Oficina de Estudios y Políticas Agrarias (ODEPA). Agricultura chilena: Reflexiones y desafíos al 2030. Aporte del sector a la economía de Chile al 2030. 1st ed. Santiago de Chile. 2017. https://www.odepa.gob.cl/wp-content/uploads/2018/01/ReflexDesaf_2030-1.pdf. Accessed 27 May 2020.
Anríquez G, Foster W, Melo O, Subercaseaux JP, Valdés A. Evidencia y desafíos para el empleo estacional en la fruticultura en Chile. In: Temas de la Agenda Pública. Centro de Políticas Públicas UC. Pontificia Universidad Católica de Chile. 2016. https://politicaspublicas.uc.cl/wp-content//uploads/2016/01/N%C2%BA-85-Evidencia-y-desaf%C3%ADos-para-el-empleo-estacional-en-la-fruticultura-en-Chile.pdf. Accessed 18 May 2020.
Vallebuona C. Evaluación de resultados del programa de vigilancia de intoxicaciones agudas por plaguicidas de Chile. Thesis for Master Degree in Public Health. Public Health School. Faculty of Medicine, Universidad de Chile. 2015. http://bibliodigital.saludpublica.uchile.cl:8080/dspace/bitstream/handle/123456789/521/Tesis_Clelia%20Vallebuona.pdf?sequence=1&isAllowed=y. Accessed 21 Apr 2020.
Muñoz-Quezada MT, Lucero B, Iglesias V, Muñoz MP. Exposure pathways to pesticides in schoolchildren in the province of Talca. Chile Gac Sanit. 2014;28:190–5. https://doi.org/10.1016/j.gaceta.2014.01.003.
Article
Google Scholar
Muñoz-Quezada MT, Lucero B, Iglesias V, Muñoz MP, Achú E, Cornejo C, et al. Plaguicidas organofosforados y efecto neuropsicológico y motor en la Región del Maule, Chile. Gacet Sanit. 2016;30:227–31. https://doi.org/10.1016/j.gaceta.2016.01.006.
Article
Google Scholar
Muñoz-Quezada MT, Lucero B, Iglesias V, Levy K, Muñoz MP, Achú E, et al. Exposure to organophosphate (OP) pesticides and health conditions in agricultural and non-agricultural workers from Maule, Chile. Int J Environ Health Res. 2017;27:82–93. https://doi.org/10.1080/09603123.2016.1268679.
Article
CAS
Google Scholar
Ramírez-Santana M, Farías-Gómez C, Zúñiga-Venegas L, Sandoval R, Roeleveld N, Van der Velden K, Scheepers PTJ, et al. Biomonitoring of blood cholinesterases and acylpeptide hydrolase activities in rural inhabitants exposed to pesticides in the Coquimbo region of Chile. PLoS One. 2018. https://doi.org/10.1371/journal.pone.0196084.
Muñoz-Quezada MT, Lucero B, Bradman A, Steenland K, Zúñiga L, Calafat AM, Ospina M, Iglesias V, Muñoz MP, Buralli RJ, Fredes C, Gutiérrez JP. An educational intervention on the risk perception of pesticides exposure and organophosphate metabolites urinary concentrations in rural school children in Maule region, Chile. https://doi.org/10.1016/j.envres.2019.108554.
Fukuto TR. Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Perspect. 1990;87:245–54. https://doi.org/10.1289/ehp.9087245.
Article
CAS
Google Scholar
Nigg HN, Knaak JB. Blood Cholinesterases as human biomarkers of Organophosphorus pesticide exposure. In: Ware GW, editor. Reviews of environmental contamination and toxicology. Reviews of environmental contamination and toxicology, vol 163. New York: Springer; 2000. https://doi.org/10.1007/978-1-4757-6429-1_2.
Chapter
Google Scholar
Marrs TC. Organophosphate poisoning. Pharmacol Ther. 1993;58:51–66. https://doi.org/10.1016/0163-7258(93)90066-M.
Article
CAS
Google Scholar
Casida JE. Pest toxicology: the primary mechanisms of pesticide action. Chem Res Toxicol. 2009;22(4):609–19. https://doi.org/10.1021/tx8004949.
Article
CAS
Google Scholar
Chen WL, Sheets JJ, Nolan RJ, Mattsson JL. Human red blood cell acetylcholinesterase inhibition as the appropriate and conservative surrogate endpoint for establishing chlorpyrifos reference dose. Regul Toxicol Pharmacol. 1999;29(1):15–22. https://doi.org/10.1006/rtph.1998.1256.
Article
Google Scholar
Kapka-Skrzypczak L, Cyranka M, Skrzypczak M, Kruszewski M. Biomonitoring and biomarkers of organophosphate pesticides exposure - state of the art. Ann Agric Environ Med. 2011;18(2):294–303.
CAS
Google Scholar
Strelitz J, Engel LS, Keifer MC. Blood acetylcholinesterase and butyrylcholinesterase as biomarkers of cholinesterase depression among pesticide handlers. Occup Environ Med. 2014;71(12):842–7. https://doi.org/10.1136/oemed-2014-102315.
Article
Google Scholar
Richards PG, Johnson MK, Ray DE. Identification of acylpeptide hydrolase as a sensitive site for reaction with organophosphorus compounds and a potential target for cognitive enhancing drugs. Mol Pharmacol. 2000;58(3):577–83. https://doi.org/10.1124/mol.58.3.577.
Article
CAS
Google Scholar
Quistad GB, Klintenberg R, Casida JE. Blood acylpeptide hydrolase activity is a sensitive marker for exposure to some organophosphate toxicants. Toxicol Sci. 2005;86(2):291–9. https://doi.org/10.1093/toxsci/kfi195.
Article
CAS
Google Scholar
Kamel F, Hoppin JA. Association of pesticide exposure with neurologic dysfunction and disease. Env Health Perspect. 2004;112:950–8. https://doi.org/10.1289/ehp.7135.
Article
CAS
Google Scholar
Kamel F, Rowland AS, Park LP, et al. Neurobehavioral performance and work experience in Florida farmworkers. Environ Health Perspect. 2003;111(14):1765–72. https://doi.org/10.1289/ehp.6341.
Article
Google Scholar
Roldán-Tapia L, Parrón T, Sánchez SF. Neuropsychological effects of long-term exposure to organophosphate pesticides. Neurotoxicol Teratol. 2005;27:259–66. https://doi.org/10.1016/j.ntt.2004.12.002.
Article
CAS
Google Scholar
Ismail AA, Bodner TE, Rohlman DS. Neurobehavioral performance among agricultural workers and pesticide applicators: a meta-analytic study. Occup Environ Med. 2012;69(7):457–64. https://doi.org/10.1136/oemed-2011-100204.
Article
CAS
Google Scholar
Rohlman DS, Anger WK, Lein PJ. Correlating neurobehavioral performance with biomarkers of organophosphorous pesticide exposure. Neurotoxicology. 2011;32(2):268–76. https://doi.org/10.1016/j.neuro.2010.12.008.
Article
CAS
Google Scholar
Corral SA, de Angel V, Salas N, Zúñiga-Venegas L, Gaspar PA, Pancetti F. Cognitive impairment in agricultural workers and nearby residents exposed to pesticides in the Coquimbo region of Chile. Neurotoxicol Teratol. 2017;62:13–9. https://doi.org/10.1016/j.ntt.2017.05.003.
Article
CAS
Google Scholar
Ramírez-Santana M, Zúñiga L, Corral S, Sandoval R, Scheepers PT, Van der Velden K, et al. Assessing biomarkers and neuropsychological outcomes in rural populations exposed to organophosphate pesticides in Chile–study design and protocol. BMC Public Health. 2015;15:116. https://doi.org/10.1186/s12889-015-1463-5.
Article
CAS
Google Scholar
Anger WK. Neurobehavioural tests and systems to assess neurotoxic exposures in the workplace and community. Occup Environ Med. 2003;60(7):531–8. https://doi.org/10.1136/oem.60.7.531.
Article
Google Scholar
Koenker R. quantreg: Quantile Regression R-package, v5.54. 2019; https://CRAN.R-project.org/package=quantreg.
Jamal GA, Hansen S, Julu PO. Low level exposures to organophosphorus esters may cause neurotoxicity. Toxicology. 2002;181–182:23–33. https://doi.org/10.1016/S0300-483X(02)00447-X.
Article
Google Scholar
Ross SM, McManus IC, Harrison V, Mason O. Neurobehavioral problems following low-level exposure to organophosphate pesticides: a systematic and meta-analytic review. Clin Rev Toxicol. 2013;43:21–44. https://doi.org/10.3109/10408444.2012.738645.
Article
CAS
Google Scholar
Dardiotis E, Siokas V, Moza S, Kosmidis MH, Vogiatzi C, Aloizou AM, Geronikola N, Ntanasi E, Zalonis I, Yannakoulia M, Scarmeas N, Hadjigeorgiou GM. Pesticide exposure and cognitive function: results from the Hellenic longitudinal investigation of aging and diet (HELIAD). Environ Res. 2019;177:108632. https://doi.org/10.1016/j.envres.2019.108632.
Article
CAS
Google Scholar
Paul KC, Ling C, Lee A, To TM, Cockburn M, Haan M, Ritz B. Cognitive decline, mortality, and organophosphorus exposure in aging Mexican Americans. Environ Res. 2018;160:132–9. https://doi.org/10.1016/j.envres.2017.09.017.
Article
CAS
Google Scholar
Parrón T, Requena M, Hernández AF, Alarcón R. Association between environmental exposure to pesticides and neurodegenerative diseases. Toxicol Appl Pharmacol. 2011;256:379–85. https://doi.org/10.1016/j.taap.2011.05.006.
Article
CAS
Google Scholar
Suhartono S, Kartini A, Subagio HW, Budiyono B, Utari A, Suratman S, Sakundarno M. Pesticide Exposure and Thyroid Function in Elementary School Children Living in an Agricultural Area, Brebes District, Indonesia. Int J Occup Environ Med. 2018;9:137–44. https://doi.org/10.15171/ijoem.2018.1207.
Article
Google Scholar
Parrón T, Requena M, Hernández AF, Alarcón R. Environmental exposure to pesticides and cancer risk in multiple human organ systems. Toxicol Lett. 2014;230:157–65. https://doi.org/10.1016/j.toxlet.2013.11.009.
Article
CAS
Google Scholar
García J, Ventura MI, Requena M, Hernández AF, Parrón T, Alarcón R. Association of reproductive disorders and male congenital anomalies with environmental exposure to endocrine active pesticides. Reprod Toxicol. 2017;71:95–100. https://doi.org/10.1016/j.reprotox.2017.04.011.
Article
CAS
Google Scholar
Reiss R, Chang ET, Richardson RJ, Goodman M. A review of epidemiologic studies of low-level exposures to organophosphorus insecticides in non-occupational populations. Crit Rev Toxicol. 2015;45(7):531–641. https://doi.org/10.3109/10408444.2015.1043976.
Article
CAS
Google Scholar
Bjørling-Poulsen M, Andersen HR, Grandjean P. Potential developmental neurotoxicity of pesticides used in Europe. Environ Health. 2008;7:50. https://doi.org/10.1186/1476-069X-7-50.
Article
CAS
Google Scholar
Yolton K, Xu Y, Sucharew H, Succop P, Altaye M, Popelar A, Montesano MA, Calafat AM, Khoury JC. Impact of low-level gestational exposure to organophosphate pesticides on neurobehavior in early infancy: a prospective study. Environ Health. 2013;12(1):79. https://doi.org/10.1186/1476-069X-12-79.
Article
CAS
Google Scholar
Rohlman DS, Ismail AA, Rasoul GA, Bonner MR, Hendy O, Mara K, Wang K, Olson JR. A 10-month prospective study of organophosphorus pesticide exposure and neurobehavioral performance among adolescents in Egypt. Cortex. 2016;74:383–95. https://doi.org/10.1016/j.cortex.2015.09.011.
Article
Google Scholar
Moretto A, Colosio C. Biochemical and toxicological evidence of neurological effects of pesticides: the example of Parkinson's disease. Neurotoxicology. 2011;32(4):383–91. https://doi.org/10.1016/j.neuro.2011.03.004.
Article
CAS
Google Scholar
Sánchez-Santed F, Colomina MT, Herrero HE. Organophosphate pesticide exposure and neurodegeneration. Cortex. 2016;74:417–26. https://doi.org/10.1016/j.cortex.2015.10.003.
Article
Google Scholar
Roberts RO, Petersen RC. Predictors of early-onset cognitive impairment. Brain. 2014;137(Pt 5):1280–1. https://doi.org/10.1093/brain/awu089.
Article
Google Scholar
García-Rojo G, Gámiz F, Ampuero E, et al. In vivo sub-chronic treatment with Dichlorvos in young rats promotes synaptic plasticity and learning by a mechanism that involves Acylpeptide hydrolase instead of Acetylcholinesterase inhibition. Correlation with Endogenous β-Amyloid Levels. Front Pharmacol. 2017;8:483. https://doi.org/10.3389/fphar.2017.00483.
Article
CAS
Google Scholar
Ramírez-Santana M, Zúñiga-Venegas L, Corral S, et al. Association between cholinesterase's inhibition and cognitive impairment: a basis for prevention policies of environmental pollution by organophosphate and carbamate pesticides in Chile. Environ Res. 2020;186:109539. https://doi.org/10.1016/j.envres.2020.109539.
Article
CAS
Google Scholar
Lotti M. Cholinesterase inhibition: complexities in interpretation. Clin Chem. 1995;41(12 Pt 2):1814–8.
Article
CAS
Google Scholar
Nolan RJ, Rick DL, Freshour NL, Saunders JH. Chlorpyrifos: pharmacokinetics in human volunteers. Toxicol Appl Pharmacol. 1984;73(1):8–15. https://doi.org/10.1016/0041-008X(84)90046-2.
Article
CAS
Google Scholar
Lockridge O, Norgren RB Jr, Johnson RC, Blake TA. Naturally occurring genetic variants of human Acetylcholinesterase and Butyrylcholinesterase and their potential impact on the risk of toxicity from cholinesterase inhibitors. Chem Res Toxicol. 2016;29(9):1381–92. https://doi.org/10.1021/acs.chemrestox.6b00228.
Article
CAS
Google Scholar
van Gemert M, Dourson M, Moretto A, Watson M. Use of human data for the derivation of a reference dose for chlorpyrifos. Regul Toxicol Pharmacol. 2001;33(2):110–6. https://doi.org/10.1006/rtph.2000.1447.
Article
CAS
Google Scholar
Tago H, Maeda T, McGeer PL, Kimura H. Butyrylcholinesterase-rich neurons in rat brain demonstrated by a sensitive histochemical method. J Comp Neurol. 1992;325(2):301–12. https://doi.org/10.1002/cne.903250212.
Article
CAS
Google Scholar
Darvesh S, Hopkins DA. Differential distribution of butyrylcholinesterase and acetylcholinesterase in the human thalamus. J Comp Neurol. 2003;463(1):25–43. https://doi.org/10.1002/cne.10751.
Article
CAS
Google Scholar
Manoharan I, Boopathy R, Darvesh S, Lockridge O. A medical health report on individuals with silent butyrylcholinesterase in the Vysya community of India. Clin Chim Acta. 2007;378(1–2):128–35. https://doi.org/10.1016/j.cca.2006.11.005.
Article
CAS
Google Scholar
Lein PJ, Bonner MR, Farahat FM, et al. Experimental strategy for translational studies of organophosphorus pesticide neurotoxicity based on real-world occupational exposures to chlorpyrifos. Neurotoxicology. 2012;33(4):660–8. https://doi.org/10.1016/j.neuro.2011.12.017.
Article
CAS
Google Scholar
Anger WK, Farahat FM, Lein PJ, et al. Magnitude of behavioral deficits varies with job-related chlorpyrifos exposure levels among Egyptian pesticide workers. Neurotoxicology. 2020;77:216–30. https://doi.org/10.1016/j.neuro.2020.01.012.
Article
CAS
Google Scholar
Naughton SX, Terry AV Jr. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology. 2018;408:101–12. https://doi.org/10.1016/j.tox.2018.08.011.
Article
CAS
Google Scholar
Shimizu K, Kiuchi Y, Ando K, Hayakawa M, Kikugawa K. Coordination of oxidized protein hydrolase and the proteasome in the clearance of cytotoxic denatured proteins. Biochem Biophys Res Commun. 2004;324(1):140–6. https://doi.org/10.1016/j.bbrc.2004.08.231.
Article
CAS
Google Scholar
Palmieri G, Bergamo P, Luini A, et al. Acylpeptide hydrolase inhibition as targeted strategy to induce proteasomal down-regulation. PLoS One. 2011;6(10):e25888. https://doi.org/10.1371/journal.pone.0025888.
Article
CAS
Google Scholar
Fujino T, Watanabe K, Beppu M, Kikugawa K, Yasuda H. Identification of oxidized protein hydrolase of human erythrocytes as acylpeptide hydrolase. Biochim Biophys Acta. 2000;1478(1):102–12. https://doi.org/10.1016/S0167-4838(00)00004-2.
Article
CAS
Google Scholar
Parrón T, Hernández AF, Pla A, Villanueva E. Clinical and biochemical changes in greenhouse sprayers chronically exposed to pesticides. Hum Exp Toxicol. 1996;15(12):957–63. https://doi.org/10.1177/096032719601501203.
Article
Google Scholar
Roldan-Tapia L, Nieto-Escamez FA, del Aguila EM, Laynez F, Parron T, Sanchez-Santed F. Neuropsychological sequelae from acute poisoning and long-term exposure to carbamate and organophosphate pesticides. Neurotoxicol Teratol. 2006;28(6):694–703. https://doi.org/10.1016/j.ntt.2006.07.004.
Article
CAS
Google Scholar
Harrison V, Mackenzie RS. Anxiety and depression following cumulative low-level exposure to organophosphate pesticides. Environ Res. 2016;151:528–36. https://doi.org/10.1016/j.envres.2016.08.020.
Article
CAS
Google Scholar
Fiedler N, Rohitrattana J, Siriwong W, Suttiwan P, Ohman Strickland P, Ryan PB, Rohlman DS, Panuwet P, Barr DB, Robson MG. Neurobehavioral effects of exposure to organophosphates and pyrethroid pesticides among Thai children. Neurotoxicology. 2015;48:90–9. https://doi.org/10.1016/j.neuro.2015.02.003.
Article
CAS
Google Scholar
Bloem B, Poorthuis RB, Mansvelder HD. Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity. Front Neural Circuits. 2014;8:17. https://doi.org/10.3389/fncir.2014.00017.
Article
CAS
Google Scholar
González-Hernández J, Aguilar L, Oporto S, Araneda L, Vásquez M, Von Bernhardi R. Normalización del “Mini-Mental State Examination” según edad y educación, para la población de Santiago de Chile. Revista Memoriza.com. 2009;3:23–34.
Google Scholar
Rosas R, Tenorio M, Pizarro M, Cumsille P, Bosch A, Arancibia S, et al. Estandarización de la Escala Wechsler de Inteligencia para Adultos: cuarta edición en Chile. Psykhe. 2014;23:1–18. https://doi.org/10.7764/psykhe.23.1.529.
Article
Google Scholar