U.S. Environmental Protection Agency. Biological effects of radiofrequency radiation: EPA-600/8-83-026F. Health Effect Research Laboratory, U.S. Environmental Protection Agency. Research Triangle Park; 1984. Available from: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=300065H1.TXT.
National Council on Radiation Protection and Measurements. Biological effects and exposure criteria for radiofrequency electromagnetic fields: NCRP Report No. 86; 1986. Available from: https://ncrponline.org/shop/reports/report-no-086-biological-effects-and-exposure-criteria-for-radiofrequency-electromagnetic-fields-1986/.
Blackman C. Cell phone radiation: evidence from ELF and RF studies supporting more inclusive risk identification and assessment. Pathophysiology. 2009;16(2–3):205–16. https://doi.org/10.1016/j.pathophys.2009.02.001.
International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 2020;118(5):483–524. https://www.icnirp.org/cms/upload/publications/ICNIRPrfgdl2020.pdf.
Ozgur E, Kismali G, Guler G, Akcay A, Ozkurt G, Sel T, et al. Effects of prenatal and postnatal exposure to GSM-like radiofrequency on blood chemistry and oxidative stress in infant rabbits, an experimental study. Cell Biochem Biophys. 2013;67(2):743–51. https://doi.org/10.1007/s12013-013-9564-1.
Azimzadeh M, Jelodar G. Prenatal and early postnatal exposure to radiofrequency waves (900 MHz) adversely affects passive avoidance learning and memory. Toxicol Ind Health. 2020;36(12):1024–30. https://doi.org/10.1177/0748233720973143.
Article
CAS
Google Scholar
Falcioni L, Bua L, Tibaldi E, Lauriola M, De Angelis L, Gnudi F, et al. Report of final results regarding brain and heart tumors in Sprague-Dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental emission. Environ Res. 2018;165:496–503. https://doi.org/10.1016/j.envres.2018.01.037.
Article
CAS
Google Scholar
Fathy A, Rifaai RA, Said A, Ragab S. Structural changes in the parotid gland of male albino rats following prenatal and postnatal exposure to radiofrequency radiation. Egyptian J Histol. 2015;38(1):102–15. https://doi.org/10.1097/01.EHX.0000460811.11670.34.
Article
Google Scholar
Erkut A, Tumkaya L, Balik MS, Kalkan Y, Guvercin Y, Yilmaz A, et al. The effect of prenatal exposure to 1800 MHz electromagnetic field on calcineurin and bone development in rats. Acta Cirurgica Brasileira. 2016;31(2):74–83. https://doi.org/10.1590/S0102-865020160020000001.
Article
Google Scholar
Lary JM, Conover DL, Foley ED, Hanser PL. Teratogenic effects of 27.12 MHz radiofrequency radiation in rats. Teratology. 1982;26(3):299–309. https://doi.org/10.1002/tera.1420260312.
Article
CAS
Google Scholar
Magras IN, Xenos TD. RF radiation-induced changes in the prenatal development of mice. Bioelectromagnet J Bioelectromagnet Soc Soc Phys Regul Biol Med Eur Bioelectromagnet Assoc. 1997;18(6):455–61. https://doi.org/10.1002/(sici)1521-186x(1997)18:%3C455::aid-bem8%3E3.0.co;2-1.
Aerts S, Calderon C, Valič B, Maslanyj M, Addison D, Mee T, et al. Measurements of intermediate-frequency electric and magnetic fields in households. Environ Res. 2017;154:160–70. https://doi.org/10.1016/j.envres.2017.01.001.
Article
CAS
Google Scholar
Ren Y, Chen J, Miao M, Li D-K, Liang H, Wang Z, et al. Prenatal exposure to extremely low frequency magnetic field and its impact on fetal growth. Environ Health. 2019;18(1):6. https://doi.org/10.1186/s12940-019-0447-9.
Article
Google Scholar
Szmigielski S, Bortkiewicz A, Gadzicka E, Zmyslony M, Kubacki R. Alteration of diurnal rhythms of blood pressure and heart rate to workers exposed to radiofrequency electromagnetic fields. Blood Press Monit. 1998;3(6):323–30.
CAS
Google Scholar
Wallace J, Andrianome S, Ghosn R, Blanchard ES, Telliez F, Selmaoui B. Heart rate variability in healthy young adults exposed to global system for mobile communication (GSM) 900-MHz radiofrequency signal from mobile phones. Environ Res. 2020;191:110097. https://doi.org/10.1016/j.envres.2020.110097.
Wallace J, Selmaoui B. Effect of mobile phone radiofrequency signal on the alpha rhythm of human waking EEG: a review. Environ Res. 2019;175:274–86. https://doi.org/10.1016/j.envres.2019.05.016.
Article
CAS
Google Scholar
Volkow ND, Tomasi D, Wang G-J, Vaska P, Fowler JS, Telang F, et al. Effects of cell phone radiofrequency signal exposure on brain glucose metabolism. JAMA. 2011;305(8):808–13. https://doi.org/10.1001/jama.2011.186.
Article
CAS
Google Scholar
International Agency for Research on Cancer. IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans. Press Release N: 208. 2011. Available from: http://emfguide.itu.int/pdfs/pr208_E.pdf.
Sadetzki S, Chetrit A, Jarus-Hakak A, Cardis E, Deutch Y, Duvdevani S, et al. Cellular phone use and risk of benign and malignant parotid gland tumors—a nationwide case-control study. Am J Epidemiol. 2008;167(4):457–67. https://doi.org/10.1093/aje/kwm325.
Article
Google Scholar
Luo J, Deziel NC, Huang H, Chen Y, Ni X, Ma S, et al. Cell phone use and risk of thyroid cancer: a population-based case–control study in Connecticut. Ann Epidemiol. 2019;29:39–45. https://doi.org/10.1016/j.annepidem.2018.10.004.
Article
Google Scholar
Luo J, Li H, Deziel NC, Huang H, Zhao N, Ma S, et al. Genetic susceptibility may modify the association between cell phone use and thyroid cancer: a population-based case-control study in Connecticut. Environ Res. 2020;182:109013. https://doi.org/10.1016/j.envres.2019.109013.
Kissling C, Di Santo S. Tumor Treating fields–behind and beyond inhibiting the cancer cell cycle. CNS Neurol Disord-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2020;19(8):599–610. https://doi.org/10.2174/1871527319666200702144749.
Blackman C, Benane S, House D. The influence of temperature during electric-and magnetic-field-induced alteration of calcium-ion release from in vitro brain tissue. Bioelectromagnetics. 1991;12(3):173–82. https://doi.org/10.1002/bem.2250120305.
Article
CAS
Google Scholar
Oyewopo A, Olaniyi S, Oyewopo C, Jimoh A. Radiofrequency electromagnetic radiation from cell phone causes defective testicular function in male Wistar rats. Andrologia. 2017;49(10):e12772. https://doi.org/10.1111/and.12772.
Ertilav K, Uslusoy F, Ataizi S, Nazıroğlu M. Long term exposure to cell phone frequencies (900 and 1800 MHz) induces apoptosis, mitochondrial oxidative stress and TRPV1 channel activation in the hippocampus and dorsal root ganglion of rats. Metab Brain Dis. 2018;33(3):753–63. https://doi.org/10.1007/s11011-017-0180-4.
Article
CAS
Google Scholar
Jimenez H, Wang M, Zimmerman JW, Pennison MJ, Sharma S, Surratt T, et al. Tumour-specific amplitude-modulated radiofrequency electromagnetic fields induce differentiation of hepatocellular carcinoma via targeting Cav3. 2 T-type voltage-gated calcium channels and Ca2+ influx. EBioMedicine. 2019;44:209–24. https://doi.org/10.1016/j.ebiom.2019.05.034.
Article
Google Scholar
Belpomme D, Hardell L, Belyaev I, Burgio E, Carpenter DO. Thermal and non-thermal health effects of low intensity non-ionizing radiation: an international perspective. Environ Pollut. 2018;242:643–58. https://doi.org/10.1016/j.envpol.2018.07.019.
Article
CAS
Google Scholar
Sharma A, Sharma S, Shrivastava S, Singhal PK, Shukla S. Mobile phone induced cognitive and neurochemical consequences. J Chem Neuroanat. 2019;102:101684. https://doi.org/10.1016/j.jchemneu.2019.101684.
Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, Kyrylenko S. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med. 2016;35(2):186–202. https://doi.org/10.3109/15368378.2015.1043557.
Article
CAS
Google Scholar
Yang H, Zhang Y, Wang Z, Zhong S, Hu G, Zuo W. The effects of mobile phone radiofrequency radiation on cochlear stria marginal cells in Sprague-Dawley rats. Bioelectromagnetics. 2020;41(3):219–29. https://doi.org/10.1002/bem.22255.
Article
CAS
Google Scholar
Gautam R, Singh KV, Nirala J, Murmu NN, Meena R, Rajamani P. Oxidative stress-mediated alterations on sperm parameters in male Wistar rats exposed to 3G mobile phone radiation. Andrologia. 2019;51(3):e13201. https://doi.org/10.1111/and.13201.
Carter CS, Huang SC, Searby CC, Cassaidy B, Miller MJ, Grzesik WJ, et al. Exposure to static magnetic and electric fields treats type 2 diabetes. Cell Metab. 2020;32(4):561–74. e7. https://doi.org/10.1016/j.cmet.2020.09.012.
Fragopoulou AF, Polyzos A, Papadopoulou MD, Sansone A, Manta AK, Balafas E, et al. Hippocampal lipidome and transcriptome profile alterations triggered by acute exposure of mice to GSM 1800 MH z mobile phone radiation: an exploratory study. Brain Behavior. 2018;8(6):e01001. https://doi.org/10.1002/brb3.1001.
Perera PGT, Nguyen THP, Dekiwadia C, Wandiyanto JV, Sbarski I, Bazaka O, et al. Exposure to high-frequency electromagnetic field triggers rapid uptake of large nanosphere clusters by pheochromocytoma cells. Int J Nanomed. 2018;13:8429. https://doi.org/10.2147/IJN.S183767.
Article
CAS
Google Scholar
Smith-Roe SL, Wyde ME, Stout MD, Winters JW, Hobbs CA, Shepard KG, et al. Evaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposure. Environ Mol Mutagen. 2020;61(2):276–90. https://doi.org/10.1002/em.22343.
Article
CAS
Google Scholar
Alkis ME, Bilgin HM, Akpolat V, Dasdag S, Yegin K, Yavas MC, et al. Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagn Biol Med. 2019;38(1):32–47. https://doi.org/10.1080/15368378.2019.1567526.
Article
CAS
Google Scholar
Phillips JL, Singh NP, Lai H. Electromagnetic fields and DNA damage. Pathophysiology. 2009;16(2–3):79–88. https://doi.org/10.1016/j.pathophys.2008.11.005.
Article
CAS
Google Scholar
Sambad S, Wu SY, Jimenez H, Xing F, Zhu D, Liu Y, et al. Ca2+ and CACNA1H mediate targeted suppression of breast cancer brain metastasis by AM RF EMF. EBioMedicine. 2019;44:194–208. https://doi.org/10.1016/j.ebiom.2019.05.038.
Article
Google Scholar
American National Standards Institute. Safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz: American National Standards Institute; 1982. Available from: https://ehtrust.org/wp-content/uploads/2015/11/ANSI-National-standards-1982-safety-levels-for-human-exposure.pdf.
Institute of Electrical and Electronics Engineers. (Revision of ANSI C95.1–1982). IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE Std C95. 1991. https://doi.org/10.1109/IEEESTD.1992.101091. .
Vornoli A, Falcioni L, Mandrioli D, Bua L, Belpoggi F. The contribution of in vivo mammalian studies to the knowledge of adverse effects of radiofrequency radiation on human health. Int J Environ Res Public Health. 2019;16(18):3379. https://doi.org/10.3390/ijerph16183379.
Article
CAS
Google Scholar
Melnick RL. Commentary on the utility of the National Toxicology Program study on cell phone radiofrequency radiation data for assessing human health risks despite unfounded criticisms aimed at minimizing the findings of adverse health effects. Environ Res. 2019;168:1–6. https://doi.org/10.1016/j.envres.2018.09.010.
Article
CAS
Google Scholar
Belpoggi F, Falcioni L, Panzacchi S, Sgargi D, Mandrioli D. Response to "Cancerogenic effects of radiofrequency radiation: A statistical reappraisal" Environ Res. 2021;197:111067. https://doi.org/10.1016/j.envres.2021.111067.
National Toxicology Program. 595: NTP Technical Report on the Toxicology and Carcinogenesis Studies in Hsd: Sprague Dawley SD Rats Exposed to Whole-Body Radio Frequency Radiation at a Frequency (900 MHz) and Modulations (GSM and CDMA) Used by Cell Phones. National Toxicology Program, US Department of Health and Human Services. 2018. Available from: https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr595_508.pdf?utm_source=direct&utm_medium=prod&utm_campaign=ntpgolinks&utm_term=tr595.
National Toxicology Program. Technical report on the toxicology and carcinogenesis studies in B6c3f1/N mice exposed to Whole-Body radio frequency radiation at a frequency (1,900 MHz) and modulations (GSM and CDMA) used by cell phones. Research Triangle Park, North Carolina; National Toxicology Program, National Institutes of Health. Public Health Service, US Department of Health and Human Services, NTP TR. 2018;596. Available from: https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr596_508.pdf?utm_source=direct&utm_medium=prod&utm_campaign=ntpgolinks&utm_term=tr596.
National Toxicology Program. Cell Phone Radio Frequency Radiation. 2020. Available from: https://ntp.niehs.nih.gov/whatwestudy/topics/cellphones/index.html.
U.S Environmental Protection Agency. Benchmark dose technical guidance. US Environmental Protection Agency. 2012. Available from: https://www.epa.gov/sites/production/files/2015-01/documents/benchmark_dose_guidance.pdf.
EFSA Scientific Committee, Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen KH, et al. Update: use of the benchmark dose approach in risk assessment. EFSA J. 2017;15(1):e04658. https://doi.org/10.2903/j.efsa.2017.4658.
Article
Google Scholar
Haber LT, Dourson ML, Allen BC, Hertzberg RC, Parker A, Vincent MJ, et al. Benchmark dose (BMD) modeling: current practice, issues, and challenges. Crit Rev Toxicol. 2018;48(5):387–415. https://doi.org/10.1080/10408444.2018.1430121.
Article
Google Scholar
California OEHHA. Air toxics hot spots risk assessment guidelines: Technical support document for the derivation of noncancer reference exposure levels. Sacramento: Office of Environmental Health Hazard Assessment, California Environmental Protection Agency; 2008. https://oehha.ca.gov/media/downloads/crnr/noncancertsdfinal.pdf.
California OEHHA. Methodologies for derivation, listing of available values, and adjustments to allow for early life stage exposures. Technical Support Document for Cancer Potency Factors Appendix A: Hot Spots Unit Risk and Cancer Potency Values. 2009. Available from: https://oehha.ca.gov/air/crnr/technical-support-document-cancer-potency-factors-2009
Santini SJ, Cordone V, Falone S, Mijit M, Tatone C, Amicarelli F, et al. Role of mitochondria in the oxidative stress induced by electromagnetic fields: focus on reproductive systems. Oxidative Med Cellular Longevity. 2018;2018. https://doi.org/10.1155/2018/5076271.
Kim JH, Lee J-K, Kim H-G, Kim K-B, Kim HR. Possible effects of radiofrequency electromagnetic field exposure on central nerve system. Biomol Therapeut. 2019;27(3):265. https://doi.org/10.4062/biomolther.2018.152.
Article
Google Scholar
Narayanan SN, Jetti R, Kesari KK, Kumar RS, Nayak SB, Bhat PG. Radiofrequency electromagnetic radiation-induced behavioral changes and their possible basis. Environ Sci Pollution Res. 2019:1–18. doi: https://doi.org/10.1007/s11356-019-06278-5.
National Research Council. Science and decisions: advancing risk assessment: National Academies Press; 2009. Available from: https://www.nap.edu/catalog/12209/science-and-decisions-advancing-risk-assessment
Landrigan PJ, Kimmel CA, Correa A, Eskenazi B. Children's health and the environment: public health issues and challenges for risk assessment. Environ Health Perspect. 2004;112(2):257–65. https://doi.org/10.1289/ehp.6115.
Article
CAS
Google Scholar
Hardell L, Carlberg M, Mild KH. Epidemiological evidence for an association between use of wireless phones and tumor diseases. Pathophysiology. 2009;16(2–3):113–22. https://doi.org/10.1016/j.pathophys.2009.01.003.
Article
Google Scholar
Gong Y, Capstick MH, Kuehn S, Wilson PF, Ladbury JM, Koepke G, et al. Life-time dosimetric assessment for mice and rats exposed in reverberation chambers for the two-year NTP cancer bioassay study on cell phone radiation. IEEE Trans Electromagn Compat. 2017;59(6):1798–808. https://doi.org/10.1109/TEMC.2017.2665039.
Article
Google Scholar
Gandhi OP. Microwave emissions from cell phones exceed safety limits in Europe and the US when touching the body. IEEE Access. 2019;7:47050–2. https://doi.org/10.1109/ACCESS.2019.2906017.
Article
Google Scholar
Kuhne J, Schmidt JA, Geschwentner D, Pophof B, Ziegelberger G. Thermoregulatory stress as potential mediating factor in the ntp cell phone tumor study. Bioelectromagnetics. 2020;41(6):471. https://doi.org/10.1002/bem.22284.
Article
Google Scholar
Melnick R. Regarding ICNIRP’S evaluation of the national toxicology program’s carcinogenicity studies on radiofrequency electromagnetic fields. Health Phys. 2020;118(6):678–82. https://doi.org/10.1097/HP.0000000000001268.
Article
CAS
Google Scholar