There are two types of effects climate change is expected to have on human health: 1) direct impacts, due primarily increasing frequency of extreme weather such as heat, drought, and heavy precipitation; 2) mediated effects (such as air pollution, water-borne illnesses, and malnutrition) [1].
While all populations may potentially face direct health effects of climate change, the impacts mediated by natural and human systems are expected to be more substantial for vulnerable populations (children, elderly, poor, indigenous) because of their living conditions. A large percentage of developing countries’ populations, for example, work and subsist on a diet based in non-irrigated agriculture and, as a result, climate changes will negatively impact their economic capacity (i.e., ability to work) and significantly reduce their access to nutritious food, cooking fuel, and clean water [2]. Many of these poor countries suffer from endemic corruption and lack a welfare support, such as unemployment benefits and food stamps [3]. The cumulative impact of these risks makes those more vulnerable to infectious diseases [4, 5] and, as a result, reduces their working capacities and increases expenses, pushing them further into poverty. Extreme poverty has a significant effect as well on the household environment in which these populations live through the materials they use to build their homes and lack of proper access to utilities (such as gas, clean water, and electricity). Therefore, the household environment can also have a negative effect on the health of those individuals living in those homes.
In this paper, we use the 2011–12 Honduras Demographic and Health Survey (DHS) and Global Positioning System (GPS) linked climate data to analyze the relation between child health, household environment and climate anomalies in one of the poorest Central American countries, Honduras. We focus on Honduras for several reasons: 1) it is one of the least developed/poorest countries in Latin America; 2) it has significant environmental issues (deforestation, flooding); 3) children under 15 represent a high percentage of its population (32.95% in 2014, CIA, The World Factbook); 4) almost 40% of population is employed in agriculture (CIA, The World Factbook); and 5) there are a limited number of analyses focused on this country.
In the following pages, we first discuss what we know so far about the impacts of climatic variations on health. Secondly, we connect household health, basic sanitation and water source survey data with climate data to analyze the relationships between environment, household characteristics, and child health in Honduras. Third, we discuss what these results mean for the Honduran children’s health outcomes and what policy recommendations can be made based on our analyses.
Honduras has one of the youngest and fastest growing populations in Latin America (1.6% rate of growth in 2017, 32.95% under the age of 14) with an annual rate of urbanization of 3% (CIA World Factbook). Local governments have limited resources and are often corrupted, so they are unable to keep up with this population growth to offer the services people needed (running water, sewage, waste collection, security) [3]. High levels of violence, large storms, hurricanes (Mitch in 1998), and flooding (NUD, 2011) are factors that have deteriorated the living environment and prevented further the people in Honduras from having access to the health services they need.
Climate change is likely to increase the impact of existing environmental problems worldwide, and Honduras has already experienced significant weather related losses. The damages inflicted by hurricane Mitch led Germanwatch to list Hondurast among the top three countries that suffered the greatest damages during 1992–2011 due to extreme weather events [6]. Due to its geographical position, Honduras is exposed to tropical storms/ hurricanes, floods and landslides. This climate vulnerability is likely to increase in the future as mid-latitude regions such as Honduras are expected to see more extreme precipitation events in the next 80–90 years. These extremes may vary between droughts and flooding at different times [7]. The mean temperature (which is already above 75 °F, while it reaches 93 °F in some areas in Honduras) is expected to increase by 1.0 to 2.5 °C in Central America by 2050 under all IPCC emission models [7].
Climate change will also lead to a higher probability of significant flood events [3]. For example, a study of the Choluteca Department (Honduras) found that during 1988–2013, the local population experienced moderate to extreme vulnerability due to natural weather related disasters such as extreme flooding, mud slides, and drought [8]. Both drought and flood episodes have occurred repeatedly during 2000–2011; the 2010 wet season was among the wettest but it was also too short, leading to an abrupt flood-to-drought transition [3]. For the western part of Honduras, however, climate change is expected to lead to a 10–20% decrease in precipitation by 2050, posing significant problems to the local agriculture, especially around the “Corredor seco” (“Dry corridor”) - an area that includes departments of Choluteca, Morazan and Valle [9].
Climate change is expected to have a significant effect on agriculture, the ability of people to work, quantity and quality of food available and, in turn, will affect people’s health especially in countries where large proportions of people (almost 40% in Honduras) are involved in agriculture ([10,11,12,13] 2011 [14];). In 2003, when Europe recorded some of the hottest summers in modern history, at least 22,000 deaths were attributed to extreme temperatures. A U.S. study found that negative temperature extremes increased mortality in the warmer (southern) states, whereas in the colder (northern) states, mortality was more affected by the increase in high temperatures [15]. Research done in Peru shows that significant increase in the ambient temperature (brought by ENSO) affects the prevalence of diarrhea among children [16]. On a global level, future climate change may increase diarrhea incidence by up to 29% [13]. Increase in the sea surface temperature has been also shown to be correlated to an increase in the number of cholera cases in the Bay of Bengal [17]. In Honduras, climate change has contributed to a higher prevalence of respiratory diseases, malaria, dengue, and diarrhea. The health of children (0–4) and adults (60+), particularly the poor ones, is more likely to be impacted by these changes [18].
Increasing urbanization, on the other hand, leads to an even higher temperature increase than the one brought by climate change itself. Changes in land cover (from vegetation to asphalt roads and buildings) bring up urban “heat islands,” with temperatures 5–11 °C higher than the surrounding rural areas [19, 20]. In this respect in Honduras, during 1990 to 2005, forest land cover decreased by 37.1%, (the fourth-largest percentage loss for any nation) [3]. Tegucigalpa, the largest city in Honduras, has quadrupled in size since the 1970s and it has a high population density (14,500 people per sq. mile in 2014 210 per sq. mile mean density in Central America). Population density is especially high in the urban periphery, a part that is also constantly being impacted by floods, landslides and droughts. Many of the poor live in these unplanned settlements, making them especially vulnerable to environmental effects (Adaptation Fund 2015). As more people move to urban areas [21], a continuation of unplanned urban expansion will result in new developments in areas with high environmental risks [22].
Climate changes will also negatively impact already existing environmental problems. There is a significant international literature linking child incidence of diarrhea and cough to unfavorable household environment related to water source, wastewater sanitation and cooking fuel type, respectively [23, 24]. Poor air quality and lack of access to clean water and sanitation increase the prevalence of respiratory diseases, diarrhea, and other infectious diseases (such as dengue and malaria) (PNUD and [18]). In Honduras, for example, in the summer of 2013, the high incidence of dengue fever made the Honduran authorities declare an emergency situation [25].
The type of cooking fuel used in the household proves to be an important factor affecting the incidence of respiratory diseases. Research done in Lucknow (India) showed that the use of dung cakes as cooking fuel has had a significant effect on the incidence of respiratory diseases among children [26].
Similarly, children who don’t have permanent access to clean water and live in generally poor sanitary conditions are more exposed to bacteria and, as a result, have a higher probability of developing infectious diseases. Fink et al. [23] show that access to clean water and sanitation is associated with a lower risk of child diarrhea and a lower risk of mild or severe stunting. Suboptimal nutrition and infectious diseases, in turn, are factors that significantly affect the weight and height of children older than 6 months regardless of the children ethnic and racial background [27].
Climate change, and anomalies in temperature and rainfall in particular, affect directly and indirectly human health. Directly, high heat (above 100/104 F) puts pressure on the human body, it brings heat exhaustion and physical and mental health issues and can lead to death, especially when the person has a pre-existing condition ([28, 29]. Indirectly, climate influences the rate of growth, transmission, or virulence of large pathogens [1]. Lack of access to sanitation and clean water exposes humans to these climate-sensitive pathogens.
Several studies show that respiratory diseases and diarrhea are correlated with variables such as temperature and humidity extremes ([30, 31]; Chang et al., 2012 [32, 33];). This type of research is either done at a macro level or, when done at a micro level, studies are based on hospital admissions that don’t link the place where the child lived before being admitted to the hospital with the meteorological occurrences at his/her place of residence.