Cantonwine D, Hu H, Sanchez BN, Lamadrid-Figueroa H, Smith D, Ettinger AS, Mercado-Garcia A, Hernandez-Avila M, Wright RO, Tellez-Rojo MM. Critical windows of fetal lead exposure: adverse impacts on length of gestation and risk of premature delivery. J Occup Environ Med. 2010;52(11):1106–11.
Article
CAS
Google Scholar
Valeri L, Mazumdar MM, Bobb JF, Claus Henn B, Rodrigues E, Sharif OIA, Kile ML, Quamruzzaman Q, Afroz S, Golam M, et al. The joint effect of prenatal exposure to metal mixtures on neurodevelopmental outcomes at 20-40 months of age: evidence from rural Bangladesh. Environ Health Perspect. 2017;125(6):067015.
Article
Google Scholar
Rodrigues EG, Bellinger DC, Valeri L, Hasan MOSI, Quamruzzaman Q, Golam M, Kile ML, Christiani DC, Wright RO, Mazumdar M. Neurodevelopmental outcomes among 2- to 3-year-old children in Bangladesh with elevated blood lead and exposure to arsenic and manganese in drinking water. Environ Health. 2016;15(1):44.
Article
CAS
Google Scholar
Claus Henn B, Ettinger AS, Hopkins MR, Jim R, Amarasiriwardena C, Christiani DC, Coull BA, Bellinger DC, Wright RO. Prenatal arsenic exposure and birth outcomes among a population residing near a mining-related superfund site. Environ Health Perspect. 2016;124(8):1308–15.
Article
CAS
Google Scholar
Soto-Pena GA, Vega L. Arsenic interferes with the signaling transduction pathway of T cell receptor activation by increasing basal and induced phosphorylation of Lck and Fyn in spleen cells. Toxicol Appl Pharmacol. 2008;230(2):216–26.
Article
CAS
Google Scholar
Nain S, Smits JE. Pathological, immunological and biochemical markers of subchronic arsenic toxicity in rats. Environ Toxicol. 2012;27(4):244–54.
Article
CAS
Google Scholar
Kozul CD, Ely KH, Enelow RI, Hamilton JW. Low-dose arsenic compromises the immune response to influenza a infection in vivo. Environ Health Perspect. 2009;117(9):1441–7.
Article
CAS
Google Scholar
Attreed SE, Navas-Acien A, Heaney CD. Arsenic and immune response to infection during pregnancy and early life. Curr Environ Health Rep. 2017;4(2):229–43.
Article
CAS
Google Scholar
Ahmed S, Moore SE, Kippler M, Gardner R, Hawlader MD, Wagatsuma Y, Raqib R, Vahter M. Arsenic exposure and cell-mediated immunity in pre-school children in rural Bangladesh. Toxicol Sci. 2014;141(1):166–75.
Article
CAS
Google Scholar
Welch BM, Branscum A, Ahmed SM, Hystad P, Smit E, Afroz S, Megowan M, Golam M, Ibne Hasan MOS, Rahman ML, et al. Arsenic exposure and serum antibody concentrations to diphtheria and tetanus toxoid in children at age 5: a prospective birth cohort in Bangladesh. Environ Int. 2019;127:810–8.
Article
CAS
Google Scholar
Raqib R, Ahmed S, Ahsan KB, Kippler M, Akhtar E, Roy AK, Lu Y, Arifeen SE, Wagatsuma Y, Vahter M. Humoral immunity in arsenic-exposed children in rural Bangladesh: Total Immunoglobulins and vaccine-specific antibodies. Environ Health Perspect. 2017;125(6):067006.
Article
Google Scholar
Saha A, Chowdhury MI, Nazim M, Alam MM, Ahmed T, Hossain MB, Hore SK, Sultana GN, Svennerholm AM, Qadri F. Vaccine specific immune response to an inactivated oral cholera vaccine and EPI vaccines in a high and low arsenic area in Bangladeshi children. Vaccine. 2013;31(4):647–52.
Article
CAS
Google Scholar
Kehl-Fie TE, Skaar EP. Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol. 2010;14(2):218–24.
Article
CAS
Google Scholar
Srisuchart B, Taylor MJ, Sharma RP. Alteration of humoral and cellular immunity in manganese chloride-treated mice. J Toxicol Environ Health. 1987;22(1):91–9.
Article
CAS
Google Scholar
Pan S, Zhang K, Ding X, Wang J, Peng H, Zeng Q, Xuan Y, Su Z, Wu B, Bai S. Effect of high dietary manganese on the immune responses of broilers following Oral Salmonella typhimurium inoculation. Biol Trace Elem Res. 2018;181(2):347–60.
Article
CAS
Google Scholar
Maigetter RZ, Ehrlich R, Fenters JD, Gardner DE. Potentiating effects of manganese dioxide on experimental respiratory infections. Environ Res. 1976;11(3):386–91.
Article
CAS
Google Scholar
Boshnakova E, Divanyan H, Zlatarov I, Marovsky S, Kisyova K, Zanev D, Karev G, Marinova T. Immunological screening of welders. J Hyg Epidemiol Microbiol Immunol. 1989;33(4):379–82.
CAS
Google Scholar
Nakata A, Araki S, Park SH, Park JT, Kim DS, Park HC, Yokoyama K. Decreases in CD8+ T, naive (CD4+CD45RA+) T, and B (CD19+) lymphocytes by exposure to manganese fume. Ind Health. 2006;44(4):592–7.
Article
CAS
Google Scholar
Rabinowitz MB, Allred EN, Bellinger DC, Leviton A, Needleman HL. Lead and childhood propensity to infectious and allergic disorders: is there an association? Bull Environ Contam Toxicol. 1990;44(5):657–60.
Article
CAS
Google Scholar
Dyatlov VA, Lawrence DA. Neonatal lead exposure potentiates sickness behavior induced by listeria monocytogenes infection of mice. Brain Behav Immun. 2002;16(4):477–92.
Article
CAS
Google Scholar
Gupta P, Husain MM, Shankar R, Maheshwari RK. Lead exposure enhances virus multiplication and pathogenesis in mice. Vet Hum Toxicol. 2002;44(4):205–10.
CAS
Google Scholar
Lawrence DA. In vivo and in vitro effects of lead on humoral and cell-mediated immunity. Infect Immun. 1981;31(1):136–43.
Article
CAS
Google Scholar
Luster MI, Faith RE, Kimmel CA. Depression of humoral immunity in rats following chronic developmental lead exposure. J Environ Pathol Toxicol. 1978;1(4):397–402.
CAS
Google Scholar
Dietert RR, Lee JE, Hussain I, Piepenbrink M. Developmental immunotoxicology of lead. Toxicol Appl Pharm. 2004;198(2):86–94.
Article
CAS
Google Scholar
Lutz PM, Wilson TJ, Ireland J, Jones AL, Gorman JS, Gale NL, Johnson JC, Hewett JE. Elevated immunoglobulin E (IgE) levels in children with exposure to environmental lead. Toxicology. 1999;134(1):63–78.
Article
CAS
Google Scholar
Sun L, Hu J, Zhao Z, Li L, Cheng H. Influence of exposure to environmental lead on serum immunoglobulin in preschool children. Environ Res. 2003;92(2):124–8.
Article
CAS
Google Scholar
Karmaus W, Brooks KR, Nebe T, Witten J, Obi-Osius N, Kruse H. Immune function biomarkers in children exposed to lead and organochlorine compounds: a cross-sectional study. Environ Health. 2005;4(1):5.
Article
Google Scholar
Jedrychowski W, Perera F, Maugeri U, Miller RL, Rembiasz M, Flak E, Mroz E, Majewska R, Zembala M. Intrauterine exposure to lead may enhance sensitization to common inhalant allergens in early childhood: a prospective prebirth cohort study. Environ Res. 2011;111(1):119–24.
Article
CAS
Google Scholar
Lutz PM, Bauer S, Gale NL, Hewett J, Phillips PE, Looney FM, Bengsch H. Immunity in children with exposure to environmental lead: II. Effects on humoral immunity. Environ Geochem Health. 1994;16(3–4):179–89.
Article
CAS
Google Scholar
Xu X, Chen X, Zhang J, Guo P, Fu T, Dai Y, Lin SL, Huo X. Decreased blood hepatitis B surface antibody levels linked to e-waste lead exposure in preschool children. J Hazard Mater. 2015;298:122–8.
Article
CAS
Google Scholar
UNICEF. Bangladesh Drinking Water Quality Survey 2009. In: Bangladesh Bureau of Statistics; 2011.
Google Scholar
Attina TM, Trasande L. Economic costs of childhood lead exposure in low- and middle-income countries. Environ Health Perspect. 2013;121(9):1097–102.
Article
Google Scholar
Kile M, Wright R, Amarasiriwardena C, Quamruzzaman Q, Rahman M, Mahiuddin G, Christiani D. Maternal and umbilical cord blood levels of arsenic, cadmium, manganese, and Lead in rural Bangladesh. Epidemiology. 2009;20(6):S149–50.
Article
Google Scholar
Kinniburgh DG, Smedley PL. Arsenic contamination of groundwater in Bangladesh. Keyworth, British Geological Survey; 2001.
UNICEF. Bangladesh MICS 2012–2013 Water Quality Thematic Report. In: Bangladesh Bureau of Statistics; 2018.
Google Scholar
Hasan S, Ali MA. Occurence of manganese in groundwater of Bangladesh and its implications on safe water supply. J Civ Eng. 2010;32.
Mitra AK, Haque A, Islam M, Bashar SA. Lead poisoning: an alarming public health problem in Bangladesh. Int J Environ Res Public Health. 2009;6.
Mitra AK, Ahua E, Saha PK. Prevalence of and risk factors for lead poisoning in young children in Bangladesh. J Health Popul Nutr. 2012;30(4):404–9.
Google Scholar
(GED) GED. Millenium Development Goals: Bangladesh Progress Report 2015. In: Bangladesh Plannning Commission, Government of the People's Republic of Bangladesh; 2015.
Google Scholar
Luby SP, Brooks WA, Zaman K, Hossain S, Ahmed T. Infectious diseases and vaccine sciences: strategic directions. J Health Popul Nutr. 2008;26(3):295–310.
Google Scholar
Grandjean P, Andersen EW, Budtz-Jorgensen E, Nielsen F, Molbak K, Weihe P, Heilmann C. Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA. 2012;307(4):391–7.
Article
CAS
Google Scholar
Luster MI, Johnson VJ, Yucesoy B, Simeonova PP. Biomarkers to assess potential developmental immunotoxicity in children. Toxicol Appl Pharmacol. 2005;206(2):229–36.
Article
CAS
Google Scholar
Kile ML, Rodrigues EG, Mazumdar M, Dobson CB, Diao N, Golam M, Quamruzzaman Q, Rahman M, Christiani DC. A prospective cohort study of the association between drinking water arsenic exposure and self-reported maternal health symptoms during pregnancy in Bangladesh. Environ Health. 2014;13(1):29.
Article
CAS
Google Scholar
WHO. EPI Fact Sheet, Bangladesh 2013. In: WHO Regional Office for South-East Asia; 2014.
Google Scholar
WHO. Tetanus vaccines: WHO position paper - February 2017. Wkly Epidemiol Rec. 2017;92(6):53–76.
Google Scholar
WHO. Diphtheria vaccine: WHO position paper - August 2017. In: Wkly Epidemiol Rec: World Health Organization; 2017. p. 417–36.
Sharma R, Pervez S. Toxic metals status in human blood and breast milk samples in an integrated steel plant environment in Central India. Environ Geochem Health. 2005;27(1):39–45.
Article
CAS
Google Scholar
Concha G, Vogler G, Nermell B, Vahter M. Low-level arsenic excretion in breast milk of native Andean women exposed to high levels of arsenic in the drinking water. Int Arch Occup Environ Health. 1998;71(1):42–6.
Article
CAS
Google Scholar
ATSDR. Toxicological Profile for Manganese: U.S. Department of Health and Human Services; 2012.
Brown TA. Confirmatory factor analysis for applied research: Guilford publications; 2014.
Sánchez B, Budtz-Jørgensen E, Ryan L, Hu H. Structural equation models: a review with applications to environmental epidemiology. J Am Stat Assoc. 2005;100(472):1443–55.
Article
CAS
Google Scholar
Mogensen UB, Grandjean P, Heilmann C, Nielsen F, Weihe P, Budtz-Jorgensen E. Structural equation modeling of immunotoxicity associated with exposure to perfluorinated alkylates. Environ Health. 2015;14:47.
Article
CAS
Google Scholar
Enders CK, Bandalos DL. The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Struct Equ Modeling. 2001;8(3):430–57.
Article
Google Scholar
Rosseel Y. Lavaan: an R package for structural equation modeling. J Stat Softw. 2012;48(2):1–36.
Article
Google Scholar
Mishra KP, Chauhan UK, Naik S. Effect of lead exposure on serum immunoglobulins and reactive nitrogen and oxygen intermediate. Hum Exp Toxicol. 2006;25(11):661–5.
Article
CAS
Google Scholar
Reigart JR, Graber CD. Evaluation of the humoral immune response of children with low lead exposure. Bull Environ Contam Toxicol. 1976;16(1):112–7.
Article
CAS
Google Scholar
Sarasua SM, Vogt RF, Henderson LO, Jones PA, Lybarger JA. Serum immunoglobulins and lymphocyte subset distributions in children and adults living in communities assessed for lead and cadmium exposure. J Toxicol Environ Health A. 2000;60(1):1–15.
Article
CAS
Google Scholar
Miller TE, Golemboski KA, Ha RS, Bunn T, Sanders FS, Dietert RR. Developmental exposure to lead causes persistent immunotoxicity in Fischer 344 rats. Toxicol Sci. 1998;42(2):129–35.
Article
CAS
Google Scholar
ATSDR. Toxicological Profile for Lead. Atlanta; 2007.
Boskabady M, Marefati N, Farkhondeh T, Shakeri F, Farshbaf A, Boskabady MH. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environ Int. 2018;120:404–20.
Article
CAS
Google Scholar
Metryka E, Chibowska K, Gutowska I, Falkowska A, Kupnicka P, Barczak K, Chlubek D, Baranowska-Bosiacka I. Lead (Pb) Exposure Enhances Expression of Factors Associated with Inflammation. Int J Mol Sci. 2018;19(6).
McCabe MJ Jr, Lawrence DA. Lead, a major environmental pollutant, is immunomodulatory by its differential effects on CD4+ T cells subsets. Toxicol Appl Pharmacol. 1991;111(1):13–23.
Article
CAS
Google Scholar
Hsiao CL, Wu KH, Wan KS. Effects of environmental lead exposure on T-helper cell-specific cytokines in children. J Immunotoxicol. 2011;8(4):284–7.
Article
CAS
Google Scholar
Travers P, Walport M, Janeway C, Murphy K. Janeway's immunobiology. 8th ed. New York: Garland Science; 2012.
Google Scholar
Bunn TL, Parsons PJ, Kao E, Dietert RR. Exposure to lead during critical windows of embryonic development: differential immunotoxic outcome based on stage of exposure and gender. Toxicol Sci. 2001;64(1):57–66.
Article
CAS
Google Scholar
Valentino M, Rapisarda V, Santarelli L, Bracci M, Scorcelletti M, Di Lorenzo L, Cassano F, Soleo L. Effect of lead on the levels of some immunoregulatory cytokines in occupationally exposed workers. Hum Exp Toxicol. 2007;26(7):551–6.
Article
CAS
Google Scholar
Gao D, Mondal TK, Lawrence DA. Lead effects on development and function of bone marrow-derived dendritic cells promote Th2 immune responses. Toxicol Appl Pharmacol. 2007;222(1):69–79.
Article
CAS
Google Scholar
Malisan F, Briere F, Bridon JM, Harindranath N, Mills FC, Max EE, Banchereau J, Martinez-Valdez H. Interleukin-10 induces immunoglobulin G isotype switch recombination in human CD40-activated naive B lymphocytes. J Exp Med. 1996;183(3):937–47.
Article
CAS
Google Scholar
Iavicoli I, Carelli G, Stanek EJ 3rd, Castellino N, Calabrese EJ. Below background levels of blood lead impact cytokine levels in male and female mice. Toxicol Appl Pharmacol. 2006;210(1–2):94–9.
Article
CAS
Google Scholar
Patra PH, Bandyopadhyay S, Bandyopadhyay MC, Mandal TK. Immunotoxic and genotoxic potential of arsenic and its chemical species in goats. Toxicol Int. 2013;20(1):6–10.
Article
CAS
Google Scholar
Cardenas A, Smit E, Welch BM, Bethel J, Kile ML. Cross sectional association of arsenic and seroprevalence of hepatitis B infection in the United States (NHANES 2003-2014). Environ Res. 2018;166:570–6.
Article
CAS
Google Scholar
Cardenas A, Smit E, Houseman EA, Kerkvliet NI, Bethel JW, Kile ML. Arsenic exposure and prevalence of the varicella zoster virus in the United States: NHANES (2003-2004 and 2009-2010). Environ Health Persp. 2015;123(6):590–6.
Article
CAS
Google Scholar
Cardenas A, Smit E, Bethel JW, Houseman EA, Kile ML. Arsenic exposure and the seroprevalence of total hepatitis a antibodies in the US population: NHANES, 2003-2012. Epidemiol Infect. 2016;144(8):1641–51.
Article
CAS
Google Scholar
Heaney CD, Kmush B, Navas-Acien A, Francesconi K, Gossler W, Schulze K, Fairweather D, Mehra S, Nelson KE, Klein SL, et al. Arsenic exposure and hepatitis E virus infection during pregnancy. Environ Res. 2015;142:273–80.
Article
CAS
Google Scholar
Ser PH, Banu B, Jebunnesa F, Fatema K, Rosy N, Yasmin R, Furusawa H, Ali L, Ahmad SA, Watanabe C. Arsenic exposure increases maternal but not cord serum IgG in Bangladesh. Pediatr Int. 2015;57(1):119–25.
Article
CAS
Google Scholar
Islam LN, Nabi AH, Rahman MM, Zahid MS. Association of respiratory complications and elevated serum immunoglobulins with drinking water arsenic toxicity in human. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2007;42(12):1807–14.
Article
CAS
Google Scholar
Chatterjee A, Chatterji U. Arsenic abrogates the estrogen-signaling pathway in the rat uterus. Reprod Biol Endocrinol. 2010;8:80.
Article
CAS
Google Scholar
Davey JC, Bodwell JE, Gosse JA, Hamilton JW. Arsenic as an endocrine disruptor: effects of arsenic on estrogen receptor-mediated gene expression in vivo and in cell culture. Toxicol Sci. 2007;98(1):75–86.
Article
CAS
Google Scholar
Ronis MJ, Badger TM, Shema SJ, Roberson PK, Shaikh F. Reproductive toxicity and growth effects in rats exposed to lead at different periods during development. Toxicol Appl Pharmacol. 1996;136(2):361–71.
Article
CAS
Google Scholar
Selevan SG, Rice DC, Hogan KA, Euling SY, Pfahles-Hutchens A, Bethel J. Blood lead concentration and delayed puberty in girls. N Engl J Med. 2003;348(16):1527–36.
Article
CAS
Google Scholar
Haschek WM, Rousseaux CG, Wallig MA. Immune System. In: Fundamentals of Toxicologic Pathology. 2nd ed. Amsterdam; 2010. p. 451–89.
Bouman A, Heineman MJ, Faas MM. Sex hormones and the immune response in humans. Hum Reprod Update. 2005;11(4):411–23.
Article
CAS
Google Scholar
(WHO) WHO. Guidelines for drinking-water quality. 4th ed. Geneva: WHO; 2011.
Google Scholar
Frisbie SH, Mitchell EJ, Sarkar B. Urgent need to reevaluate the latest World Health Organization guidelines for toxic inorganic substances in drinking water. Environ Health. 2015;14:63.
Article
CAS
Google Scholar
Davidsson L, Almgren A, Juillerat MA, Hurrell RF. Manganese absorption in humans: the effect of phytic acid and ascorbic acid in soy formula. Am J Clin Nutr. 1995;62(5):984–7.
Article
CAS
Google Scholar
Lawrence DA, McCabe MJ Jr. Immunomodulation by metals. Int Immunopharmacol. 2002;2(2–3):293–302.
Article
CAS
Google Scholar
Soto-Pena GA, Luna AL, Acosta-Saavedra L, Conde P, Lopez-Carrillo L, Cebrian ME, Bastida M, Calderon-Aranda ES, Vega L. Assessment of lymphocyte subpopulations and cytokine secretion in children exposed to arsenic. FASEB J. 2006;20(6):779–81.
Article
CAS
Google Scholar
Kile ML, Houseman EA, Baccarelli AA, Quamruzzaman Q, Rahman M, Mostofa G, Cardenas A, Wright RO, Christiani DC. Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood. Epigenetics. 2014;9(5):774–82.
Article
CAS
Google Scholar
Wikby A, Maxson P, Olsson J, Johansson B, Ferguson FG. Changes in CD8 and CD4 lymphocyte subsets, T cell proliferation responses and non-survival in the very old: the Swedish longitudinal OCTO-immune study. Mech Ageing Dev. 1998;102(2–3):187–98.
Article
CAS
Google Scholar
Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect. 2014;122(3):284–91.
Article
CAS
Google Scholar
Wu S, Hivert MF, Cardenas A, Zhong J, Rifas-Shiman SL, Agha G, Colicino E, Just AC, Amarasiriwardena C, Lin X, et al. Exposure to low levels of Lead in utero and umbilical cord blood DNA methylation in project viva: an Epigenome-wide association study. Environ Health Perspect. 2017;125(8):087019.
Article
Google Scholar
Gao B, Chi L, Mahbub R, Bian X, Tu P, Ru H, Lu K. Multi-Omics reveals that Lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways. Chem Res Toxicol. 2017;30(4):996–1005.
Article
CAS
Google Scholar
Krachler M, Rossipal E, Micetic-Turk D. Trace element transfer from the mother to the newborn--investigations on triplets of colostrum, maternal and umbilical cord sera. Eur J Clin Nutr. 1999;53(6):486–94.
Article
CAS
Google Scholar
Concha G, Vogler G, Lezcano D, Nermell B, Vahter M. Exposure to inorganic arsenic metabolites during early human development. Toxicol Sci. 1998;44(2):185–90.
Article
CAS
Google Scholar
Goyer RA. Transplacental transport of lead. Environ Health Perspect. 1990;89:101–5.
Article
CAS
Google Scholar
Kippler M, Skroder H, Rahman SM, Tofail F, Vahter M. Elevated childhood exposure to arsenic despite reduced drinking water concentrations--a longitudinal cohort study in rural Bangladesh. Environ Int. 2016;86:119–25.
Article
CAS
Google Scholar
Weisskopf MG, Seals RM, Webster TF. Bias amplification in epidemiologic analysis of exposure to mixtures. Environ Health Perspect. 2018;126(4):047003.
Article
Google Scholar