Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260–72.
Article
Google Scholar
Lunyera J, Mohottige D, Von Isenburg M, Jeuland M, Patel UD, Stanifer JW. CKD of uncertain etiology: a systematic review. Clin J Am Soc Nephrol. 2016;11(3):379–85.
Article
CAS
Google Scholar
Tsai HJ, Wu PY, Huang JC, Chen SC. Environmental pollution and chronic kidney disease. Int J Med Sci. 2021;18(5):1121–9.
Article
CAS
Google Scholar
Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem. 2018;119(1):157–84.
Article
CAS
Google Scholar
Lunyera J, Smith SR. Heavy metal nephropathy: considerations for exposure analysis. Kidney Int. 2017;92(3):548–50.
Article
Google Scholar
Navas-Acien A, Tellez-Plaza M, Guallar E, Muntner P, Silbergeld E, Jaar B, et al. Blood cadmium and lead and chronic kidney disease in US adults: a joint analysis. Am J Epidemiol. 2009;170(9):1156–64.
Article
Google Scholar
Nocedal J, Wright SJ. Numerical optimization: Springer; 2006.
Google Scholar
Carrico C, Gennings C, Wheeler DC, Factor-Litvak P. Characterization of weighted Quantile sum regression for highly correlated data in a risk analysis setting. J Agric Biol Environ Stat. 2015;20(1):100–20.
Article
Google Scholar
Yorita Christensen KL, Carrico CK, Sanyal AJ, Gennings C. Multiple classes of environmental chemicals are associated with liver disease: NHANES 2003-2004. Int J Hyg Environ Health. 2013;216(6):703–9.
Article
CAS
Google Scholar
Teschner M, Kosch M, Schaefer RM. Folate metabolism in renal failure. Nephrol Dial Transplant. 2002;17(Suppl 5):24–7.
Google Scholar
Capelli I, Cianciolo G, Gasperoni L, Zappulo F, Tondolo F, Cappuccilli M, et al. Folic Acid and Vitamin B12 Administration in CKD, Why Not? Nutrients. 2019;11(2):383-402.
Xu X, Qin X, Li Y, Sun D, Wang J, Liang M, et al. Hou FF, investigators of the renal substudy of the China stroke primary prevention T. efficacy of folic acid therapy on the progression of chronic kidney disease: the renal substudy of the China stroke primary prevention trial. JAMA. Intern Med. 2016;176(10):1443–50.
Google Scholar
Bozack AK, Hall MN, Liu X, Ilievski V, Lomax-Luu AM, Parvez F, et al. Folic acid supplementation enhances arsenic methylation: results from a folic acid and creatine supplementation randomized controlled trial in Bangladesh. Am J Clin Nutr. 2019;109(2):380–91.
Article
Google Scholar
Bakulski KM, Park SK, Weisskopf MG, Tucker KL, Sparrow D, Spiro A 3rd, et al. Lead exposure, B vitamins, and plasma homocysteine in men 55 years of age and older: the VA normative aging study. Environ Health Perspect. 2014;122(10):1066–74.
Article
Google Scholar
Li M, Hu L, Zhou W, Wang T, Zhu L, Zhai Z, et al. Nonlinear association between blood lead and hyperhomocysteinemia among adults in the United States. Sci Rep. 2020;10(1):17166.
Article
CAS
Google Scholar
Ebong IA, Goff DC Jr, Rodriguez CJ, Chen H, Sibley CT, Bertoni AG. Association of lipids with incident heart failure among adults with and without diabetes mellitus: multiethnic study of atherosclerosis. Circ Heart Fail. 2013;6(3):371–8.
Article
CAS
Google Scholar
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.
Article
CAS
Google Scholar
Chen KJ, Pan WH, Lin YC, Lin BF. Trends in folate status in the Taiwanese population aged 19 years and older from the nutrition and health survey in Taiwan 1993-1996 to 2005-2008. Asia Pac J Clin Nutr. 2011;20(2):275–82.
CAS
Google Scholar
Yang YW, Liou SH, Hsueh YM, Lyu WS, Liu CS, Liu HJ, et al. Risk of Alzheimer's disease with metal concentrations in whole blood and urine: a case-control study using propensity score matching. Toxicol Appl Pharmacol. 2018;356:8–14.
Article
CAS
Google Scholar
Tarng DC, Huang TP, Wei YH, Liu TY, Chen HW, Wen Chen T, et al. 8-hydroxy-2′-deoxyguanosine of leukocyte DNA as a marker of oxidative stress in chronic hemodialysis patients. Am J Kidney Dis. 2000;36(5):934–44.
Article
CAS
Google Scholar
Kasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res. 1997;387(3):147–63.
Article
CAS
Google Scholar
Chen CY, Jhou YT, Lee HL, Lin YW. Simultaneous, rapid, and sensitive quantification of 8-hydroxy-2′-deoxyguanosine and cotinine in human urine by on-line solid-phase extraction LC-MS/MS: correlation with tobacco exposure biomarkers NNAL. Anal Bioanal Chem. 2016;408(23):6295–306.
Article
CAS
Google Scholar
Sanders AP, Mazzella MJ, Malin AJ, Hair GM, Busgang SA, Saland JM, et al. Combined exposure to lead, cadmium, mercury, and arsenic and kidney health in adolescents age 12-19 in NHANES 2009-2014. Environ Int. 2019;131:104993.
Article
CAS
Google Scholar
VanderWeele TJ. Mediation analysis: a Practitioner's guide. Annu Rev Public Health. 2016;37:17–32.
Article
Google Scholar
Zheng L, Kuo CC, Fadrowski J, Agnew J, Weaver VM, Navas-Acien A. Arsenic and chronic kidney disease: a systematic review. Curr Environ Health Rep. 2014;1(3):192–207.
Article
CAS
Google Scholar
Yu CC, Lin JL, Lin-Tan DT. Environmental exposure to lead and progression of chronic renal diseases: a four-year prospective longitudinal study. J Am Soc Nephrol. 2004;15(4):1016–22.
Article
CAS
Google Scholar
Madrigal JM, Ricardo AC, Persky V, Turyk M. Associations between blood cadmium concentration and kidney function in the U.S. population: impact of sex, diabetes and hypertension. Environ Res. 2019;169:180–8.
Article
CAS
Google Scholar
Tsai TL, Kuo CC, Pan WH, Chung YT, Chen CY, Wu TN, et al. The decline in kidney function with chromium exposure is exacerbated with co-exposure to lead and cadmium. Kidney Int. 2017;92(3):710–20.
Article
CAS
Google Scholar
Hambach R, Lison D, D'Haese PC, Weyler J, De Graef E, De Schryver A, et al. Co-exposure to lead increases the renal response to low levels of cadmium in metallurgy workers. Toxicol Lett. 2013;222(2):233–8.
Article
CAS
Google Scholar
Zhang Y, Dong T, Hu W, Wang X, Xu B, Lin Z, et al. Association between exposure to a mixture of phenols, pesticides, and phthalates and obesity: comparison of three statistical models. Environ Int. 2019;123:325–36.
Article
CAS
Google Scholar
Wang Y, Zheng Y, Chen P, Liang S, He P, Shao X, et al. The weak correlation between serum vitamin levels and chronic kidney disease in hospitalized patients: a cross-sectional study. BMC Nephrol. 2021;22(1):292.
Article
CAS
Google Scholar
Pastore A, Noce A, Di Giovamberardino G, De Stefano A, Calla C, Zenobi R, et al. Homocysteine, cysteine, folate and vitamin B(1)(2) status in type 2 diabetic patients with chronic kidney disease. J Nephrol. 2015;28(5):571–6.
Article
CAS
Google Scholar
Bozack AK, Saxena R, Gamble MV. Nutritional influences on one-carbon metabolism: effects on arsenic methylation and toxicity. Annu Rev Nutr. 2018;38:401–29.
Article
CAS
Google Scholar
Wu Z, Hu H, Wang C, Wu J, Xiong Y, Fu Y, et al. Association between serum folate levels and blood concentrations of cadmium and lead in US adults. Environ Sci Pollut Res Int. 2021;29(3):3565-74.
Bukhari FJ, Moradi H, Gollapudi P, Ju Kim H, Vaziri ND, Said HM. Effect of chronic kidney disease on the expression of thiamin and folic acid transporters. Nephrol Dial Transplant. 2011;26(7):2137–44.
Article
CAS
Google Scholar
Rajak C, Singh N, Parashar P. Metal toxicity and natural antidotes: prevention is better than cure. Environ Sci Pollut Res Int. 2020;27(35):43582–98.
Article
CAS
Google Scholar
Kumagai T, Ota T, Tamura Y, Chang WX, Shibata S, Uchida S. Time to target uric acid to retard CKD progression. Clin Exp Nephrol. 2017;21(2):182–92.
Article
CAS
Google Scholar
Saxena PN, Anand S, Saxena N, Bajaj P. Effect of arsenic trioxide on renal functions and its modulation by Curcuma aromatica leaf extract in albino rat. J Environ Biol. 2009;30(4):527–31.
CAS
Google Scholar
Krishnan E, Lingala B, Bhalla V. Low-level lead exposure and the prevalence of gout: an observational study. Ann Intern Med. 2012;157(4):233–41.
Article
Google Scholar
Cohen E, Levi A, Vecht-Lifshitz SE, Goldberg E, Garty M, Krause I. Assessment of a possible link between hyperhomocysteinemia and hyperuricemia. J Investig Med. 2015;63(3):534–8.
Article
CAS
Google Scholar
Lewis AS, Murphy L, McCalla C, Fleary M, Purcell S. Inhibition of mammalian xanthine oxidase by folate compounds and amethopterin. J Biol Chem. 1984;259(1):12–5.
Article
CAS
Google Scholar
Qin X, Li Y, He M, Tang G, Yin D, Liang M, et al. Folic acid therapy reduces serum uric acid in hypertensive patients: a substudy of the China stroke primary prevention trial (CSPPT). Am J Clin Nutr. 2017;105(4):882–9.
Article
CAS
Google Scholar
Roberts S, Martin MA. Investigating the mixture of air pollutants associated with adverse health outcomes. Atmos Environ. 2006;40(5):984–91.
Article
CAS
Google Scholar
Wheeler DC, Rustom S, Carli M, Whitehead TP, Ward MH, Metayer C. Assessment of Grouped Weighted Quantile Sum Regression for Modeling Chemical Mixtures and Cancer Risk. Int J Environ Res Public Health. 2021;18(2):504-23.
Tu YK, Gunnell D, Gilthorpe MS. Simpson's Paradox, Lord's Paradox, and Suppression Effects are the same phenomenon--the reversal paradox. Emerg Themes Epidemiol. 2008;5:2.
Article
Google Scholar
Czarnota J, Gennings C, Wheeler DC. Assessment of weighted quantile sum regression for modeling chemical mixtures and cancer risk. Cancer Inform. 2015;14(Suppl 2):159–71.
Google Scholar