Watson CS, Jeng YJ, Kochukov MY: Nongenomic signaling pathways of estrogen toxicity. Toxicol Sci. 2010, 115: 1-11. 10.1093/toxsci/kfp288.
Article
CAS
Google Scholar
Alonso-Magdalena P, Laribi O, Ropero AB, Fuentes E, Ripoll C, Soria B, Nadal A: Low doses of bisphenol A and diethylstilbestrol impair Ca2+ signals in pancreatic alpha-cells through a nonclassical membrane estrogen receptor within intact islets of Langerhans. Environ Health Perspect. 2005, 113: 969-977. 10.1289/ehp.8002.
Article
CAS
Google Scholar
Della SD, Minder I, Dessi-Fulgheri F, Farabollini F: Bisphenol-A exposure during pregnancy and lactation affects maternal behavior in rats. Brain Res Bull. 2005, 65: 255-260. 10.1016/j.brainresbull.2004.11.017.
Article
Google Scholar
Fujimoto T, Kubo K, Aou S: Prenatal exposure to bisphenol A impairs sexual differentiation of exploratory behavior and increases depression-like behavior in rats. Brain Res. 2006, 1068: 49-55. 10.1016/j.brainres.2005.11.028.
Article
CAS
Google Scholar
Jones DC, Miller GW: The effects of environmental neurotoxicants on the dopaminergic system: A possible role in drug addiction. Biochem Pharmacol. 2008, 76: 569-581. 10.1016/j.bcp.2008.05.010.
Article
CAS
Google Scholar
Kabil A, Silva E, Kortenkamp A: Estrogens and genomic instability in human breast cancer cells--involvement of Src/Raf/Erk signaling in micronucleus formation by estrogenic chemicals. Carcinogenesis. 2008, 29: 1862-1868. 10.1093/carcin/bgn138.
Article
CAS
Google Scholar
Kiguchi M, Fujita S, Oki H, Shimizu N, Cools AR, Koshikawa N: Behavioural characterisation of rats exposed neonatally to bisphenol-A: responses to a novel environment and to methylphenidate challenge in a putative model of attention-deficit hyperactivity disorder. J Neural Transm. 2008, 115: 1079-1085. 10.1007/s00702-008-0044-5.
Article
CAS
Google Scholar
Midoro-Horiuti T, Tiwari R, Watson CS, Goldblum RM: Maternal bisphenol a exposure promotes the development of experimental asthma in mouse pups. Environ Health Perspect. 2010, 118: 273-277. 10.1289/ehp.0901259.
Article
CAS
Google Scholar
Munoz-de-Toro M, Markey C, Wadia PR, Luque EH, Rubin BS, Sonnenschein C, Soto AM: Perinatal exposure to Bisphenol A alters peripubertal mammary gland development in mice. Endocr. 2005
Google Scholar
Nadal A, Alonso-Magdalena P, Soriano S, Quesada I, Ropero AB: The pancreatic beta-cell as a target of estrogens and xenoestrogens: Implications for blood glucose homeostasis and diabetes. Mol Cell Endocrinol. 2009, 304: 63-68. 10.1016/j.mce.2009.02.016.
Article
CAS
Google Scholar
Suzuki T, Mizuo K, Nakazawa H, Funae Y, Fushiki S, Fukushima S, Shirai T, Narita M: Prenatal and neonatal exposure to bisphenol-A enhances the central dopamine D1 receptor-mediated action in mice: enhancement of the methamphetamine-induced abuse state. Neuroscience. 2003, 117: 639-644. 10.1016/S0306-4522(02)00935-1.
Article
CAS
Google Scholar
Watson CS, Jeng YJ, Kochukov MY: Nongenomic actions of estradiol compared with estrone and estriol in pituitary tumor cell signaling and proliferation. FASEB J. 2008, 22: 3328-3336. 10.1096/fj.08-107672.
Article
CAS
Google Scholar
Alyea RA, Watson CS: Nongenomic mechanisms of physiological estrogen-mediated dopamine efflux. BMC Neurosci. 2009, 10: 59-10.1186/1471-2202-10-59.
Article
Google Scholar
Alyea RA, Watson CS: Differential regulation of dopamine transporter function and location by low concentrations of environmental estrogens and 17beta-estradiol. Environ Health Perspect. 2009, 117: 778-783. 10.1289/ehp.0800026.
Article
CAS
Google Scholar
Kochukov MY, Jeng YJ, Watson CS: Alkylphenol xenoestrogens with varying carbon chain lengths differentially and potently activate signaling and functional responses in GH3/B6/F10 somatomammotropes. Env Health Perspect. 2009, 117: 723-730.
Article
CAS
Google Scholar
Jeng YJ, Watson CS: Proliferative and anti-proliferative effects of dietary levels of phytoestrogens in rat pituitary GH3/B6/F10 cells - the involvement of rapidly activated kinases and caspases. BMC Cancer. 2009, 9: 334-10.1186/1471-2407-9-334.
Article
Google Scholar
Jeng YJ, Kochukov MY, Watson CS: Membrane estrogen receptor-alpha-mediated nongenomic actions of phytoestrogens in GH3/B6/F10 pituitary tumor cells. J Mol Signal. 2009, 4: 2-10.1186/1750-2187-4-2.
Article
Google Scholar
Bulayeva NN, Watson CS: Xenoestrogen-induced ERK-1 and ERK-2 activation via multiple membrane-initiated signaling pathways. Environ Health Perspect. 2004, 112: 1481-1487. 10.1289/ehp.7175.
Article
CAS
Google Scholar
Wozniak AL, Bulayeva NN, Watson CS: Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-alpha-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells. Environ Health Perspect. 2005, 113: 431-439. 10.1289/ehp.7505.
Article
CAS
Google Scholar
Gaido KW, Leonard LS, Lovell S, Gould JC, Babai D, Portier CJ, McDonnell DP: Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol Appl Pharmacol. 1997, 143: 205-212. 10.1006/taap.1996.8069.
Article
CAS
Google Scholar
Gutendorf B, Westendorf J: Comparison of an array of in vitro assays for the assessment of the estrogenic potential of natural and synthetic estrogens, phytoestrogens and xenoestrogens. Toxicology. 2001, 166: 79-89. 10.1016/S0300-483X(01)00437-1.
Article
CAS
Google Scholar
Steinmetz R, Brown NG, Allen DL, Bigsby RM, Benjonathan N: The environmental estrogen bisphenol A stimulates prolactin release in vitro and in vivo. Endocr. 1997, 138: 1780-1786. 10.1210/en.138.5.1780.
CAS
Google Scholar
Kloas W, Lutz I, Einspanier R: Amphibians as a model to study endocrine disruptors: II. Estrogenic activity of environmental chemicals in vitro and in vivo. Sci Total Environ. 1999, 225: 59-68. 10.1016/S0048-9697(99)80017-5.
Article
CAS
Google Scholar
Sheeler CQ, Dudley MW, Khan SA: Environmental estrogens induce transcriptionally active estrogen receptor dimers in yeast: activity potentiated by the coactivator RIP140. Environ Health Perspect. 2000, 108: 97-103. 10.2307/3454506.
Article
CAS
Google Scholar
Singleton DW, Feng Y, Chen Y, Busch SJ, Lee AV, Puga A, Khan SA: Bisphenol-A and estradiol exert novel gene regulation in human MCF-7 derived breast cancer cells. Mol Cell Endocrinol. 2004, 221: 47-55. 10.1016/j.mce.2004.04.010.
Article
CAS
Google Scholar
Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y: Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Human Reproduction. 2002, 17: 2839-2841. 10.1093/humrep/17.11.2839.
Article
CAS
Google Scholar
Inoue K, Yoshimura Y, Makino T, Nakazawa H: Determination of 4-nonylphenol and 4-octylphenol in human blood samples by high-performance liquid chromatography with multi-electrode electrochemical coulometric-array detection. Analyst. 2000, 125: 1959-1961. 10.1039/b006597h.
Article
CAS
Google Scholar
Kawaguchi M, Inoue K, Sakui N, Ito R, Izumi S, Makino T, Okanouchi N, Nakazawa H: Stir bar sorptive extraction and thermal desorption-gas chromatography-mass spectrometry for the measurement of 4-nonylphenol and 4-tert-octylphenol in human biological samples. J Chromatogr B Analyt Technol Biomed Life Sci. 2004, 799: 119-125. 10.1016/j.jchromb.2003.10.021.
Article
CAS
Google Scholar
Takeuchi T, Tsutsumi O: Serum bisphenol A concentrations showed gender differences, possibly linked to androgen levels. Biochem Biophys Res Commun. 2002, 291: 76-78. 10.1006/bbrc.2002.6407.
Article
CAS
Google Scholar
Petrovic M, Diaz A, Ventura F, Barcelo D: Occurrence and removal of estrogenic short-chain ethoxy nonylphenolic compounds and their halogenated derivatives during drinking water production. Environ Sci Technol. 2003, 37: 4442-4448. 10.1021/es034139w.
Article
CAS
Google Scholar
Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT: Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environ Sci Technol. 2002, 36: 1202-1211. 10.1021/es011055j.
Article
CAS
Google Scholar
Bonefeld-Jorgensen EC, Long M, Hofmeister MV, Vinggaard AM: Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: new data and a brief review. Environ Health Perspect. 2007, 115 (Suppl 1): 69-76. 10.1289/ehp.9368.
Article
Google Scholar
Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL: Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect. 2005, 113: 391-395. 10.1289/ehp.7534.
Article
CAS
Google Scholar
Lakind JS, Naiman DQ: Bisphenol A (BPA) daily intakes in the United States: estimates from the 2003-2004 NHANES urinary BPA data. J Expo Sci Environ Epidemiol. 2008, 18: 608-615. 10.1038/jes.2008.20.
Article
CAS
Google Scholar
Benoff S: Modeling human sperm-egg interactions in vitro -- signal transduction pathways regulating the acrosome reaction. Molecular Human Reproduction. 1998, 4: 453-471. 10.1093/molehr/4.5.453.
Article
CAS
Google Scholar
Razandi M, Pedram A, Levin ER: Plasma membrane estrogen receptors signal to antiapoptosis in breast cancer. Mol Endocrinol. 2000, 14: 1434-1447. 10.1210/me.14.9.1434.
Article
CAS
Google Scholar
Campbell CH, Bulayeva N, Brown DB, Gametchu B, Watson CS: Regulation of the membrane estrogen receptor-alpha: role of cell density, serum, cell passage number, and estradiol. FASEB J. 2002, 16: 1917-1927. 10.1096/fj.02-0182com.
Article
CAS
Google Scholar
Norfleet AM, Thomas ML, Gametchu B, Watson CS: Estrogen receptor-α detected on the plasma membrane of aldehyde-fixed GH3/B6/F10 rat pituitary cells by enzyme-linked immunocytochemistry. Endocr. 1999, 140: 3805-3814. 10.1210/en.140.8.3805.
CAS
Google Scholar
Pappas TC, Gametchu B, Watson CS: Membrane estrogen receptors identified by multiple antibody labeling and impeded-ligand binding. FASEB J. 1995, 9: 404-410.
CAS
Google Scholar
Acconcia F, Ascenzi P, Bocedi A, Spisni E, Tomasi V, Trentalance A, Visca P, Marino M: Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol. Mol Biol Cell. 2005, 16: 231-237. 10.1091/mbc.E04-07-0547.
Article
CAS
Google Scholar
Marquez DC, Pietras RJ: Membrane-associated binding sites for estrogen contribute to growth regulation of human breast cancer cells. Oncogene. 2001, 20: 5420-5430. 10.1038/sj.onc.1204729.
Article
CAS
Google Scholar
Alyea RA, Laurence SE, Kim SH, Katzenellenbogen BS, Katzenellenbogen JA, Watson CS: The roles of membrane estrogen receptor subtypes in modulating dopamine transporters in PC-12 cells. J Neurochem. 2008, 106: 1525-1533. 10.1111/j.1471-4159.2008.05491.x.
Article
CAS
Google Scholar
Razandi M, Pedram A, Greene GL, Levin ER: Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: Studies of ER∀ and ERß expressed in chinese hamster ovary cells. Mol Endocrinol. 1999, 13: 307-319. 10.1210/me.13.2.307.
CAS
Google Scholar
Thomas P, Alyea R, Pang Y, Peyton C, Dong J, Berg AH: Conserved estrogen binding and signaling functions of the G protein-coupled estrogen receptor 1 (GPER) in mammals and fish. Steroids. 2010, 75: 595-602. 10.1016/j.steroids.2009.11.005.
Article
CAS
Google Scholar
Maggiolini M, Picard D: The unfolding stories of GPR30, a new membrane-bound estrogen receptor. J Endocrinol. 2010, 204: 105-114. 10.1677/JOE-09-0242.
Article
CAS
Google Scholar
Prossnitz ER, Barton M: Signaling, physiological functions and clinical relevance of the G protein-coupled estrogen receptor GPER. Prostaglandins & Other Lipid Mediators. 2009, 89: 89-97.
Article
CAS
Google Scholar
Thomas P, Dong J: Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol. 2006, 102: 175-179. 10.1016/j.jsbmb.2006.09.017.
Article
CAS
Google Scholar
Belcher SM: Rapid signaling mechanisms of estrogens in the developing cerebellum. Brain Res Rev. 2008, 57: 481-492. 10.1016/j.brainresrev.2007.07.020.
Article
CAS
Google Scholar
Zsarnovszky A, Le HH, Wang HS, Belcher SM: Ontogeny of rapid estrogen-mediated extracellular signal-regulated kinase signaling in the rat cerebellar cortex: potent nongenomic agonist and endocrine disrupting activity of the xenoestrogen bisphenol A. Endocr. 2005, 146: 5388-5396. 10.1210/en.2005-0565.
Article
CAS
Google Scholar
Narita S, Goldblum RM, Watson CS, Brooks EG, Estes DM, Curran EM, Midoro-Horiuti T: Environmental estrogens induce mast cell degranulation and enhance IgE-mediated release of allergic mediators. Environ Health Perspect. 2007, 115: 48-52. 10.1289/ehp.9378.
Article
CAS
Google Scholar
Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschein C, Watson CS, Zoeller RT, Belcher SM: In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol. 2007, 24: 178-198. 10.1016/j.reprotox.2007.05.010.
Article
CAS
Google Scholar
Jeng YJ, Kochukov M, Nauduri D, Kaphalia BS, Watson CS: Subchronic exposure to phytoestrogens alone and in combination with diethylstilbestrol - pituitary tumor induction in Fischer 344 rats. Nutr Metab (Lond). 2010, 7: 40-10.1186/1743-7075-7-40.
Article
Google Scholar
Gorski J, Wendell D, Gregg D, Chun TY: Estrogens and the genetic control of tumor growth. [Review] [23 refs]. Progress in Clinical & Biological Research. 1997, 396: 233-243.
CAS
Google Scholar
Zhu BT, Liehr JG: Quercetin increases the severity of estradiol-induced tumorigenesis in hamster kidney. Toxicology & Applied Pharmacology. 1994, 125: 149-158.
Article
CAS
Google Scholar
Ho SM, Tang WY, Belmonte de FJ, Prins GS: Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 2006, 66: 5624-5632. 10.1158/0008-5472.CAN-06-0516.
Article
CAS
Google Scholar
Andrade AJ, Grande SW, Talsness CE, Grote K, Chahoud I: A dose-response study following in utero and lactational exposure to di-(2-ethylhexyl)-phthalate (DEHP): non-monotonic dose-response and low dose effects on rat brain aromatase activity. Toxicology. 2006, 227: 185-192. 10.1016/j.tox.2006.07.022.
Article
CAS
Google Scholar
Alonso-Magdalena P, Morimoto S, Ripoll C, Fuentes E, Nadal A: The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ Health Perspect. 2006, 114: 106-112. 10.1289/ehp.8451.
Article
CAS
Google Scholar
Palanza P, Gioiosa L, vom Saal FS, Parmigiani S: Effects of developmental exposure to bisphenol A on brain and behavior in mice. Environ Res. 2008, 108: 150-157. 10.1016/j.envres.2008.07.023.
Article
CAS
Google Scholar
Warner KE, Jenkins JJ: Effects of 17alpha-ethinylestradiol and bisphenol A on vertebral development in the fathead minnow (Pimephales promelas). Environ Toxicol Chem. 2007, 26: 732-737. 10.1897/06-482R.1.
Article
CAS
Google Scholar
Watson CS, Norfleet AM, Pappas TC, Gametchu B: Rapid actions of estrogens in GH3/B6 pituitiary tumor cells via a plasma membrane version of estrogen receptor-∀. Steroids. 1999, 64: 5-13. 10.1016/S0039-128X(98)00107-X.
Article
CAS
Google Scholar
Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM: Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev. 2009, 30: 75-95. 10.1210/er.2008-0021.
Article
CAS
Google Scholar
Greenspan FS, Gardner DG: Appendix: Normal Hormone Reference Ranges. Basic and Clinical Endocrinology. Edited by: Greenspan FS, Gardner DG. 2004, New York: Lange Medical Books, McGraw Hill, 925-926. 7
Google Scholar
Shenhav S, Gemer O, Volodarsky M, Zohav E, Segal S: Midtrimester triple test levels in women with severe preeclampsia and HELLP syndrome. Acta Obstet Gynecol Scand. 2003, 82: 912-915.
Article
Google Scholar
Chard T, Macintosh MC: Screening for Down's syndrome. J Perinat Med. 1995, 23: 421-436. 10.1515/jpme.1995.23.6.421.
Article
CAS
Google Scholar
Meinhardt U, Mullis PE: The essential role of the aromatase/p450arom. Semin Reprod Med. 2002, 20: 277-284. 10.1055/s-2002-35374.
Article
CAS
Google Scholar
Jansson L, Holmdahl R: Enhancement of collagen-induced arthritis in female mice by estrogen receptor blockage. Arthritis Rheum. 2001, 44: 2168-2175. 10.1002/1529-0131(200109)44:9<2168::AID-ART370>3.0.CO;2-2.
Article
CAS
Google Scholar
Morley P, Whitfield JF, Vanderhyden BC, Tsang BK, Schwartz J: A new, nongenomic estrogen action: The rapid release of intracellular calcium. Endocr. 1992, 131: 1305-1312. 10.1210/en.131.3.1305.
CAS
Google Scholar
Selles J, Polini N, Alvarez C, Massheimer V: Novel action of estrone on vascular tissue: regulation of NOS and COX activity. Steroids. 2005, 70: 251-256. 10.1016/j.steroids.2004.10.012.
Article
CAS
Google Scholar
Chambliss KL, Yuhanna IS, Mineo C, Liu P, German Z, Sherman TS, Mendelsohn ME, Anderson RG, Shaul PW: Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ Res. 2000, 87: E44-E52.
Article
CAS
Google Scholar
Zivadinovic D, Watson CS: Membrane estrogen receptor-alpha levels predict estrogen-induced ERK1/2 activation in MCF-7 cells. Breast Cancer Res. 2005, 7: R130-R144. 10.1186/bcr959.
Article
CAS
Google Scholar
Razandi M, Oh P, Pedram A, Schnitzer J, Levin ER: ERs associate with and regulate the production of caveolin: Implications for signaling and cellular actions. Mol Endocrinol. 2002, 16: 100-115. 10.1210/me.16.1.100.
Article
CAS
Google Scholar
Bulayeva NN, Gametchu B, Watson CS: Quantitative measurement of estrogen-induced ERK 1 and 2 activation via multiple membrane-initiated signaling pathways. Steroids. 2004, 69: 181-192. 10.1016/j.steroids.2003.12.003.
Article
CAS
Google Scholar
Campbell CH, Watson CS: A comparison of membrane vs. intracellular estrogen receptor-alpha in GH(3)/B6 pituitary tumor cells using a quantitative plate immunoassay. Steroids. 2001, 66: 727-736. 10.1016/S0039-128X(01)00106-4.
Article
CAS
Google Scholar
Lottering ML, Haag M, Seegers JC: Effects of 17β-estradiol metabolites on cell cycle events in MCF-7 cells. Cancer Res. 1992, 52: 5926-5932.
CAS
Google Scholar
Zivadinovic D, Gametchu B, Watson CS: Membrane estrogen receptor-alpha levels in MCF-7 breast cancer cells predict cAMP and proliferation responses PMCID:15642158. Breast Cancer Res. 2005, 7: R101-R112. 10.1186/bcr958.
Article
CAS
Google Scholar
Jeng YJ, Watson CS: Combinations of physiologic estrogens with xenoestrogens alter ERK phosphorylation profiles in rat pituitary cells. Environ Health Perspect. 2010
Google Scholar
Mitchner NA, Garlick C, Steinmetz RW, Ben-Jonathan N: Differential regulation and action of estrogen receptors alpha and beta in GH3 cells. Endocr. 1999, 140: 2651-2658. 10.1210/en.140.6.2651.
CAS
Google Scholar
Narita M, Miyagawa K, Mizuo K, Yoshida T, Suzuki T: Prenatal and neonatal exposure to low-dose of bisphenol-A enhance the morphine-induced hyperlocomotion and rewarding effect. Neurosci Lett. 2006, 402: 249-252. 10.1016/j.neulet.2006.04.014.
Article
CAS
Google Scholar
vom Saal FS, Cooke PS, Buchanan DL, Palanza P, Thayer KA, Nagel SC, Parmigiani S, Welshons WV: A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health. 1998, 14: 239-260.
Article
CAS
Google Scholar
Welshons WV, Nagel SC, vom Saal FS: Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocr. 2006, 147: S56-S69. 10.1210/en.2005-1159.
Article
CAS
Google Scholar
Stahlhut RW, Welshons WV, Swan SH: Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environ Health Perspect. 2009, 117: 784-789.
Article
CAS
Google Scholar
Weltje L, vom Saal FS, Oehlmann J: Reproductive stimulation by low doses of xenoestrogens contrasts with the view of hormesis as an adaptive response. Hum Exp Toxicol. 2005, 24: 431-437. 10.1191/0960327105ht551oa.
Article
CAS
Google Scholar
Jeng YJ, Watson CS: Combinations of physiologic estrogens with xenoestrogens alter ERK phosphorylation profiles in rat pituitary cells. Environ Health Perspect. 2010
Google Scholar
Watson CS, Campbell CH, Gametchu B: Membrane estrogen receptors on rat pituitary tumor cells: Immunoidentification and responses to estradiol and xenoestrogens. Experimental Physiology. 1999, 84: 1013-1022. 10.1111/j.1469-445X.1999.01903.x.
Article
CAS
Google Scholar
Norfleet AM, Clarke C, Gametchu B, Watson CS: Antibodies to the estrogen receptor-α modulate prolactin release from rat pituitary tumor cells through plasma membrane estrogen receptors. FASEB J. 2000, 14: 157-165.
CAS
Google Scholar
Thomas P, Dong J: Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol. 2006, 102: 175-179. 10.1016/j.jsbmb.2006.09.017.
Article
CAS
Google Scholar
Lappano R, Rosano C, De MP, De Francesco EM, Pezzi V, Maggiolini M: Estriol acts as a GPR30 antagonist in estrogen receptor-negative breast cancer cells. Mol Cell Endocrinol. 2010, 320: 162-170. 10.1016/j.mce.2010.02.006.
Article
CAS
Google Scholar
Song RX, Barnes CJ, Zhang Z, Bao Y, Kumar R, Santen RJ: The role of Shc and insulin-like growth factor 1 receptor in mediating the translocation of estrogen receptor alpha to the plasma membrane. Proc Natl Acad Sci USA. 2004, 101: 2076-2081. 10.1073/pnas.0308334100.
Article
CAS
Google Scholar
Pedram A, Razandi M, Sainson RC, Kim JK, Hughes CC, Levin ER: A conserved mechanism for steroid receptor translocation to the plasma membrane. J Biol Chem. 2007, 282: 22278-22288. 10.1074/jbc.M611877200.
Article
CAS
Google Scholar