;53(11):1332–6.
Article
CAS
Google Scholar
Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY, et al. Environmental risk factors and Parkinson’s disease: a case-control study in Taiwan. Neurol. 1997;48:1583–8.
Article
CAS
Google Scholar
Engel LS, Checkoway H, Keifer MC, Seixas NS, Longstreth WT Jr, Scott KC, et al. Parkinsonism and occupational exposure to pesticides. Occup Environ Med. 2001;58(9):582–9.
Article
CAS
Google Scholar
Pouchieu C, Piel C, Carles C, Gruber A, Helmer C, Tual S, et al. Pesticide use in agriculture and Parkinson's disease in the AGRICAN cohort study. Int J Epidemiol. 2018;47(1):299–310.
Kamel F, Tanner CM, Umbach DM, Hoppin JA, Alavanja MCR, Blair A, et al. Pesticide exposure and self-reported Parkinson’s disease in the agricultural health study. Am J Epidemiol. 2007;165(4):364–74.
Article
CAS
Google Scholar
Tanner CM, Ross GW, Jewell SA, Hauser RA, Jankovic J, Factor SA, et al. Occupation and risk of parkinsonism: a multicenter casecontrol study. Arch Neurol. 2009;66(9):1106–13.
Article
Google Scholar
Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B. Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol. 2009;169(8):919–26.
Article
Google Scholar
Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korel M, et al. Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect. 2011;119:866–72.
Article
CAS
Google Scholar
van der Mark M, Vermeulen R, Nijssen PCG, Mulleners WM, Sas AMG, van Laar T, et al. Occupational exposure to pesticides and endotoxin and Parkinson disease in the Netherlands. Occup Environ Med. 2014;71(11):757–64.
Article
Google Scholar
Wan N, Lin Y. Parkinson's disease and pesticides exposure: New findings from a comprehensive study in Nebraska, USA. J Rural Health. 2016;32(3):303–13.
Article
Google Scholar
Brouwer M, Huss A, van der Mark M, Nijssen PCG, Mulleners WM, Sas AMG, et al. Environmental exposure to pesticides and the risk of Parkinson’s disease in the Netherlands. Environ Int. 2017;107:100–10.
Article
CAS
Google Scholar
Engel LS, Checkoway H, Keifer MC, Seixas NS, Longstreth WT Jr, Scott KC, Hudnell K, Anger WK, Camicioli R. Parkinsonism and occupational exposure to pesticides. Occup Environ Med. 2001;58(9):582-9.
Howard JK, Sabapathy NN, Whitehead PA. A study of the health of Malaysian plantation workers with particular reference to paraquat spraymen. Br J Ind Med. 1981;38(2):110–6.
CAS
Google Scholar
Senanayake N, Gurunathan G, Hart TB, Amerasinghe P, Babapulle M, Ellapola SB, et al. An epidemiological study of the health of Sri Lankan tea plantation workers associated with long term exposure to paraquat. Br J Ind Med. 1993;50(3):257–63.
CAS
Google Scholar
Castro-Gutierrez N, McConnell R, Andersson K, Pacheco-Anton F, Hogstedt C. Respiratory symptoms, spirometry and chronic occupational paraquat exposure. Scand J Work Environ Health. 1997;23(6):421–7.
Article
CAS
Google Scholar
Schenker MB, Stoecklin M, Lee K, Lupercio R, Zeballos RJ, Enright P, et al. Pulmonary function and exercise-associated changes with chronic low-level paraquat exposure. Am J Respir Crit Care Med. 2004;170(7):773–9.
Article
Google Scholar
Fieten KB, Kromhout H, Heederik D, de Joode BV. Pesticide exposure and respiratory health of indigenous women in Costa Rica. Am J Epidemiol. 2009;169(12):1500–6.
Article
Google Scholar
Cha ES, Lee YK, Moon EK, Kim YB, Lee YJ, Jeong WC, et al. Paraquat application and respiratory health effects among south Korean farmers. Occup Environ Med. 2012;69(6):398–403.
Article
Google Scholar
Park SK, Kang D, Beane-Freeman L, Gwak J, Hoppin JA, Sandler DP, et al. Cancer incidence among paraquat-exposed pesticide applicators in the agricultural health study. Int J Occup Environ Health. 2009;15(3):274–81.
Article
Google Scholar
Montgomery MP, Kamel F, Saldana TM, Alavanja MCR, Sandler DP. Incident diabetes and pesticide exposure among licensed pesticide applicators: agricultural health study, 1993-2003. Am J Epidemiol. 2008;167(10):1235–46.
Article
CAS
Google Scholar
Mills KT, Blair A, Beane Freeman LE, Sandler DP, Hoppin JA. Pesticides and myocardial infarction incidence and mortality among male pesticide applicators in the agricultural health study. Am J Epidemiol. 2009;170(7):892–900. https://doi.org/10.1093/aje/kwp214 Epub 2009 Aug 21.
Article
Google Scholar
Vaziri ND, Ness RL, Fairshter RD, Smith WR, Rosen SM. Nephrotoxicity of paraquat in man. Arch Intern Med. 1979;139(2):172–4.
Article
CAS
Google Scholar
Safaei Asl A, Dadashzadeh P. Acute kidney injury in patients with paraquat intoxication; a case report and review of the literature. J Renal Inj Prev. 2016;5(4):203–6.
Article
Google Scholar
Mohamed F, Buckley NA, Jayamanne S, Pickering JW, Peake P, Palangasinghe C, et al. Kidney damage biomarkers detect acute kidney injury but only functional markers predict mortality after paraquat ingestion. Toxicol Lett. 2015;237(2):140–50.
Article
CAS
Google Scholar
Weng CH, Chen HH, Hu CC, Huang WH, Hsu CW, Fu JF, et al. Predictors of acute kidney injury after paraquat intoxication. Oncotarget. 2017;8(31):51345–54.
Article
Google Scholar
Mohamed F, Endre Z, Jayamanne S, Pianta T, Peake P, Palangasinghe C, et al. Mechanisms underlying early rapid increases in creatinine in paraquat poisoning. PLoS One. 2015;10(3):e0122357.
Article
Google Scholar
Lebov JF, Engel LS, Richardson D, Hogan SL, Sandler DP, Hoppin JA. Pesticide exposure and end-stage renal disease risk among wives of pesticide applicators in the agricultural health study. Environ Res. 2015;143:198–210.
Article
CAS
Google Scholar
Lebov JF, Engel LS, Richardson D, Hogan SL, Hoppin JA, Sandler DP. Pesticide use and risk of end-stage renal disease among licensed pesticide applicators in the agricultural health study. Occup Environ Med. 2016;73:3–12.
Article
Google Scholar
Jayasumana C, Paranagama P, Agampodi S, Wijewardane C, Gunatilake S, Siribaddana S. Drinking well water and occupational exposure to herbicides is associated with chronic kidney disease, in Padavi-Sripura, Sri Lanka. Environ Health. 2015;14:6. https://doi.org/10.1186/1476-069X-14-6.
Article
CAS
Google Scholar
Abdul KSM, De Silva PMCS, Ekanayake EMDV, Thakshila WAKG, Gunarathna SD, Gunasekara TDKSC, et al. Occupational Paraquat and glyphosate exposure may decline renal functions among rural farming communities in Sri Lanka. Int J Environ Res Public Health. 2021;18(6):3278. https://doi.org/10.3390/ijerph18063278.
Article
CAS
Google Scholar
United States Renal Data System. 2020 USRDS annual data report: epidemiology of kidney disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2020.
Google Scholar
U.S. Renal Data System. 2021 Researcher’s Guide to the USRDS Database. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD; 2021.
Baker NT, Stone WW. Estimated annual agricultural pesticide use for counties of the conterminous United States, 2008–12: US. Geol Survey Data Ser. 2015;907:9. https://doi.org/10.3133/ds907.
Article
Google Scholar
Joseph N, Propper CR, Goebel M, Henry S, Roy I, Kolok AS. Investigation of relationships between the geospatial distribution of cancer incidence and estimated pesticide use in the U.S. West Geohealth. 2022;6(5):e2021GH000544.
Google Scholar
GDP by County, Metro, and Other Areas. Bureau of Economic Analysis. Updated January 11, 2022. Accessed 21 Oct 2022. https://www.bea.gov/data/gdp/gdp-county-metro-and-other-areas.
NCHS urban-rural classification scheme for counties. National Center for Health Statistics. Updated June 1, 2017. Access 21 Oct 2022. https://www.cdc.gov/nchs/data_access/urban_rural.htm.
Shaw SF, Sim JJ, Zhou H, Shi J, Jacobsen SJ. A comparison of death records between the United States renal data system and a large integrated health care system. Kidney Int Rep. 2020;5(6):912–5. https://doi.org/10.1016/j.ekir.2020.03.019 PMID: 32518873; PMCID: PMC7270980.
Article
Google Scholar
New-Aaron M, Abimbola O, Mohammadi R, Famojuro O, Naveed Z, Abadi A, et al. Low-level groundwater atrazine in high atrazine usage Nebraska counties: likely effects of excessive groundwater abstraction. Int J Environ Res Public Health. 2021;18(24):13241.
Article
CAS
Google Scholar