United Nations. Report of the Special Rapporteur on the right to food. 2017. [Internet]. [cited 2021 Mar 15]. Available from: https://undocs.org/A/HRC/34/48
Google Scholar
Maele-Fabry GV, Gamet-Payrastre L, Lison D. Residential exposure to pesticides as risk factor for childhood and young adult brain tumors: A systematic review and meta-analysis. Environ Int. 2017;106:69–90.
Article
Google Scholar
Chen M, Chang C-H, Tao L, Lu C. Residential exposure to pesticide during childhood and childhood cancers: A Meta-analysis. Pediatrics. 2015;136:719–29.
Article
Google Scholar
Maele-Fabry GV, Gamet-Payrastre L, Lison D. Household exposure to pesticides and risk of leukemia in children and adolescents: updated systematic review and meta-analysis. Int J Hyg Environ Health. 2019;222:49–67.
Article
Google Scholar
Coste A, Bailey HD, Kartal-Kaess M, Renella R, Berthet A, Spycher BD. Parental occupational exposure to pesticides and risk of childhood cancer in Switzerland: a census-based cohort study. BMC Cancer. 2020;20:819.
Article
CAS
Google Scholar
Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, et al. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res. 2015;22:5–34.
Article
CAS
Google Scholar
Humann-Guilleminot S, Binkowski ŁJ, Jenni L, Hilke G, Glauser G, Helfenstein F. A nation-wide survey of neonicotinoid insecticides in agricultural land with implications for Agri-environment schemes. J Appl Ecol. 2019;56:1502–14.
Article
CAS
Google Scholar
Humann-Guilleminot S, Clément S, Desprat J, Binkowski ŁJ, Glauser G, Helfenstein F. A large-scale survey of house sparrows feathers reveals ubiquitous presence of neonicotinoids in farmlands. Sci Total Environ. 2019;660:1091–7.
Article
CAS
Google Scholar
Chen M, Tao L, McLean J, Lu C. Quantitative analysis of Neonicotinoid insecticide residues in foods: implication for dietary exposures. J Agric Food Chem Am Chem Soc. 2014;62:6082–90.
Article
CAS
Google Scholar
Mitchell EAD, Mulhauser B, Mulot M, Mutabazi A, Glauser G, Aebi A. A worldwide survey of neonicotinoids in honey. Science. 2017;358:109–11.
Article
CAS
Google Scholar
Goulson D. REVIEW: an overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol. 2013;50:977–87.
Article
Google Scholar
Dwyer JB, McQuown SC, Leslie FM. The dynamic effects of nicotine on the developing brain. Pharmacol Ther. 2009;122:125–39.
Article
CAS
Google Scholar
Lloyd GK, Williams M. Neuronal nicotinic acetylcholine receptors as novel drug targets. J Pharmacol Exp Ther;United States. 2000;292:461–7.
CAS
Google Scholar
Tomizawa M, Casida JE. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol;United States. 2003;48:339–64.
Article
CAS
Google Scholar
Yang W, Carmichael SL, Roberts EM, Kegley SE, Padula AM, English PB, et al. Residential agricultural pesticide exposures and risk of neural tube defects and orofacial clefts among offspring in the San Joaquin Valley of California. Am J Epidemiol. 2014;179:740–8.
Article
Google Scholar
Marfo JT, Fujioka K, Ikenaka Y, Nakayama SMM, Mizukawa H, Aoyama Y, et al. Relationship between urinary N-Desmethyl-Acetamiprid and typical symptoms including neurological findings: A prevalence case-control study. PLoS One;Public Library of Science. 2015;10:1–19.
Article
Google Scholar
Keil AP, Daniels JL, Hertz-Picciotto I. Autism spectrum disorder, flea and tick medication, and adjustments for exposure misclassification: the CHARGE (CHildhood autism risks from genetics and environment) case-control study. Environ Health Glob Access Sci Source. 2014;13:3.
Google Scholar
Carmichael SL, Yang W, Roberts E, Kegley SE, Brown TJ, English PB, et al. Residential agricultural pesticide exposures and risks of selected birth defects among offspring in the San Joaquin Valley of California. Birt Defects Res A Clin Mol Teratol;United States. 2016;106:27–35.
Article
CAS
Google Scholar
Ichikawa G, Kuribayashi R, Ikenaka Y, Ichise T, Nakayama SMM, Ishizuka M, et al. LC-ESI/MS/MS analysis of neonicotinoids in urine of very low birth weight infants at birth. PLoS One. Public Library of Science. 2019;14:1–11.
Article
Google Scholar
Annabi E, Salem IB, Abid-Essefi S. Acetamiprid, a neonicotinoid insecticide, induced cytotoxicity and genotoxicity in PC12 cells. Toxicol Mech Methods. 2019;29:580–6.
Article
CAS
Google Scholar
Chakroun S, Ezzi L, Grissa I, Kerkeni E, Neffati F, Bhouri R, et al. Hematological, biochemical, and toxicopathic effects of subchronic acetamiprid toxicity in Wistar rats. Environ Sci Pollut Res. 2016;23:25191–9.
Article
CAS
Google Scholar
Erdemli ME, Zayman E, Erdemli Z, Gul M, Gul S, Gozukara BH. Protective effects of melatonin and vitamin E in acetamiprid-induced nephrotoxicity. Environ Sci Pollut Res Int. 2020;27:9202–13.
Article
CAS
Google Scholar
Di Prisco G, Iannaccone M, Ianniello F, Ferrara R, Caprio E, Pennacchio F, et al. The neonicotinoid insecticide Clothianidin adversely affects immune signaling in a human cell line. Sci Rep. 2017;7:13446.
Article
Google Scholar
Cimino AM, Boyles AL, Thayer KA, Perry MJ. Effects of Neonicotinoid pesticide exposure on human health: A systematic review. Environ Health Perspect. 2017;125:155–62.
Article
CAS
Google Scholar
Zhang T, Song S, Bai X, He Y, Zhang B, Gui M, et al. A nationwide survey of urinary concentrations of neonicotinoid insecticides in China. Environ Int. 2019;132:105114.
Article
CAS
Google Scholar
Osaka A, Ueyama J, Kondo T, Nomura H, Sugiura Y, Saito I, et al. Exposure characterization of three major insecticide lines in urine of young children in Japan-neonicotinoids, organophosphates, and pyrethroids. Environ Res Netherlands. 2016;147:89–96.
Article
CAS
Google Scholar
Ospina M, Wong L-Y, Baker SE, Serafim AB, Morales-Agudelo P, Calafat AM. Exposure to neonicotinoid insecticides in the U.S. general population: data from the 2015-2016 national health and nutrition examination survey. Environ Res. 2019;176:108555.
Article
CAS
Google Scholar
Ikenaka Y, Miyabara Y, Ichise T, Nakayama S, Nimako C, Ishizuka M, et al. Exposures of children to neonicotinoids in pine wilt disease control areas. Environ Toxicol Chem. 2019;38:71–9.
Article
CAS
Google Scholar
Wang H, Yang D, Fang H, Han M, Tang C, Wu J, et al. Predictors, sources, and health risk of exposure to neonicotinoids in Chinese school children: A biomonitoring-based study. Environ Int. 2020;143:105918.
Article
CAS
Google Scholar
Bonmatin J-M, Mitchell EAD, Glauser G, Lumawig-Heitzman E, Claveria F, van Lexmond MB, et al. Residues of neonicotinoids in soil, water and people’s hair: A case study from three agricultural regions of the Philippines. Sci Total Environ. 2021;757:143822.
Article
CAS
Google Scholar
Fuke C, Nagai T, Ninomiya K, Fukasawa M, Ihama Y, Miyazaki T. Detection of imidacloprid in biological fluids in a case of fatal insecticide intoxication. Leg Med Tokyo Jpn Ireland. 2014;16:40–3.
Article
CAS
Google Scholar
Warren KE. Beyond the Blood:Brain Barrier: The Importance of Central Nervous System (CNS) Pharmacokinetics for the Treatment of CNS Tumors, Including Diffuse Intrinsic Pontine Glioma. Front Oncol. 2018;8:239.
Article
Google Scholar
Kammoun S, Mulhauser B, Aebi A, Mitchell EAD, Glauser G. Ultra-trace level determination of neonicotinoids in honey as a tool for assessing environmental contamination. Environ Pollut. 2019;247:964–72.
Article
CAS
Google Scholar
Pearson MA, Lu C, Schmotzer BJ, Waller LA, Riederer AM. Evaluation of physiological measures for correcting variation in urinary output: implications for assessing environmental chemical exposure in children. J Expo Sci Environ Epidemiol. 2009;19:336–42.
Article
CAS
Google Scholar
R Core Team. R: A language and environment for statistical computing [Internet]. R Lang. Environ. Stat. Comput. R Found. Stat. Comput. Vienna Austria. [cited 2021 Jul 23]. Available from: https://www.R-project.org/.
Chambers J, Chambers JM. Linear models. Chapter 4 of Statistical Models in S. In: Chambers JM, Hastie TJ, editors. Wadsworth & Brooks/Cole, vol. 1992; 1992.
Google Scholar
Kassambara A. ggpubr: “ggplot2” Based Publication Ready Plots. [Internet]. R Package Version 040. 2020 [cited 2021 Jul 23]. Available from: https://CRAN.R-project.org/package=ggpubr.
Wang A, Mahai G, Wan Y, Yang Z, He Z, Xu S, et al. Assessment of imidacloprid related exposure using imidacloprid-olefin and desnitro-imidacloprid: Neonicotinoid insecticides in human urine in Wuhan, China. Environ Int. 2020;141:105785.
Article
CAS
Google Scholar
Li AJ, Martinez-Moral M-P, Kannan K. Variability in urinary neonicotinoid concentrations in single-spot and first-morning void and its association with oxidative stress markers. Environ Int. 2020;135:105415.
Article
CAS
Google Scholar
Xu M, Zhang Z, Li Z, Kan S, Liu Z, Wang D, et al. Profiles of neonicotinoid insecticides and characteristic metabolites in paired urine and blood samples: partitioning between urine and blood and implications for human exposure. Sci Total Environ. 2021;773:145582.
Article
CAS
Google Scholar
Thompson DA, Lehmler H-J, Kolpin DW, Hladik ML, Vargo JD, Schilling KE, et al. A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health. Env Sci Process Impacts. The Royal Society of Chemistry. 2020;22:1315–46.
Article
CAS
Google Scholar
Bennett B, Workman T, Smith MN, Griffith WC, Thompson B, Faustman EM. Characterizing the neurodevelopmental pesticide Exposome in a Children’s agricultural cohort. Int J Environ Res Public Health. 2020;17 Available from: https://www.mdpi.com/1660-4601/17/5/1479.
Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23:858–83.
Article
CAS
Google Scholar
Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR. Barriers in the developing brain and Neurotoxicology. Neurotoxicology Netherlands. 2012;33:586–604.
Article
CAS
Google Scholar
Maitre L, de Bont J, Casas M, Robinson O, Aasvang GM, Agier L, et al. Human early life Exposome (HELIX) study: a European population-based exposome cohort. BMJ Open. 2018;8 Available from: https://bmjopen.bmj.com/content/8/9/e021311.