State of California. Technical Bulletin 117: Requirements, Test Procedure, and Apparatus for Testing the Flame Retardance of Resilient Filling Materials Used in Upholstered Furniture. North Highlands: Bureau of Home Furnishings and Thermal Insulation; 2000.
Google Scholar
Allen JG, McClean MD, Stapleton HM, Webster TF. Linking pbdes in house dust to consumer products using x-ray fluorescence. Environ Sci Technol. 2008;42:4222–8.
Article
CAS
Google Scholar
Webster TF, Harrad S, Millette J, Holbrook R, Davis J, Stapleton HM, et al. Identifying transfer mechanisms and sources of decabromodiphenyl ether (BDE 209) in indoor environments using environmental forensic microscopy. Environ Sci Technol. 2009; es-2008-03139w.R1.
Allen JG, McClean MD, Stapleton HM, Nelson JW, Webster TF. Personal exposure to polybrominated diphenyl ethers (PBDEs) in residential indoor air. Environ Sci Technol. 2007;41:4574–9.
Article
CAS
Google Scholar
Allen JG, McClean MD, Stapleton HM, Webster TF. Critical factors in assessing exposure to pbdes via house dust. Environ Int. 2008;34:1085–91.
Article
CAS
Google Scholar
Allen JG, Stapleton HM, Vallarino J, McNeely E, McClean MD, Harrad SJ, et al. Exposure to flame retardant chemicals on commercial airplanes. Environ Health. 2013;12:17.
Article
CAS
Google Scholar
Allen JG, Sumner AL, Nishioka MG, Vallarino J, Turner DJ, Saltman HK, et al. Air concentrations of pbdes on in-flight airplanes and assessment of flight crew inhalation exposure. J Expo Sci Environ Epi. 2013;23:337–42.
Article
CAS
Google Scholar
Chen D, Martin P, Burgess NM, Champoux L, Elliott JE, Forsyth DJ, et al. European starlings (sturnus vulgaris) suggest that landfills are an important source of bioaccumulative flame retardants to canadian terrestrial ecosystems. Environ Sci Technol. 2013;47:12238–47.
Article
CAS
Google Scholar
Dodson RE, Perovich LJ, Covaci A, Van den Eede N, Ionas AC, Dirtu AC, et al. After the PBDE phase-out: A broad suite of flame retardants in repeat house dust samples from california. Environ Sci Technol. 2012;46:13056–66.
Article
CAS
Google Scholar
Fraser AJ, Webster TF, McClean MD. Diet contributes significantly to the body burden of PBDEs in the general us population. Environ Health Perspect. 2009;117:1520–5.
Article
CAS
Google Scholar
Harrad S, Hunter S. Concentrations of polybrominated diphenyl ethers in air and soil on a rural–urban transect across a major uk conurbation. Environ Sci Technol. 2006;40:4548–53.
Article
CAS
Google Scholar
Lagalante AF, Oswald TD, Calvosa FC. Polybrominated diphenyl ether (PBDE) levels in dust from previously owned automobiles at united states dealerships. Environ Int. 2009;35:539–44.
Article
CAS
Google Scholar
Letcher RJ, Gebbink WA, Sonne C, Born EW, McKinney MA, Dietz R. Bioaccumulation and biotransformation of brominated and chlorinated contaminants and their metabolites in ringed seals (pusa hispida) and polar bears (ursus maritimus) from east greenland. Environ Int. 2009;35:1118–24.
Article
CAS
Google Scholar
McKinney MA, Letcher RJ, Aars J, Born EW, Branigan M, Dietz R, et al. Flame retardants and legacy contaminants in polar bears from alaska, canada, east greenland and svalbard, 2005–2008. Environ Int. 2011;37:365–74.
Article
CAS
Google Scholar
Schecter A, Papke O, Harris TR, Tung KC, Musumba A, Olson J, et al. Polybrominated diphenyl ether (PBDE) levels in an expanded market basket survey of U.S. Food and estimated pbde dietary intake by age and sex. Environ Health Perspect. 2006;114:1515–20.
Article
CAS
Google Scholar
Watkins DJ, McClean MD, Fraser AJ, Weinberg J, Stapleton HM, Sjodin A, et al. Exposure to PBDEs in the office environment: Evaluating the relationships between dust, handwipes, and serum. Environ Health Perspect. 2011;119:1247–52.
Article
CAS
Google Scholar
Weschler CJ, Nazaroff WW. SVOC partitioning between the gas phase and settled dust indoors. Atmos Environ. 2010;44:3609–20.
Article
CAS
Google Scholar
State of California. Technical bulletin 117–2013: Requirements, test procedure, and apparatus for testing the smolder resistance materils used in in upholstered furniture. Sacramento: Department of Consumer Affairs; 2013.
Google Scholar
Sjodin A, Jones RS, Caudill SP, Wong LY, Turner WE, Calafat AM. Polybrominated diphenyl ethers, polychlorinated biphenyls, and persistent pesticides in serum from the National Health and Nutrition Examination Survey: 2003–2008. Environ Sci Technol. 2014;48:753–60.
Article
CAS
Google Scholar
Guo W, Holden A, Smith SC, Gephart R, Petreas M, Park JS. PBDE levels in breast milk are decreasing in California. Chemosphere. 2015. doi:10.1016/j.chemosphere.2015.11.032.
Google Scholar
Zota A, Linderholm L, Park JS, Petreas M, Guo T, Privalsky M, et al. Temporal comparison of PBDEs, OH-PBDEs, PCBs, and OH-PCBs in the serum of second trimester pregnant women recruited from San Francisco General Hospital. California Environ Sci Technol. 2013;47(20):11776–84.
Article
CAS
Google Scholar
National Toxicology Program. Toxicology and carcinogenesis studies of decabromodiphenyl oxide (cas no. 1163-19-5) in f344/n rats and b6c3f1 mice (feed studies).1986. Available from: http://ntp.niehs.nih.gov/results/pubs/longterm/reports/longterm/tr300399/abstracts/tr309/index.html [Accessed 3 February 2016]
National Toxicology Program. TR-589: Pentabromodiphenyl oxide (technical) (de 71): Technical report pathology tables and curves. 2014. Available from: http://ntp.niehs.nih.gov/results/path/tablelistings/longterm/tr500599/tr589/index.html [Accessed 3 February 2016].
Zoeller RT, Bergman A, Becher G, Bjerregaard P, Bornman R, Brandt I, et al. A path forward in the debate over health impacts of endocrine disrupting chemicals. Environ Health. 2014;13:118.
Article
Google Scholar
Abdelouahab N, Langlois MF, Lavoie L, Corbin F, Pasquier JC, Takser L. Maternal and cord-blood thyroid hormone levels and exposure to polybrominated diphenyl ethers and polychlorinated biphenyls during early pregnancy. Am J Epi. 2013;178:701–13.
Article
Google Scholar
Chevrier J, Harley KG, Bradman A, Gharbi M, Sjodin A, Eskenazi B. Polybrominated diphenyl ether (PBDE) flame retardants and thyroid hormone during pregnancy. Environ Health Perspect. 2010;118:1444–9.
Article
CAS
Google Scholar
Herbstman JB, Sjodin A, Apelberg BJ, Witter FR, Halden RU, Patterson DG, et al. Birth delivery mode modifies the associations between prenatal polychlorinated biphenyl (PCB) and polybrominated diphenyl ether (PBDE) and neonatal thyroid hormone levels. Environ Health Perspect. 2008;116:1376–82.
Article
CAS
Google Scholar
Meeker JD, Johnson PI, Camann D, Hauser R. Polybrominated diphenyl ether (PBDE) concentrations in house dust are related to hormone levels in men. Sci Total Environ. 2009;407(10):3425–9. doi:10.1016/j.scitotenv.2009.01.030. Epub 2009 Feb 10.
Article
CAS
Google Scholar
Stapleton HM, Eagle S, Anthopolos R, Wolkin A, Miranda ML. Associations between polybrominated diphenyl ether (PBDE) flame retardants, phenolic metabolites, and thyroid hormones during pregnancy. Environ Health Perspect. 2011;119(10):1454–9.
Article
CAS
Google Scholar
Zota AR, Park JS, Wang Y, Petreas M, Zoeller RT, Woodruff TJ. Polybrominated diphenyl ethers, hydroxylated polybrominated diphenyl ethers, and measures of thyroid function in second trimester pregnant women in california. Environ Sci Technol. 2011;45:7896–905.
Article
CAS
Google Scholar
Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med. 1999;341:549–55.
Article
CAS
Google Scholar
Gardner DG, Shoback DM, Greenspan FS. Greenspan's Basic & Clinical Endocrinology. Part 9th. New York: McGraw-Hill Medical; 2011.
Google Scholar
Brent GA. Maternal hypothyroidism: Recognition and management. Thyroid: Official Journal of the American Thyroid Association. 1999;9:661–5.
Article
CAS
Google Scholar
Iglesias P, Diez JJ. Thyroid dysfunction and kidney disease. European Journal of Endocrinology / European Federation of Endocrine Societies. 2009;160:503–15.
Article
CAS
Google Scholar
Huang MJ, Liaw YF. Clinical associations between thyroid and liver diseases. J Gastroenterol Hepatol. 1995;10:344–50.
Article
CAS
Google Scholar
Rodondi N, Bauer DC, Cappola AR, Cornuz J, Robbins J, Fried LP, et al. Subclinical thyroid dysfunction, cardiac function, and the risk of heart failure. The cardiovascular health study. J Am Col Cardiol. 2008;52:1152–9.
Article
CAS
Google Scholar
Canaris GJ, Manowitz NR, Mayor G, Ridgway EC. The colorado thyroid disease prevalence study. Arch Internal Med. 2000;160:526–34.
Article
CAS
Google Scholar
Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R. Worldwide increasing incidence of thyroid cancer: Update on epidemiology and risk factors. J Cancer Epidemiol. 2013;965212.
Lim J-S, Lee D-H, Jacobs DR. Association of brominated flame retardants with diabetes and metabolic syndrome in the U.S. Population, 2003–2004. Diabetes Care. 2008;31:1802–7.
Article
Google Scholar
Santin AP, Furlanetto TW. Role of estrogen in thyroid function and growth regulation. J Thyroid Res. 2011;875125.
Gosavi RA, Knudsen GA, Birnbaum LS, Pedersen LC. Mimicking of estradiol binding by flame retardants and their metabolites: A crystallographic analysis. Environ Health Perspect. 2013;121:1194–9.
CAS
Google Scholar
Sjödin A, Wong L-Y, Jones RS, Park A, Zhang Y, Hodge C, et al. Serum concentrations of polybrominated diphenyl ethers (PBDEs) and polybrominated biphenyl (PBB) in the United States population: 2003–2004. Environ Sci Technol. 2008;42:1377–84.
Article
Google Scholar
Centers for Disease Control and Prevention (CDC). Continuous NHANES web tutorial: Descriptive statistics. 2014. Available from: http://www.cdc.gov/nchs/tutorials/NHANES/NHANESAnalyses/descriptivestatistics/descriptive_statistics_intro.htm [Accessed 2 April 2015].
Centers for Disease Control and Prevention (CDC). Continuous NHANES web tutorial: NHANES analyses, logistic regression. 2014. Available from: http://www.cdc.gov/nchs/tutorials/NHANES/NHANESAnalyses/logisticregression/logistic_regression_intro.htm. [Accessed 2 April 2015].
Melzer D, Rice N, Depledge MH, Henley WE, Galloway TS. Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National health and nutrition examination survey. Environ Health Perspect. 2010;118:686–92.
Article
CAS
Google Scholar
Hallgren S, Sinjari T, Hakansson H, Darnerud PO. Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin a levels in rats and mice. Arch Toxicol. 2001;75:200–8.
Article
CAS
Google Scholar
Hallgren S, Darnerud PO. Polybrominated diphenyl ethers (pbdes), polychlorinated biphenyls (PCBs) and chlorinated paraffins (CPs) in rats - testing interactions and mechanisms for thyroid hormone effects. Toxicol. 2002;177:227–43.
Article
CAS
Google Scholar
Lema SC, Dickey JT, Schultz IR, Swanson P. Dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) alters thyroid status and thyroid hormone-regulated gene transcription in the pituitary and brain. Environ Health Perspect. 2008;116:1694–9.
Article
CAS
Google Scholar
Szabo DT, Richardson VM, Ross DG, Diliberto JJ, Kodavanti PR, Birnbaum LS. Effects of perinatal PBDE exposure on hepatic phase i, phase ii, phase iii, and deiodinase 1 gene expression involved in thyroid hormone metabolism in male rat pups. Toxicol Sci. 2009;107:27–39.
Article
CAS
Google Scholar
Tseng LH, Li MH, Tsai SS, Lee CW, Pan MH, Yao WJ, et al. Developmental exposure to decabromodiphenyl ether (pbde 209): Effects on thyroid hormone and hepatic enzyme activity in male mouse offspring. Chemosphere. 2008;70:640–7.
Article
CAS
Google Scholar
Butt CM, Stapleton HM. Inhibition of thyroid hormone sulfotransferase activity by brominated flame retardants and halogenated phenolics. Chem Res Toxicol. 2013;26:1692–702.
Article
CAS
Google Scholar
Cao J, Lin Y, Guo LH, Zhang AQ, Wei Y, Yang Y. Structure-based investigation on the binding interaction of hydroxylated polybrominated diphenyl ethers with thyroxine transport proteins. Toxicol. 2010;277:20–8.
Article
CAS
Google Scholar
Feo ML, Gross MS, McGarrigle BP, Eljarrat E, Barcelo D, Aga DS, et al. Biotransformation of BDE-47 to potentially toxic metabolites is predominantly mediated by human cyp2b6. Environ Health Perspect. 2013;121:440–6.
Article
Google Scholar
Richardson VM, Staskal DF, Ross DG, Diliberto JJ, DeVito MJ, Birnbaum LS. Possible mechanisms of thyroid hormone disruption in mice by bde 47, a major polybrominated diphenyl ether congener. Toxicol Appl Pharmacol. 2008;226:244–50.
Article
CAS
Google Scholar
Noyes PD, Hinton DE, Stapleton HM. Accumulation and debromination of decabromodiphenyl ether (bde-209) in juvenile fathead minnows (pimephales promelas) induces thyroid disruption and liver alterations. Toxicol Sci. 2011;122:265–74.
Article
CAS
Google Scholar
Verreault J, Bech C, Letcher RJ, Ropstad E, Dahl E, Gabrielsen GW. Organohalogen contamination in breeding glaucous gulls from the norwegian arctic: Associations with basal metabolism and circulating thyroid hormones. Environ Pol. 2007;145:138–45.
Article
CAS
Google Scholar
Villanger GD, Jenssen BM, Fjeldberg RR, Letcher RJ, Muir DC, Kirkegaard M, et al. Exposure to mixtures of organohalogen contaminants and associative interactions with thyroid hormones in east greenland polar bears (ursus maritimus). Environ Int. 2011;37:694–708.
Article
CAS
Google Scholar
Bloom M, Spliethoff H, Vena J, Shaver S, Addink R, Eadon G. Environmental exposure to PBDEs and thyroid function among new york anglers. Environ Toxicol Pharmacol. 2008;25:386–92.
Article
CAS
Google Scholar
Dallaire R, Dewailly E, Pereg D, Dery S, Ayotte P. Thyroid function and plasma concentrations of polyhalogenated compounds in inuit adults. Environ Health Perspect. 2009;117:1380–6.
Article
CAS
Google Scholar
Hagmar L, Bjork J, Sjodin A, Bergman A, Erfurth EM. Plasma levels of persistent organohalogens and hormone levels in adult male humans. Arch Environ Health. 2001;56:138–43.
Article
CAS
Google Scholar
Turyk ME, Persky VW, Imm P, Knobeloch L, Chatterton R, Anderson HA. Hormone disruption by PBDEs in adult male sport fish consumers. Environ Health Perspect. 2008;116:1635–41.
Article
CAS
Google Scholar
Lans MC, Klassonwehler E, Willemsen M, Meussen E, Safe S, Brouwer A. Structure-dependent, competitive interaction of hydroxy-polychlorobiphenyls, hydroxy-dibenzo-p-dioxins and hydroxy-dibenzofurans with human transthyretin. Chem Biol Interact. 1993;88:7–21.
Article
CAS
Google Scholar
Hamers T, Kamstra JH, Sonneveld E, Murk AJ, Visser TJ, Van Velzen MJM, et al. Biotransformation of brominated flame retardants into potentially endocrine-disrupting metabolites, with special attention to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). Mol Nutr Food Res. 2008;52:284–98.
Article
CAS
Google Scholar
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs Jr DR, Lee DH, et al. Hormones and endocrine-disrupting chemicals: Low-dose effects and nonmonotonic dose responses. Endocr Rev. 2012;33:378–455.
Article
CAS
Google Scholar
Birnbaum LS. Environmental chemicals: Evaluating low-dose effects. Environ Health Perspect. 2012;120:A143–144.
Article
Google Scholar
Pucci E, Chiovato L, Pinchera A. Thyroid and lipid metabolism. International journal of obesity and related metabolic disorders. J Int Assoc Study of Obesity. 2000;24 Suppl 2:S109–112.
Article
CAS
Google Scholar