Sobsey MD. Managing water in the home: accelerated health gains from improved water supply. Geneva: World Health Organization; 2002.
Google Scholar
Sobsey MD, Stauber CE, Casanova LM, Brown JM, Elliott MA. Point of use household drinking water filtration: a practical, effective solution for providing sustained access to safe drinking water in the developing world. Environ Sci Technol. 2008;42:4261–7.
Article
CAS
Google Scholar
Lin S, Huang R, Cheng Y, Liu J, Lau BLT, Wiesner MR. Silver nanoparticle-alginate composite beads for point-of-use drinking-water disinfection. Wat Res. 2013;47:3959–65.
Article
CAS
Google Scholar
Nover DM, McKenzie ER, Joshi G, Fleenor WE. Assessment of colloidal silver impregnated ceramic bricks for small-scale drinking water treatment applications. Int J Serv Learn Eng, Humanitarian Eng Soc Entrep. 2013;8:18–35.
Google Scholar
Ogunyoku TA, Nover DM, McKenzie ER, Joshi G, Fleenor WE. Point-of-use drinking water treatment in the developing world: Community acceptance, project monitoring and revision. Int J Serv Learn Eng Humanitarian Eng Soc Entrep. 2011;6:14–32.
Google Scholar
Hadrup N, Lam HR. Oral toxicity of silver ions, silver–a review. Regul Toxicol Pharmacol. 2014;68:1–7.
Article
CAS
Google Scholar
World Health Organization. In: fourth edition, editor. Guidelines for Drinking-water Quality. Geneva: World Health Organization; 2011.
Google Scholar
East BW, Boddy K, Williams ED, Macintyre D, McLay AL. Silver retention, total body silver and tissue silver concentrations in argyria associated with exposure to an anti-smoking remedy containing silver acetate. Clin Exp Dermatol. 1980;5:305–11.
Article
CAS
Google Scholar
Lee JH, Kim YS, Song KS, Ryu HR, Sung JH, Park JD, et al. Biopersistence of silver nanoparticles in tissues from Sprague–Dawley rats. Part Fibre Toxicol. 2013;10:1.
Article
Google Scholar
Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague–Dawley rats. Inhal Toxicol. 2008;20:575–83.
Article
CAS
Google Scholar
Li Y, Chen DH, Yan J, Chen Y, Mittelstaedt RA, Zhang Y, et al. Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutat Res. 2012;745:4–10.
Article
CAS
Google Scholar
Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dušinská M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 2014;8:233–78.
Article
CAS
Google Scholar
Kim HR, Kim MJ, Lee SY, Oh SM, Chung KH. Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutat Res. 2011;726:129–35.
Article
CAS
Google Scholar
Schneider K, Schwarz M, Burkholder I, Kopp-Schneider A, Edler L, Kinsner-Ovaskainen A, et al. “ToxRTool”, a new tool to assess the reliability of toxicological data. Toxicol Lett. 2009;189:138–44.
Article
CAS
Google Scholar
Klimisch H-J, Andreae M, Tillmann U. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol. 1997;25:1–5.
Article
CAS
Google Scholar
Ordzhonikidze CG, Ramaiyya LK, Egorova EM, Rubanovich AV. Genotoxic effects of silver nanoparticles on mice in vivo. Acta Nat. 2009;1:99–101.
CAS
Google Scholar
Tavares P, Balbinot F, de Oliveira HM, Fagundes GE, Venâncio M, Ronconi JV, et al. Evaluation of genotoxic effect of silver nanoparticles (Ag-Nps) in vitro and in vivo. J Nanopart Res. 2012;14:1–7.
Article
Google Scholar
Chen YT, Wu JH, Tsai FJ, Chang YW, Hsu SH, Lin JJ, et al. Genotoxicity tests of poly (styrene-co-maleic anhydride)-coated silver nanoparticles in vivo and in vitro. J Exp Nanosci. 2015;10:449–57.
Article
CAS
Google Scholar
Awasthi KK, Awasthi A, Verma R, Soni I, Awasthi K, John PJ. Silver Nanoparticles and Carbon Nanotubes Induced DNA Damage in Mice Evaluated by Single Cell Gel Electrophoresis. Macromol Symp. 2015;357:210–7.
Article
CAS
Google Scholar
Gromadzka-Ostrowska J, Dziendzikowska K, Lankoff A, Dobrzyńska M, Instanes C, Brunborg G, et al. Silver nanoparticles effects on epididymal sperm in rats. Toxicol Lett. 2012;214:251–8.
Article
CAS
Google Scholar
OECD. In vivo mammalian alkaline comet assay. TG 489. OECD Guideline for the Testing of Chemicals. 2014 Available: http://www.oecd.org/env/test-no-474-mammalian-erythrocyte-micronucleus-test-9789264224292-en.htm. Accessed 18 Jun 2017.
OECD. Mammalian erythrocyte micronucleus test. TG 474. OECD Guideline for the Testing of Chemicals, 2014. Available: https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecd-tg489-2014.pdf. Accessed 18 Jun 2017.
Aktepe N, Kocyigit A, Yukselten Y, Taskin A, Keskin C, Celik H. Increased DNA Damage and Oxidative Stress Among Silver Jewelry Workers. Biol Trace Elem Res. 2015;164(2):185–91.
Article
CAS
Google Scholar
EFSA. Scientific opinion on the re-evaluation of silver (E174) as food additive. Eur Food Saf Authority. 2016;14(1):4364.
Google Scholar
Samburg ME, Oldenburg SJ, Monteiro-Riviere NA. Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Nanotoxicology. 2011;5:244–53.
Article
Google Scholar
Warheit DB, Donner EM. Rationale of genotoxicity testing of nanomaterials: regulatory requirements and appropriateness of available OECD test guidelines. Nano. 2010;4:409–13.
CAS
Google Scholar
OECD. Guidance document on revisions to OECD genetic toxicology test guidelines. November 30th, 2015, Organisation for Economic Co-operation and Development. http://www.oecd.org/env/ehs/testing/Draft%20Guidance%20Document%20on%20OECD%20Genetic%20Toxicology%20Test%20Guidelines.pdf. Accessed 18 Jun 2017.
Kovvuru P, Mancilla PE, Shirode AB, Murray TM, Begley TJ, Reliene R. Oral ingestion of silver nanoparticles induces genomic instability and DNA damage in multiple tissues. Nanotoxicology. 2015;9:162–71.
Article
CAS
Google Scholar
Rayner J, Skinner B, Lantagne D. Current practices in manufacturing locally-made ceramic pot filters for water treatment in developing countries. J Water Sanit Hyg Dev. 2013;3:252–61.
Article
Google Scholar
WHO. Results of Round I of the WHO International Scheme to Evaluate Household Water Treatment Technologies. Geneva: World Health Organization; 2016.
Google Scholar
Froggett SJ, Clancy SF, Boverhof DR, Canady RA. A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Part Fibre Toxicol. 2014;11:1.
Article
Google Scholar
Garboś S, Swięcicka D. Silver migration from silver-modified activated carbon applied as a water filtration medium in classic cartridges of jug filter systems. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2012;29(11):1810–9.
Article
Google Scholar
Garboś S, Swięcicka D. Human exposure to silver released from silver-modified activated carbon applied in the new type of jug filter systems. Rocz Panstw Zakl Hig. 2013;64(1):31–6.
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6:e1000097.
Article
Google Scholar
Al Gurabi MA, Ali D, Alkahtani S, Alarifi S. In vivo DNA damaging and apoptotic potential of silver nanoparticles in Swiss albino mice. Onco Targets Ther. 2015;8:295–302.
Google Scholar
Ghosh M, Manivannan J, Sinha S, Chakraborty A, Mallick SK, Bandyopadhyay M, et al. In vitro and in vivo genotoxicity of silver nanoparticles. Mutat Res Genet Toxicol Environ Mutagen. 2012;749:60–9.
Article
CAS
Google Scholar
Asare N, Duale N, Slagsvold HH, Lindeman B, Olsen AK, Gromadzka-Ostrowska J, et al. Genotoxicity and gene expression modulation of silver and titanium dioxide nanoparticles in mice. Nanotoxicology. 2016;10:312–21.
Article
CAS
Google Scholar
Dobrzyńska MM, Gajowik A, Radzikowska J, Lankoff A, Dušinská M, Kruszewski M. Genotoxicity of silver and titanium dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology. 2014;315:86–91.
Article
Google Scholar
Kim JS, Sung JH, Ji JH, Song KS, Lee JH, Kang CS, et al. In vivo genotoxicity of silver nanoparticles after 90-day silver nanoparticle inhalation exposure. Saf Health Work. 2011;2:34–8.
Article
CAS
Google Scholar
Awasthi KK, Verma R, Awasthi A, Awasthi K, Soni I, John PJ. In vivo genotoxic assessment of silver nanoparticles in liver cells of Swiss albino mice using comet assay. Adv Mater Lett. 2015;6(3):187–93.
Article
CAS
Google Scholar
Patlolla AK, Hackett D, Tchounwou PB. Genotoxicity study of silver nanoparticles in bone marrow cells of Sprague–Dawley rats. Food Chem Toxicol. 2015;85:52–60.
Article
CAS
Google Scholar
El Mahdy MM, Eldin TA, Aly HS, Mohammed FF, Shaalan MI. Evaluation of hepatotoxic and genotoxic potential of silver nanoparticles in albino rats. Exp Toxicol Pathol. 2015;67:21–9.
Article
Google Scholar
Katsnelson BA, Privalova LI, Gurvich VB, Makeyev OH, Shur VY, Beikin YB, et al. Comparative in vivo assessment of some adverse bioeffects of equidimensional gold and silver nanoparticles and the attenuation of nanosilver’s effects with a complex of innocuous bioprotectors. Int J Mol Sci. 2013;14:2449–83.
Article
CAS
Google Scholar