He C, Zhang C, Hunter DJ, Hankinson SE, Louis GMB, Hediger ML, et al. Age at menarche and risk of type 2 diabetes: results from 2 large prospective cohort studies. Am J Epidemiol. 2009; https://doi.org/10.1093/aje/kwp372.
Lakshman R, Forouhi NG, Sharp SJ, Luben R, Bingham SA, Khaw K-T, et al. Early age at menarche associated with cardiovascular disease and mortality. J Clin Endocrinol Metab. 2009;94:4953–60.
Article
CAS
Google Scholar
Hsieh CC, Trichopoulos D, Katsouyanni K, Yuasa S. Age at menarche, age at menopause, height and obesity as risk factors for breast cancer: associations and interactions in an international case-control study. Int J Cancer J Int Cancer. 1990;46:796–800.
Article
CAS
Google Scholar
Wyshak G, Frisch RE. Evidence for a secular trend in age of menarche. N Engl J Med. 1982;306:1033–5.
Article
CAS
Google Scholar
Euling SY, Selevan SG, Pescovitz OH, Skakkebaek NE. Role of environmental factors in the timing of puberty. Pediatrics. 2008;121(Supp l 3):S167–71.
Article
Google Scholar
Ong KK, Ahmed ML, Dunger DB. Lessons from large population studies on timing and tempo of puberty (secular trends and relation to body size): the European trend. Mol Cell Endocrinol. 2006;254–255:8–12.
Article
Google Scholar
McDowell MA, Brody DJ, Hughes JP. Has age at menarche changed? Results from the National Health and nutrition examination survey (NHANES) 1999-2004. J Adolesc Health Off Publ Soc Adolesc Med. 2007;40:227–31.
Article
Google Scholar
Morris DH, Jones ME, Schoemaker MJ, Ashworth A, Swerdlow AJ. Secular trends in age at menarche in women in the UK born 1908-93: results from the breakthrough generations study. Paediatr Perinat Epidemiol. 2011;25:394–400.
Article
Google Scholar
Junqueira Do Lago M, Faerstein E, De Souza Lopes C, Werneck GL. Pró-Saúde study (Rio de Janeiro, Brazil). Family socio-economic background modified secular trends in age at menarche: evidence from the Pró-Saúde study (Rio de Janeiro, Brazil). Ann Hum Biol. 2003;30:347–52.
Article
CAS
Google Scholar
Freedman DS, Khan LK, Serdula MK, Dietz WH, Srinivasan SR, Berenson GS. Relation of age at menarche to race, time period, and anthropometric dimensions: the Bogalusa heart study. Pediatrics. 2002;110:e43.
Article
Google Scholar
Chumlea WC, Schubert CM, Roche AF, Kulin HE, Lee PA, Himes JH, et al. Age at menarche and racial comparisons in US girls. Pediatrics. 2003;111:110–3.
Article
Google Scholar
Anderson SE, Must A. Interpreting the continued decline in the average age at menarche: results from two nationally representative surveys of U.S. girls studied 10 years apart. J Pediatr. 2005;147:753–60.
Article
Google Scholar
Wu T, Mendola P, Buck GM. Ethnic differences in the presence of secondary sex characteristics and menarche among US girls: the third National Health and nutrition examination survey, 1988-1994. Pediatrics. 2002;110:752–7.
Article
Google Scholar
Dossus L, Kvaskoff M, Bijon A, Fervers B, Boutron-Ruault M-C, Mesrine S, et al. Determinants of age at menarche and time to menstrual cycle regularity in the French E3N cohort. Ann Epidemiol. 2012;22:723–30.
Article
Google Scholar
Amigo H, Vásquez S, Bustos P, Ortiz G, Lara M. Socioeconomic status and age at menarche in indigenous and non-indigenous Chilean adolescents. Cad Saude Publica. 2012;28:977–83.
Article
Google Scholar
Buck Louis GM, Gray LE, Marcus M, Ojeda SR, Pescovitz OH, Witchel SF, et al. Environmental factors and puberty timing: expert panel research needs. Pediatrics. 2008;121(Suppl 3):S192–207.
Article
Google Scholar
Biro FM, Greenspan LC, Galvez MP. Puberty in girls of the 21st century. J Pediatr Adolesc Gynecol. 2012;25:289–94.
Article
Google Scholar
Kaplowitz PB. Link between body fat and the timing of puberty. Pediatrics. 2008;121(Suppl 3):S208–17.
Article
Google Scholar
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: the Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36:E1–150.
Article
CAS
Google Scholar
Kim SH, Park MJ. Phthalate exposure and childhood obesity. Ann Pediatr Endocrinol Metab. 2014;19:69–75.
Article
Google Scholar
Buckley JP, Engel SM, Mendez MA, Richardson DB, Daniels JL, Calafat AM, et al. Prenatal phthalate exposures and childhood fat mass in a new York City cohort. Environ Health Perspect. 2016;124:507–13.
CAS
Google Scholar
Valvi D, Casas M, Romaguera D, Monfort N, Ventura R, Martinez D, et al. Prenatal phthalate exposure and childhood growth and blood pressure: evidence from the Spanish INMA-Sabadell birth cohort study. Environ Health Perspect. 2015;123:1022–9.
Article
CAS
Google Scholar
Buckley JP, Engel SM, Braun JM, Whyatt RM, Daniels JL, Mendez MA, et al. Prenatal phthalate exposures and body mass index among 4- to 7-year-old children: a pooled analysis. Epidemiol Camb Mass. 2016;27:449–58.
Article
Google Scholar
CDC. Fourth National Report on human exposure to environmental chemicals. Atlanta: Centers for Disease Control and Prevention National Center for Environmental Health Divsion of Laboratory Sciences; 2012.
Google Scholar
Wolff MS, Pajak A, Pinney SM, Windham GC, Galvez M, Rybak M, et al. Associations of urinary phthalate and phenol biomarkers with menarche in a multiethnic cohort of young girls. Reprod Toxicol Elmsford N. 2017;67:56–64.
Article
CAS
Google Scholar
Zhang Y, Cao Y, Shi H, Jiang X, Zhao Y, Fang X, et al. Could exposure to phthalates speed up or delay pubertal onset and development? A 1.5-year follow-up of a school-based population. Environ Int. 2015;83:41–9.
Article
CAS
Google Scholar
Buttke DE, Sircar K, Martin C. Exposures to endocrine-disrupting chemicals and age of menarche in adolescent girls in NHANES (2003-2008). Environ Health Perspect. 2012;120:1613–8.
Article
CAS
Google Scholar
Watkins DJ, Téllez-Rojo MM, Ferguson KK, Lee JM, Solano-Gonzalez M, Blank-Goldenberg C, et al. In utero and peripubertal exposure to phthalates and BPA in relation to female sexual maturation. Environ Res. 2014;134:233–41.
Article
CAS
Google Scholar
Mouritsen A, Frederiksen H, Sørensen K, Aksglaede L, Hagen C, Skakkebaek NE, et al. Urinary phthalates from 168 girls and boys measured twice a year during a 5-year period: associations with adrenal androgen levels and puberty. J Clin Endocrinol Metab. 2013;98:3755–64.
Article
CAS
Google Scholar
Kasper-Sonnenberg M, Wittsiepe J, Wald K, Koch HM, Wilhelm M. Pre-pubertal exposure with phthalates and bisphenol a and pubertal development. PLoS One. 2017;12:e0187922.
Article
Google Scholar
Corvalán C, Uauy R, Stein AD, Kain J, Martorell R. Effect of growth on cardiometabolic status at 4 y of age. Am J Clin Nutr. 2009;90:547–55.
Article
Google Scholar
Tanner J. Growth at adolescense. Oxford: Blackwell Scientific Publications; 1962.
Google Scholar
Ye X, Kuklenyik Z, Needham LL, Calafat AM. Automated on-line column-switching HPLC-MS/MS method with peak focusing for the determination of nine environmental phenols in urine. Anal Chem. 2005;77:5407–13.
Article
CAS
Google Scholar
Silva MJ, Samandar E, Preau JL, Reidy JA, Needham LL, Calafat AM. Quantification of 22 phthalate metabolites in human urine. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;860:106–12.
Article
CAS
Google Scholar
Hornung RW, Reed LD. Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg. 1990;5:46–51.
Article
CAS
Google Scholar
Boeniger MF, Lowry LK, Rosenberg J. Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review. Am Ind Hyg Assoc J. 1993;54:615–27.
Article
CAS
Google Scholar
Teass AW, Biagini RE, DeBord G, Hull RD. Application of biological monitoring methods. NIOSH man anal method. Cincinnati: National Institute for Occupational Safety and Health Division of Physical Sciences and Engineering; 1998.
Google Scholar
Buser MC, Murray HE, Scinicariello F. Association of urinary phenols with increased body weight measures and obesity in children and adolescents. J Pediatr. 2014;165:744–9.
Article
CAS
Google Scholar
Hatch EE, Nelson JW, Qureshi MM, Weinberg J, Moore LL, Singer M, et al. Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999-2002. Environ Health Glob Access Sci Source. 2008;7:27.
Google Scholar
Tyrrell J, Melzer D, Henley W, Galloway TS, Osborne NJ. Associations between socioeconomic status and environmental toxicant concentrations in adults in the USA: NHANES 2001-2010. Environ Int. 2013;59:328–35.
Article
CAS
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2009.
Book
Google Scholar
Frederiksen H, Sørensen K, Mouritsen A, Aksglaede L, Hagen CP, Petersen JH, et al. High urinary phthalate concentration associated with delayed pubarche in girls. Int J Androl. 2012;35:216–26.
Article
CAS
Google Scholar
Wolff MS, Teitelbaum SL, McGovern K, Windham GC, Pinney SM, Galvez M, et al. Phthalate exposure and pubertal development in a longitudinal study of US girls. Hum Reprod Oxf Engl. 2014;29:1558–66.
Article
CAS
Google Scholar
Boas M, Frederiksen H, Feldt-Rasmussen U, Skakkebæk NE, Hegedüs L, Hilsted L, et al. Childhood exposure to phthalates: associations with thyroid function, insulin-like growth factor I, and growth. Environ Health Perspect. 2010;118:1458–64.
Article
CAS
Google Scholar
Tsai Y-A, Lin C-L, Hou J-W, Huang P-C, Lee M-C, Chen B-H, et al. Effects of high di(2-ethylhexyl) phthalate (DEHP) exposure due to tainted food intake on pre-pubertal growth characteristics in a Taiwanese population. Environ Res. 2016;149:197–205.
Article
CAS
Google Scholar
Huang H-B, Pan W-H, Chang J-W, Chiang H-C, Guo YL, Jaakkola JJK, et al. Does exposure to phthalates influence thyroid function and growth hormone homeostasis? The Taiwan environmental survey for toxicants (TEST) 2013. Environ Res. 2017;153:63–72.
Article
CAS
Google Scholar
Thankamony A, Ong KK, Ahmed ML, Ness AR, Holly JMP, Dunger DB. Higher levels of IGF-I and adrenal androgens at age 8 years are associated with earlier age at menarche in girls. J Clin Endocrinol Metab. 2012;97:E786–90.
Article
CAS
Google Scholar
Lovekamp-Swan T, Davis BJ. Mechanisms of phthalate ester toxicity in the female reproductive system. Environ Health Perspect. 2003;111:139–45.
Article
CAS
Google Scholar
Versonnen BJ, Arijs K, Verslycke T, Lema W, Janssen CR. In vitro and in vivo estrogenicity and toxicity of o-, m-, and p-dichlorobenzene. Environ Toxicol Chem. 2003;22:329–35.
Article
CAS
Google Scholar
Schlumpf M, Cotton B, Conscience M, Haller V, Steinmann B, Lichtensteiger W. In vitro and in vivo estrogenicity of UV screens. Environ Health Perspect. 2001;109:239–44.
Article
CAS
Google Scholar
Takatori S, Kitagawa Y, Oda H, Miwa G, Nishikawa J, Nishihara T, et al. Estrogenicity of metabolites of benzophenone derivatives examined by a yeast two-hybrid assay. J Health Sci. 2003;49:91–8.
Article
CAS
Google Scholar
Chou Y-Y, Huang P-C, Lee C-C, Wu M-H, Lin S-J. Phthalate exposure in girls during early puberty. J Pediatr Endocrinol Metab JPEM. 2009;22:69–77.
Article
CAS
Google Scholar
Shi H, Cao Y, Shen Q, Zhao Y, Zhang Z, Zhang Y. Association between urinary phthalates and pubertal timing in Chinese adolescents. J Epidemiol. 2015;25:574–82.
Article
Google Scholar
Wu W, Zhou F, Wang Y, Ning Y, Yang J-Y, Zhou Y-K. Exposure to phthalates in children aged 5-7years: associations with thyroid function and insulin-like growth factors. Sci Total Environ. 2017;579:950–6.
Article
CAS
Google Scholar
Novotny R, Going S, Teegarden D, Van Loan M, McCabe G, McCabe L, et al. Hispanic and Asian pubertal girls have higher android/gynoid fat ratio than whites. Obes Silver Spring Md. 2007;15:1565–70.
Article
Google Scholar
Ellis KJ, Abrams SA, Wong WW. Body composition of a young, multiethnic female population. Am J Clin Nutr. 1997;65:724–31.
Article
CAS
Google Scholar
Shalitin S, Phillip M. Role of obesity and leptin in the pubertal process and pubertal growth--a review. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2003;27:869–74.
Article
CAS
Google Scholar
Li S, Zhao J, Wang G, Zhu Y, Rabito F, Krousel-Wood M, et al. Urinary triclosan concentrations are inversely associated with body mass index and waist circumference in the US general population: experience in NHANES 2003-2010. Int J Hyg Environ Health. 2015;218:401–6.
Article
CAS
Google Scholar
Lee JM, Appugliese D, Kaciroti N, Corwyn RF, Bradley RH, Lumeng JC. Weight status in young girls and the onset of puberty. Pediatrics. 2007;119:e624–30.
Article
Google Scholar
Davison KK, Susman EJ, Birch LL. Percent body fat at age 5 predicts earlier pubertal development among girls at age 9. Pediatrics. 2003;111:815–21.
Article
Google Scholar
Aksglaede L, Juul A, Olsen LW, Sørensen TIA. Age at puberty and the emerging obesity epidemic. PLoS One. 2009;4:e8450.
Article
Google Scholar
Rubin C, Maisonet M, Kieszak S, Monteilh C, Holmes A, Flanders D, et al. Timing of maturation and predictors of menarche in girls enrolled in a contemporary British cohort. Paediatr Perinat Epidemiol. 2009;23:492–504.
Article
Google Scholar
Biro FM, Greenspan LC, Galvez MP, Pinney SM, Teitelbaum S, Windham GC, et al. Onset of breast development in a longitudinal cohort. Pediatrics. 2013;132:1019–27.
Article
Google Scholar
Calafat AM, Longnecker MP, Koch HM, Swan SH, Hauser R, Goldman LR, et al. Optimal exposure biomarkers for nonpersistent Chemicals in Environmental Epidemiology. Environ Health Perspect. 2015;123:A166–8.
Article
CAS
Google Scholar
Johns LE, Cooper GS, Galizia A, Meeker JD. Exposure assessment issues in epidemiology studies of phthalates. Environ Int. 2015;85:27–39.
Article
CAS
Google Scholar
Teitelbaum SL, Britton JA, Calafat AM, Ye X, Silva MJ, Reidy JA, et al. Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environ Res. 2008;106:257–69.
Article
CAS
Google Scholar
Engel LS, Buckley JP, Yang G, Liao LM, Satagopan J, Calafat AM, et al. Predictors and variability of repeat measurements of urinary phenols and parabens in a cohort of shanghai women and men. Environ Health Perspect. 2014;122:733–40.
CAS
Google Scholar
Ferguson KK, Colacino JA, Lewis RC, Meeker JD. Personal care product use among adults in NHANES: associations between urinary phthalate metabolites and phenols and use of mouthwash and sunscreen. J Expo Sci Environ Epidemiol. 2017;27:326–32.
Article
CAS
Google Scholar
Kaltiala-Heino R, Kosunen E, Rimpelä M. Pubertal timing, sexual behaviour and self-reported depression in middle adolescence. J Adolesc. 2003;26:531–45.
Article
Google Scholar
Stice E, Presnell K, Bearman SK. Relation of early menarche to depression, eating disorders, substance abuse, and comorbid psychopathology among adolescent girls. Dev Psychol. 2001;37:608–19.
Article
CAS
Google Scholar
Reardon LE, Leen-Feldner EW, Hayward C. A critical review of the empirical literature on the relation between anxiety and puberty. Clin Psychol Rev. 2009;29:1–23.
Article
Google Scholar
Blumenthal H, Leen-Feldner EW, Trainor CD, Babson KA, Bunaciu L. Interactive roles of pubertal timing and peer relations in predicting social anxiety symptoms among youth. J Adolesc Health Off Publ Soc Adolesc Med. 2009;44:401–3.
Article
Google Scholar