Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, Kurzius-Spencer M, Zahorodny W, Robinson C. Prevalence of autism Spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ. 2018;67:1–23.
Article
Google Scholar
Lyall K, Croen L, Daniels J, Fallin MD, Ladd-Acosta C, Lee BK, Park BY, Snyder NW, Schendel D, Volk H, et al. The changing epidemiology of autism Spectrum disorders. Annu Rev Publ Health. 2017;38:81–102.
Article
Google Scholar
Landrigan PJ, Lambertini L, Birnbaum LS. A research strategy to discover the environmental causes of autism and neurodevelopmental disabilities. Environ Health Perspect. 2012;120(7):A258–60.
Article
Google Scholar
Dodson RE, Nishioka M, Standley LJ, Perovich LJ, Brody JG, Rudel RA. Endocrine disruptors and asthma-associated Chemicals in Consumer Products. Environ Health Perspect. 2012;120(7):935–43.
Article
CAS
Google Scholar
Hauser R, Calafat AM. Phthalates and human health. Occup Environ Med. 2005;62(11):806–18.
Article
CAS
Google Scholar
Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: toxicology and exposure. Int J Hyg Environ Health. 2007;210(5):623–34.
Article
CAS
Google Scholar
Centers for Disease Control and Prevention (CDC). Fourth National Report on Human Exposure to Environmental Chemicals. Atlanta, Atlanta, GA; 2012. p. 1–235.
Lin S, Ku H-Y, Su P-H, Chen J-W, Huang P-C, Angerer J, Wang S-L. Phthalate exposure in pregnant women and their children in Central Taiwan. Chemosphere. 2011;82(7):947–55.
Article
CAS
Google Scholar
Adibi JJ, Whyatt RM, Williams PL, Calafat AM, Camann D, Herrick R, Nelson H, Bhat HK, Perera FA, Silva MJ, et al. Characterization of phthalate exposure among pregnant women assessed by repeat air and urine samples. Environ Health Perspect. 2008;116(4):467–73.
Article
CAS
Google Scholar
Cantonwine DE, Cordero JF, Rivera-Gonzalez LO, Del Toro LVA, Ferguson KK, Mukherjee B, Calafat AM, Crespo N, Jimenez-Velez B, Padilla IY, et al. Urinary phthalate metabolite concentrations among pregnant women in northern Puerto Rico: distribution, temporal variability, and predictors. Environ Int. 2014;62:1–11.
Article
CAS
Google Scholar
Enke U, Schleussner E, Palmke C, Seyfarth L, Koch HM. Phthalate exposure in pregnant women and newborns - the urinary metabolite excretion pattern differs distinctly. Int J Hyg Environ Health. 2013;216(6):735–42.
Article
CAS
Google Scholar
Ferguson KK, McElrath TF, Ko YA, Mukherjee B, Meeker JD. Variability in urinary phthalate metabolite levels across pregnancy and sensitive windows of exposure for the risk of preterm birth. Environ Int. 2014;70:118–24.
Article
Google Scholar
Huang PC, Kuo PL, Chou YY, Lin SJ, Lee CC. Association between prenatal exposure to phthalates and the health of newborns. Environ Int. 2009;35(1):14–20.
Article
CAS
Google Scholar
Meeker JD, Hu H, Cantonwine DE, Lamadrid-Figueroa H, Calafat AM, Ettinger AS, Hernandez-Avila M, Loch-Caruso R, Tellez-Rojo MM. Urinary phthalate metabolites in relation to preterm birth in Mexico City. Environ Health Perspect. 2009;117(10):1587–92.
Article
CAS
Google Scholar
Woodruff TJ, Zota AR, Schwartz JM. Environmental Chemicals in Pregnant Women in the United States: NHANES 2003-2004. Environ Health Perspect. 2011;119(6):878–85.
Article
Google Scholar
Saillenfait AM, Payan JP, Fabry JP, Beydon D, Langonne I, Gallissot F, Sabate JP. Assessment of the developmental toxicity, metabolism, and placental transfer of di-n-butyl phthalate administered to pregnant rats. Toxicol Sci. 1998;45(2):212–24.
Article
CAS
Google Scholar
Carbone S, Ponzo OJ, Gobetto N, Samaniego YA, Reynoso R, Scacchi P, Moguilevsky JA, Cutrera R. Antiandrogenic effect of perinatal exposure to the endocrine disruptor di-(2-ethylhexyl) phthalate increases anxiety-like behavior in male rats during sexual maturation. Horm Behav. 2013;63(5):692–9.
Article
CAS
Google Scholar
Li X-J, Jiang L, Chen L, Chen H-S, Li X. Neurotoxicity of dibutyl phthalate in brain development following perinatal exposure: a study in rats. Environ Toxicol Pharmacol. 2013;36(2):392–402.
Article
CAS
Google Scholar
Betz AJ, Jayatilaka S, Joshi J, Ramanan S, Debartolo D, Pylypiw H, Franke E. Chronic exposure to benzyl butyl phthalate (BBP) alters social interaction and fear conditioning in male adult rats: alterations in amygdalar MeCP2, ERK1/2 and ERα. Neuroendocrinol Lett. 2013;34(5):347–58.
CAS
Google Scholar
Boberg J, Christiansen S, Axelstad M, Kledal TS, Vinggaard AM, Dalgaard M, Nellemann C, Hass U. Reproductive and behavioral effects of diisononyl phthalate (DINP) in perinatally exposed rats. Reprod Toxicol. 2011;31(2):200–9.
Article
CAS
Google Scholar
Li Y, Zhuang M, Li T, Shi N. Neurobehavioral toxicity study of dibutyl phthalate on rats following in utero and lactational exposure. J Appl Toxicol. 2009;29(7):603–11.
Article
CAS
Google Scholar
Ishido M, Masuo Y, Sayato-Suzuki J, Oka S, Niki E, Morita M. Dicyclohexylphthalate causes hyperactivity in the rat concomitantly with impairment of tyrosine hydroxylase immunoreactivity. J Neurochem. 2004;91(1):69–76.
Article
CAS
Google Scholar
Tanaka T. Reproductive and neurobehavioural toxicity study of bis(2-ethylhexyl) phthalate (DEHP) administered to mice in the diet. Food Chem Toxicol. 2002;40(10):1499–506.
Article
CAS
Google Scholar
Gao H, Wu W, Xu Y, Jin Z, Bao H, Zhu P, Su P, Sheng J, Hao J, Tao F. Effects of prenatal phthalate exposure on thyroid hormone concentrations beginning at the embryonic stage. Sci Rep. 2017;7:13106.
Article
CAS
Google Scholar
Huang PC, Kuo PL, Guo YL, Liao PC, Lee CC. Associations between urinary phthalate monoesters and thyroid hormones in pregnant women. Hum Reprod. 2007;22(10):2715–22.
Article
CAS
Google Scholar
Huang PC, Tsai CH, Liang WY, Li SS, Huang HB, Kuo PL. Early phthalates exposure in pregnant women is associated with alteration of thyroid hormones. PLoS One. 2016;11(7):e0159398.
Article
CAS
Google Scholar
Johns LE, Ferguson KK, McElrath TF, Mukherjee B, Meeker JD. Associations between repeated measures of maternal urinary phthalate metabolites and thyroid hormone parameters during pregnancy. Environ Health Perspect. 2016;124(11):1808–15.
Article
Google Scholar
Johns LE, Ferguson KK, Soldin OP, Cantonwine DE, Rivera-Gonzalez LO, Del Toro LVA, Calafat AM, Ye XY, Alshawabkeh AN, Cordero JF, et al. Urinary phthalate metabolites in relation to maternal serum thyroid and sex hormone levels during pregnancy: a longitudinal analysis. Reprod Biol Endocrin. 2015;13:4.
Article
CAS
Google Scholar
Kuo FC, Su SW, Wu CF, Huang MC, Shiea J, Chen BH, Chen YL, Wu MT. Relationship of urinary phthalate metabolites with serum thyroid hormones in pregnant women and their newborns: a prospective birth cohort in Taiwan. PLoS One. 2015;10(6):e0123884.
Article
CAS
Google Scholar
H-y Y, Han Y, Gao H, Huang K, Ge X, Y-y X, Y-q X, Z-x J, Sheng J, S-q Y, et al. Maternal phthalate exposure during the first trimester and serum thyroid hormones in pregnant women and their newborns. Chemosphere. 2016;157:42–8.
Article
CAS
Google Scholar
Hartoft-Nielsen M-L, Boas M, Bliddal S, Rasmussen ÅK, Main K, Feldt-Rasmussen U. Do thyroid disrupting chemicals influence Foetal development during pregnancy? J Thyroid Res. 2011;2011:342189.
Article
CAS
Google Scholar
Huang HB, Kuo PL, Chang JW, Jaakkola JJK, Liao KW, Huang PC. Longitudinal assessment of prenatal phthalate exposure on serum and cord thyroid hormones homeostasis during pregnancy - Tainan birth cohort study (TBCS). Sci Total Environ. 2018;619-620:1058–65.
Article
CAS
Google Scholar
Kim B-N, Cho S-C, Kim Y, Shin M-S, Yoo H-J, Kim J-W, Yang YH, Kim H-W, Bhang S-Y, Hong Y-C. Phthalates exposure and attention-deficit/hyperactivity disorder in school-age children. Biol Psychiatry. 2009;66(10):958–63.
Article
CAS
Google Scholar
Engel SM, Villanger GD, Nethery RC, Thomsen C, Sakhi AK, Drover SSM, Hoppin JA, Zeiner P, Knudsen GP, Reichborn-Kjennerud T, et al. Prenatal phthalates, maternal thyroid function, and risk of attention-deficit hyperactivity disorder in the Norwegian mother and child cohort. Environ Health Perspect. 2018;126(5):057004.
Article
Google Scholar
Larsson M, Weiss B, Janson S, Sundell J, Bornehag C-G. Associations between indoor environmental factors and parental-reported autistic spectrum disorders in children 6-8 years of age. Neurotoxicology. 2009;30(5):822–31.
Article
CAS
Google Scholar
Philippat C, Bennett DH, Krakowiak P, Rose M, Hwang HM, Hertz-Picciotto I. Phthalate concentrations in house dust in relation to autism spectrum disorder and developmental delay in the CHildhood autism risks from genetics and the environment (CHARGE) study. Environ Health. 2015;14:56.
Article
CAS
Google Scholar
Newschaffer CJ, Croen LA, Fallin MD, Hertz-Picciotto I, Nguyen DV, Lee NL, Berry CA, Farzadegan H, Hess HN, Landa RJ, et al. Infant siblings and the investigation of autism risk factors. J Neurodev Disord. 2012;4:7.
Article
Google Scholar
Ozonoff S, Young GS, Carter A, Messinger D, Yirmiya N, Zwaigenbaum L, Bryson S, Carver LJ, Constantino JN, Dobkins K, et al. Recurrence risk for autism Spectrum disorders: a baby siblings research consortium study. Pediatrics. 2011;128(3):e488–95.
Google Scholar
Messinger D, Young GS, Ozonoff S, Dobkins K, Carter A, Zwaigenbaum L, Landa RJ, Charman T, Stone WL, Constantino JN, et al. Beyond autism: a baby siblings research consortium study of high-risk children at three years of age. J Am Acad Child Adolesc Psychiatry. 2013;52(3):300–8.
Article
Google Scholar
Hertz-Picciotto I, Schmidt RJ, Walker CK, Bennett DH, Oliver M, Wise K, Giulivi C, Puschner B, Thomas J, Lasalle JM et al: A prospective study of environmental exposures and early biomarkers in autism Spectrum disorder: the MARBLES study. Environ Health Perspect In press.
Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore PC, Pickles A, Rutter M. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30(3):205–23.
Article
CAS
Google Scholar
Mullen EM. Mullen scales of early learning.: (Western Psychological Services); 1995.
Google Scholar
Mullen EM. Mullen scales of early learning.: (Western Psychological Services); 1997.
Google Scholar
Ozonoff S, Young GS, Belding A, Hill M, Hill A, Hutman T, Johnson S, Miller M, Rogers SJ, Schwichtenberg AJ, et al. The broader autism phenotype in infancy: when does it emerge? J Am Acad Child Adolesc Psychiatry. 2014;53(4):398–407.
Article
Google Scholar
Chawarska K, Shic F, Macari S, Campbell DJ, Brian J, Landa R, Hutman T, Nelson CA, Ozonoff S, Tager-Flusberg H, et al. 18-month predictors of later outcomes in younger siblings of children with autism Spectrum disorder: a baby siblings research consortium study. J Am Acad Child Adolesc Psychiatry. 2014;53(12):1317–27.
Article
Google Scholar
Barkoski J, Bennett D, Tancredi D, Boyd-Barr D, Elms W, Hertz-Picciotto I. Variability of urinary pesticide metabolite concentrations during pregnancy in the MARBLES study. Environ Res. 2018;165:400–9.
Article
CAS
Google Scholar
Silva MJ, Samandar E, Preau JL, Reidy JA, Needham LL, Calafat AM. Quantification of 22 phthalate metabolites in human urine. J Chromatogr B-Analyt Technol Biomed Life Sci. 2007;860(1):106–12.
Article
CAS
Google Scholar
Richardson DB, Ciampi A. Effects of exposure measurement error when an exposure variable is constrained by a lower limit. Am J Epidemiol. 2003;157(4):355–63.
Article
Google Scholar
Schisterman EF, Vexler A, Whitcomb BW, Liu AY. The limitations due to exposure detection limits for regression models. Am J Epidemiol. 2006;163(4):374–83.
Article
Google Scholar
Hauser R, Meeker JD, Park S, Silva MJ, Calafat AM. Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environ Health Perspect. 2004;112(17):1734–40.
Article
CAS
Google Scholar
Rosenberg J, Fiserova-Bergerova V, Lowry LK. Biological monitoring IV: measurements in urine. App Ind Hyg. 1989;4(4):F16–21.
Google Scholar
Zota AR, Calafat AM, Woodruff TJ. Temporal trends in phthalate exposures: findings from the National Health and nutrition examination survey, 2001-2010. Environ Health Perspect. 2014;122(3):235–41.
Google Scholar
Goodrich AJ, Volk HE, Tancredi DJ, McConnell R, Lurmann FW, Hansen RL, Schmidt RJ. Joint effects of prenatal air pollutant exposure and maternal folic acid supplementation on risk of autism spectrum disorder. Autism Res. 2018;11(1):69–80.
Article
Google Scholar
Schmidt RJ, Kogan V, Shelton JF, Delwiche L, Hansen RL, Ozonoff S, Ma CC, McCanlies EC, Bennett DH, Hertz-Picciotto I, et al. Combined prenatal pesticide exposure and folic acid intake in relation to autism Spectrum disorder. Environ Health Perspect. 2017;125(9):097007.
Article
Google Scholar
Cho SC, Bhang SY, Hong YC, Shin MS, Kim BN, Kim JW, Yoo HJ, Cho IH, Kim HW. Relationship between environmental phthalate exposure and the intelligence of school-age children. Environ Health Perspect. 2010;118(7):1027–32.
Article
CAS
Google Scholar
Nuttall JR, Kucera HR, Supasai S, Gaikwad NW, Oteiza PI. Combined effects of gestational phthalate exposure and zinc deficiency on steroid metabolism and growth. Toxicol Sci. 2017;156(2):469–79.
CAS
Google Scholar
Nuttall JR. The plausibility of maternal toxicant exposure and nutritional status as contributing factors to the risk of autism spectrum disorders. Nutr Neurosci. 2017;20(4):209–18.
Article
CAS
Google Scholar
Braun JM, Muckle G, Arbuckle T, Bouchard MF, Fraser WD, Ouellet E, Seguin JR, Oulhote Y, Webster GM, Lanphear BP. Associations of prenatal urinary bisphenol a concentrations with child behaviors and cognitive abilities. Environ Health Perspect. 2017;125(6):067008.
Article
Google Scholar
Tang J, Yuan Y, Wei C, Liao X, Yuan J, Nanberg E, Zhang Y, Bornehag C-G, Yang X. Neurobehavioral changes induced by di(2-ethylhexyl) phthalate and the protective effects of vitamin E in Kunming mice. Toxicol Res. 2015;4:1006–15.
Article
CAS
Google Scholar
Schmidt RJ, Iosif A-M, Guerrero Angel E, Ozonoff S: Maternal prenatal vitamin use and risk for autism Spectrum disorder in the MARBLES prospective study of enriched-risk siblings. Revision submitted.
Chih CP. The design effects of cluster sampling on the estimation of mean lengths and total mortality of reef fish. Fish Res. 2011;109(2–3):295–302.
Article
Google Scholar
Philippat C, Barkoski J, Tancredi DJ, Elms B, Barr D, Ozonoff S, Bennett DH, Hertz-Picciotto I. Prenatal exposure to organophosphate pesticides and risk of autism spectrum disorders and other non-typical development at 3 years in a high-risk cohort. Int J Hyg Environ Health. 2018;221(3):548–55.
Article
CAS
Google Scholar
Swan SH, Liu F, Hines M, Kruse RL, Wang C, Redmon JB, Sparks A, Weiss B. Prenatal phthalate exposure and reduced masculine play in boys. Int J Androl. 2010;33(2):259–67.
Article
CAS
Google Scholar
Braun JM, Bellinger DC, Hauser R, Wright RO, Chen AM, Calafat AM, Yolton K, Lanphear BP. Prenatal phthalate, triclosan, and bisphenol a exposures and child visual-spatial abilities. Neurotoxicology. 2017;58:75–83.
Article
CAS
Google Scholar
Doherty BT, Engel SM, Buckley JP, Silva MJ, Calafat AM, Wolff MS. Prenatal phthalate biomarker concentrations and performance on the Bayley scales of infant development-II in a population of young urban children. Environ Res. 2017;152:51–8.
Article
CAS
Google Scholar
Messerlian C, Bellinger D, Minguez-Alarcon L, Romano ME, Ford JB, Williams PL, Calafat AM, Hauser R, Braun JM. Paternal and maternal preconception urinary phthalate metabolite concentrations and child behavior. Environ Res. 2017;158:720–8.
Article
CAS
Google Scholar
Johns LE, Ferguson KK, Meeker JD. Relationships between urinary phthalate metabolite and bisphenol a concentrations and vitamin D levels in US adults: National Health and nutrition examination survey (NHANES), 2005-2010. J Clin Endocrinol Metab. 2016;101(11):4062–9.
Article
CAS
Google Scholar
Bui LM, Taubeneck MW, Commisso JF, Uriu-Hare JY, Faber WD, Keen CL. Altered zinc metabolism contributes to the developmental toxicity of 2-ethylhexanoic acid, 2-ethylhexanol and valproic acid. Toxicology. 1998;126(1):9–21.
Article
CAS
Google Scholar
Lee J, Park J, Jang B, Knudsen TB. Altered expression of genes related to zinc homeostasis in early mouse embryos exposed to di-2-ethylhexyl phthalate. Toxicol Lett. 2004;152(1):1–10.
Article
CAS
Google Scholar
Peters JM, Taubeneck MW, Keen CL, Gonzalez FJ. Di(2-ethylhexyl) phthalate induces a functional zinc deficiency during pregnancy and teratogenesis that is independent of peroxisome proliferator-activated receptor-alpha. Teratology. 1997;56(5):311–6.
Article
CAS
Google Scholar
Ferguson KK, Loch-Caruso R, Meeker JD. Exploration of oxidative stress and inflammatory markers in relation to urinary phthalate metabolites: NHANES 1999-2006. Environ Sci Technol. 2012;46(1):477–85.
Article
CAS
Google Scholar
Nishioka J, Iwahara C, Kawasaki M, Yoshizaki F, Nakayama H, Takamori K, Ogawa H, Iwabuchi K. Di-(2-ethylhexyl) phthalate induces production of inflammatory molecules in human macrophages. Inflamm Res. 2012;61(1):69–78.
Article
CAS
Google Scholar
Aguilar-Valles A, Flores C, Luheshi GN. Prenatal inflammation-induced hypoferremia alters dopamine function in the adult offspring in rat: relevance for schizophrenia. PLoS One. 2010;5(6):e10967.
Article
CAS
Google Scholar
Grimble RF. Effect of antioxidative vitamins on immune function with clinical applications. Int J Vitam Nutr Res. 1997;67(5):312–20.
CAS
Google Scholar
Chen KB, Lin AM, Chiu TH. Systemic vitamin D3 attenuated oxidative injuries in the locus coeruleus of rat brain. Ann N Y Acad Sci. 2003;993:313–24 discussion 345-319.
Article
CAS
Google Scholar
Lin AM, Chen KB, Chao PL. Antioxidative effect of vitamin D3 on zinc-induced oxidative stress in CNS. Ann N Y Acad Sci. 2005;1053:319–29.
Article
CAS
Google Scholar
Moore ME, Piazza A, McCartney Y, Lynch MA. Evidence that vitamin D3 reverses age-related inflammatory changes in the rat hippocampus. Biochem Soc Trans. 2005;33(Pt 4):573–7.
Article
CAS
Google Scholar
Jiang Q. Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med. 2014;72:76–90.
Article
CAS
Google Scholar
Zimmermann MB, Kohrle J. The impact of iron and selenium deficiencies on iodine and thyroid metabolism: biochemistry and relevance to public health. Thyroid. 2002;12(10):867–78.
Article
CAS
Google Scholar
Zhao Y, Chen J, Wang X, Song Q, Xu HH, Zhang YH. Third trimester phthalate exposure is associated with DNA methylation of growth-related genes in human placenta. Sci Rep. 2016;6:33449.
Article
CAS
Google Scholar
Solomon O, Yousefi P, Huen K, Gunier RB, Escudero-Fung M, Barcellos LF, Eskenazi B, Holland N. Prenatal phthalate exposure and altered patterns of DNA methylation in cord blood. Environ Mol Mutagen. 2017;58(6):398–410.
Article
CAS
Google Scholar
Wang IJ, Karmaus WJJ, Chen SL, Holloway JW, Ewart S. Effects of phthalate exposure on asthma may be mediated through alterations in DNA methylation. Clin Epigenetics. 2015;7:27.
Article
CAS
Google Scholar
Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition. 2004;20(1):63–8.
Article
CAS
Google Scholar
Moretti R, Torre P, Antonello RM, Cattaruzza T, Cazzato G, Bava A. Vitamin B12 and folate depletion in cognition: a review. Neurol India. 2004;52(3):310–8.
Google Scholar
Rahat B, Mahajan A, Bagga R, Hamid A, Kaur J. Epigenetic modifications at DMRs of placental genes are subjected to variations in normal gestation, pathological conditions and folate supplementation. Sci Rep. 2017;7:40774.
Article
CAS
Google Scholar
Joubert BR, den Dekker HT, Felix JF, Bohlin J, Ligthart S, Beckett E, Tiemeier H, van Meurs JB, Uitterlinden AG, Hofman A, et al. Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun. 2016;7:10577.
Article
CAS
Google Scholar
Shin H-M, Bennett DH, Barkoski J, Ye X, Calafat AM, Tancredi D, Hertz-Picciotto I. Variability of Urinary Concentrations of Phthalate Metabolites during Pregnancy in First Morning Voids and Pooled Samples. Environ Int. (in press). https://www.sciencedirect.com/science/article/pii/S0160412018316210.
Schmidt RJ, Hansen RL, Hartiala J, Allayee H, Schmidt LC, Tancredi DJ, Tassone F, Hertz-Picciotto I. Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiology. 2011;22(4):476–85.
Article
Google Scholar
Billionnet C, Sherrill D, Annesi-Maesano I, Study G. Estimating the health effects of exposure to multi-pollutant mixture. Ann Epidemiol. 2012;22(2):126–41.
Article
Google Scholar
Sun ZC, Tao YB, Li S, Ferguson KK, Meeker JD, Park SK, Batterman SA, Mukherjee B. Statistical strategies for constructing health risk models with multiple pollutants and their interactions: possible choices and comparisons. Environ Health. 2013;12:85.
Article
Google Scholar