Swerdlow S, Campo E, Harris N, Jaffe E, Pileri S, Stein H, Thiele J. WHO classification of tumours of haematopoietic and lymphoid tissues: World Health Organisation; 2008.
Howlader N, Na K, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis D, Chen H, Feuer E. SEER cancer statistics review, 1975-2016: National Cancer Institute; 2019.
Stewart B, Wild C. World cancer report 2014: International Agency for Research on Cancer; 2014.
Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
Google Scholar
International Agency for Research on Cancer (IARC). Latest global cancer data: cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018: International Agency for Research on Cancer; 2018.
Axelsson G, Barregard L, Holmberg E, Sallsten G. Cancer incidence in a petrochemical industry area in Sweden. Sci Total Environ. 2010;408(20):4482–7.
CAS
Google Scholar
Lin C, Hsu Y, Christiani D, Hung H, Lin R. Risks and burden of lung cancer incidence for residential petrochemical industrial complexes: A meta-analysis and application. Environ Int. 2018;121(1):404–14.
CAS
Google Scholar
Lin C, Hung H, Christiani D, Forastiere F, Lin R. Lung cancer mortality of residents living near petrochemical industrial complexes: A meta-analysis. Environ Health. 2017;16:101.
Google Scholar
Descatha A, Jenabian A, Conso F, Ameille J. Occupational exposures and haematological malignancies: overview on human recent data. Cancer Causes Control. 2005;16(8):939–53.
Google Scholar
Glass D, Gray C, Jolley D, Gibbons C, Sim M, Fritschi L, Adams G, Bisby J, Manuell R. Leukemia risk associated with low-level benzene exposure. Epidemiology. 2003;14(5):569–77.
Google Scholar
Kang S, Lee M, Kim T, Lee J, Ahn Y. Occupational exposure to benzene in South Korea. Chem Biol Interact. 2005;153:65–74.
Google Scholar
Hu X, Song S, Ye F, Liu L. High-performance liquid chromatographic determination of urinary trans, trans-muconic acid excreted by workers occupationally exposed to benzene. Biomed Environ Sci. 2006;19(4):292–6.
CAS
Google Scholar
Koh D, Kim T, Yoon Y, Shin K, Yoo S. Lymphohematopoietic cancer mortality and morbidity of workers in a refinery/petrochemical complex in Korea. Saf Health Work. 2011;2(1):26–33.
CAS
Google Scholar
Rushton L, Schnatter A, Tang G, Glass D. Acute myeloid and chronic lymphoid leukaemias and exposure to low-level benzene among petroleum workers. Br J Cancer. 2014;110(3):783.
CAS
Google Scholar
Kim Y, Choi J, Paek D, Chung H. Association of the NQO1, MPO, and XRCC1 polymorphisms and chromosome damage among workers at a petroleum refinery. J Toxic Environ Health A. 2008;71(5):333–41.
CAS
Google Scholar
Paz-Y-Miño C, López-Cortés A, Arévalo M, Sánchez M. Monitoring of DNA damage in individuals exposed to petroleum hydrocarbons in Ecuador. Ann N Y Acad Sci. 2008;1140(1):121–8.
Google Scholar
Carugno M, Pesatori A, Dioni L, Hoxha M, Bollati V, Albetti B, Byun H, Bonzini M, Fustinoni S, Cocco P, Satta G. Increased mitochondrial DNA copy number in occupations associated with low-dose benzene exposure. Environ Health Perspect. 2011;120(2):210–5.
Google Scholar
Lan Q, Zhang L, Li G, Vermeulen R, Weinberg R, Dosemeci M, Rappaport S, Shen M, Alter B, Wu Y, Kopp W. Hematotoxicity in workers exposed to low levels of benzene. Science. 2004;306(5702):1774–6.
CAS
Google Scholar
Koh D, Jeon H, Lee S, Ryu H. The relationship between low-level benzene exposure and blood cell counts in Korean workers. Occup Environ Med. 2015;72(6):421–7.
Google Scholar
Sonoda T, Ishida T, Mori M, Sakai H, Noguchi M, Imai K. A case-control study of multiple myeloma in Japan: association with occupational factors. Asian Pac J Cancer Prev. 2005;6(1):33–6.
Google Scholar
Mclean D, Mannetje A, Dryson E, Walls C, Mckenzie F, Maule M, Cheng S, Cunningham C, Kromhout H, Boffetta P, Blair A. Leukaemia and occupation: a New Zealand cancer registry-based case–control study. Int J Epidemiol. 2009;38(2):594–606.
Google Scholar
Sathiakumar N, Delzell E, Cole P, Brill I, Frisch J, Spivey G. A case-control study of leukemia among petroleum workers. J Occup Environ Med. 1995;37(11):1269–77.
CAS
Google Scholar
Pukkala E. Cancer incidence among Finnish oil refinery workers, 1971-1994. J Occup Environ Med. 1998;40(8):675–9.
CAS
Google Scholar
Kirkeleit J, Riise T, Bråtveit M, Moen B. Increased risk of acute myelogenous leukemia and multiple myeloma in a historical cohort of upstream petroleum workers exposed to crude oil. Cancer Causes Control. 2008;19(1):13–23.
Google Scholar
Campagna M, Satta G, Campo L, Flore V, Ibba A, Meloni M, Giuseppina Tocco M, Avataneo G, Flore C, Fustinoni S, Cocco P. Biological monitoring of low-level exposure to benzene. Med Lav. 2012;103(5):338.
CAS
Google Scholar
Edokpolo B, Yu Q, Connell D. Health risk assessment for exposure to benzene in petroleum refinery environments. Int J Environ Res Public Health. 2015;12(1):595–610.
Google Scholar
Ward E, Hornung R, Morris J, Rinsky R, Wild D, Halperin W, Guthrie W. Risk of low red or white blood cell count related to estimated benzene exposure in a rubberworker cohort (1940–1975). Am J Ind Med. 1996;29(3):247–57.
CAS
Google Scholar
Macaluso M, Larson R, Delzell E, Sathiakumar N, Hovinga M, Julian J, Muir D, Cole P. Leukemia and cumulative exposure to butadiene, styrene and benzene among workers in the synthetic rubber industry. Toxicology. 1996;113(1–3):190–202.
CAS
Google Scholar
Cheng H, Sathiakumar N, Graff J, Matthews R, Delzell E. 1, 3-butadiene and leukemia among synthetic rubber industry workers: exposure–response relationships. Chem Biol Interact. 2007;166(1–3):15–24.
CAS
Google Scholar
Sathiakumar N, Brill I, Leader M, Delzell E. 1, 3-butadiene, styrene and lymphohematopoietic cancer among male synthetic rubber industry workers–preliminary exposure-response analyses. Chem Biol Interact. 2015;241:40–9.
CAS
Google Scholar
Wong O. Risk of acute myeloid leukaemia and multiple myeloma in workers exposed to benzene. Occup Environ Med. 1995;52(6):380–4.
CAS
Google Scholar
Hayes R, Dosemeci M, Wacholder S, Travis L, Rothman N, Hoover R, Linet M, Yin S, Li G, Li C. Benzene and the dose-related incidence of hematologic neoplasms in China. J Natl Cancer Inst. 1997;89(14):1065–71.
CAS
Google Scholar
Adegoke O, Blair A, Shu X, Sanderson M, Jin F, Dosemeci M, Addy C, Zheng W. Occupational history and exposure and the risk of adult leukemia in Shanghai. Ann Epidemiol. 2003;13(7):485–94.
Google Scholar
Budroni M, Sechi O, Cesaraccio R, Pirino D, Fadda A, Grottin S, Flore M, Sale P, Satta G, Cossu A, Tanda F. Cancer incidence among petrochemical workers in the Porto Torres industrial area, 1990-2006. Med Lav. 2010;101(3):189–98.
CAS
Google Scholar
Poynter J, Richardson M, Roesler M, Blair C, Hirsch B, Nguyen P, Cioc A, Cerhan J, Warlick E. Chemical exposures and risk of acute myeloid leukemia and myelodysplastic syndromes in a population-based study. Int J Cancer. 2017;140(1):23–33.
CAS
Google Scholar
Paxton M, Chinchilli V, Brett S, Rodricks J. Leukemia risk associated with benzene exposure in the pliofilm cohort. II. Risk estimates. Risk Anal. 1994;14(2):155–61.
CAS
Google Scholar
Heibati B, Pollitt K, Karimi A, Charati J, Ducatman A, Shokrzadeh M, Mohammadyan M. BTEX exposure assessment and quantitative risk assessment among petroleum product distributors. Ecotoxicol Environ Saf. 2017;144:445–9.
CAS
Google Scholar
World Health Organisation (WHO). WHO guidelines for indoor air quality: selected pollutants: WHO Regional Office for Europe; 2010.
Kerr N. ‘HARKing’: hypothesizing after the results are known. Personal Soc Psychol Rev. 1998;2(3):196–217.
CAS
Google Scholar
Gazdek D, Strnad M, Mustajbegovic J, Nemet-Lojan Z. Lymphohematopoietic malignancies and oil exploitation in Koprivnica-Krizevci County, Croatia. Int J Occup Environ Health. 2007;13(3):258–67.
Google Scholar
Hurtig A, San Sebastian M. Geographical differences in cancer incidence in the Amazon basin of Ecuador in relation to residence near oil fields. Int J Epidemiol. 2002;31(5):1021–7.
Google Scholar
Hurtig A, San Sebastian M. Incidence of childhood leukemia and oil exploitation in the Amazon basin of Ecuador. Int J Occup Environ Health. 2004;10(3):245–50.
Google Scholar
Knox E. Leukaemia clusters in childhood: geographical analysis in Britain. J Epidemiol Community Health. 1994;48(4):369–76.
CAS
Google Scholar
Patel A, Talbott E, Zborowski J, Rycheck J, Dell D, Xu X, Schwerha J. Risk of cancer as a result of community exposure to gasoline vapors. Arch Environ Health. 2004;59(10):497–503.
Google Scholar
Wells G, Shea B, O'connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses: Ottawa Hospital Research Institute; 2011. www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 15 Dec 2018.
Lipsey M, Wilson D. Practical meta-analysis. Thousand Oaks: Sage; 2001.
Google Scholar
Assink M, Wibbelink C. Fitting three-level meta-analytic models in R: A step-by-step tutorial. Quant Methods Psychol. 2016;12(3):154–74.
Google Scholar
Fazzo L, Carere M, Tisano F, Bruno C, Cernigliaro A, Cicero M, Comba P, Contrino M, De Santis M, Falleni F, Ingallinella V, Madeddu A, Marcello I, Regalbuto C, Sciacca G, Soggiu M, Zona A. Cancer incidence in Priolo, Sicily: a spatial approach for estimation of industrial air pollution impact. Geospat Health. 2016;11(320):43–55.
Google Scholar
Symons M, Taulbee J. Practical considerations for approximating relative risk by the standardized mortality ratio. J Occup Med. 1981;23(6):413–6.
CAS
Google Scholar
Schmidt C, Kohlmann T. When to use the odds ratio or the relative risk? Int J Public Health. 2008;53(3):165–7.
Google Scholar
Persoskie A, Ferrer R. A most odd ratio: interpreting and describing odds ratios. Am J Prev Med. 2017;52(2):224–8.
Google Scholar
Viechtbauer W. Conducting meta-analyses in R with the metaphor package. J Stat Softw. 2010;36(3).
Higgins J, Green S. Cochrane handbook for systematic reviews of interventions version 5.1.0: The Cochrane Collaboration; 2011. www.handbook.cochrane.org. Accessed 15 Dec 2018.
Lyons R, Monaghan S, Heaven M, Littlepage B, Vincent T, Draper G. Incidence of leukaemia and lymphoma in young people in the vicinity of the petrochemical plant at Baglan Bay, South Wales, 1974 to 1991. Occup Environ Med. 1995;52(4):225–8.
CAS
Google Scholar
Pekkanen J, Pukkala E, Vahteristo M, Vartiainen T. Cancer incidence around an oil refinery as an example of a small area study based on map coordinates. Environ Res. 1995;71(2):128–34.
CAS
Google Scholar
Bulat P, Ivić M, Jovanović M, Petrović S, Miljus D, Todorović T, Miladinov-Mikov M, Bogdanović M. Cancer incidence in a population living near a petrochemical facility and oil refinery. Coll Antropol. 2011;35(2):377–83.
Google Scholar
Zusman M, Dubnov J, Barchana M, Portnov B. Residential proximity to petroleum storage tanks and associated cancer risks: Double Kernel Density approach vs. zonal estimates. Sci Total Environ. 2012;441:265–76.
CAS
Google Scholar
Morris J, Gardner M. Statistics in medicine: calculating confidence intervals for relative risks (odds ratios) and standardised ratios and rates. Br Med J (Clin Res Ed). 1988;296(6632):1313–6.
CAS
Google Scholar
Higgins J, Thompson S, Deeks J, Altman D. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.
Google Scholar
Peters J, Sutton A, Jones D, Abrams K, Rushton L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol. 2008;61(10):991–6.
Google Scholar
Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.
CAS
Google Scholar
Allen B. The problem with epidemiology data in assessing environmental health impacts of toxic sites. WIT Trans Ecol Environ. 2005;85:467–75.
Google Scholar
Singer M. Down cancer alley: the lived experience of health and environmental suffering in Louisiana’s chemical corridor. Med Anthropol Q. 2011;25(2):141–63.
Google Scholar
United States Environmental Protection Agency (US-EPA). Toxics release inventory (TRI) basic data files: calendar years 1987-2018. 2019. https://www.epa.gov/toxics-release-inventory-tri-program/tri-basic-data-files-calendar-years-1987-2018. Accessed 10 Mar 2019.
Google Scholar
Dmowska A, Stepinski T. High resolution dasymetric model of U.S demographics with application to spatial distribution of racial diversity. Appl Geogr. 2014;53:417–26.
Google Scholar
Levin M. The occurrence of lung cancer in man. Acta Unio Int Contra Cancrum. 1953;9:531–54.
CAS
Google Scholar
Sans S, Elliott P, Kleinschmidt I, Shaddick G, Pattenden S, Walls P, Grundy C, Dolk H. Cancer incidence and mortality near the Baglan Bay petrochemical works, South Wales. Occup Environ Med. 1995;52(4):217–24.
CAS
Google Scholar
Barregard L, Holmberg E, Sallsten G. Leukaemia incidence in people living close to an oil refinery. Environ Res. 2009;109(8):985–90.
CAS
Google Scholar
Beale L, Hodgson S, Abellan J, Lefevre S, Jarup L. Evaluation of spatial relationships between health and the environment: the rapid inquiry facility. Environ Health Perspect. 2010;118(9):1306–12.
Google Scholar
De Roos A, Davis S, Colt J, Blair A, Airola M, Severson R, Cozen W, Cerhan J, Hartge P, Nuckols J, Ward M. Residential proximity to industrial facilities and risk of non-Hodgkin lymphoma. Environ Res. 2010;110(1):70–8.
Google Scholar
García-Pérez J, López-Abente G, Gómez-Barroso D, Morales-Piga A, Romaguera E, Tamayo I, Fernández-Navarro P, Ramis R. Childhood leukemia and residential proximity to industrial and urban sites. Environ Res. 2015;140:542–53.
Google Scholar
Linos A, Blair A, Gibson R, Everett G, Van Lier S, Cantor K, Schuman L, Burmeister L. Leukemia and non-Hodgkin's lymphoma and residential proximity to industrial plants. Arch Environ Health. 1991;46(2):70–4.
CAS
Google Scholar
Pasetto R, Zona A, Pirastu R, Cernigliaro A, Dardanoni G, Addario S, Scondotto S, Comba P. Mortality and morbidity study of petrochemical employees in a polluted site. Environ Health. 2012;11(34).
Salerno C, Berchialla P, Palin L, Vanhaecht K, Panella M. Cancer morbidity of residents living near an oil refinery plant in north-West Italy. Int J Environ Health Res. 2013;23(4):342–51.
Google Scholar
Wilkinson P, Thakrar B, Walls P, Landon M, Falconer S, Grundy C, Elliott P. Lymphohaematopoietic malignancy around all industrial complexes that include major oil refineries in Great Britain. Occup Environ Med. 1999;56(9):577–80.
CAS
Google Scholar
Yu C, Wang S, Pan P, Wu M, Ho C, Smith T, Li Y, Pothier L, Christiani D. Residential exposure to petrochemicals and the risk of leukemia: using geographic information system tools to estimate individual-level residential exposure. Am J Epidemiol. 2006;164(3):200–7.
Google Scholar
Allen B. Uneasy alchemy: citizens and experts in Louisiana’s chemical corridor dispute. Cambridge: MIT Press; 2003.
Google Scholar
Lerner M. Diamond: a struggle for environmental justice in Louisiana’s chemical corridor. Cambridge: MIT Press; 2004.
Google Scholar
National Cancer Institute (NCI). State cancer profiles: 2012-2016 age-adjusted incidence rate report by state 2019. https://statecancerprofiles.cancer.gov/. Accessed 15 Dec 2019.
Google Scholar
Checkoway H, Pearce N, Kriebel D. Selecting appropriate study designs to address specific research questions in occupational epidemiology. Occup Environ Med. 2007;64(9):633–8.
Google Scholar
Forrest L, White M, Rubin G, Adams J. The role of patient, tumour and system factors in socioeconomic inequalities in lung cancer treatment: population-based study. Br J Cancer. 2014;111(3):608.
CAS
Google Scholar