Uwimana A, Legrand E, Stokes BH, Ndikumana JM, Warsame M, Umulisa N, et al. Emergence and clonal expansion of in vitro artemisinin-resistant plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med. 2020;26(10):1602–8. https://doi.org/10.1038/s41591-020-1005-2.
Article
CAS
Google Scholar
Hu X, Li S, Cirillo P, Krigbaum N, Tran V, Ishikawa T, la Merrill MA, Jones DP, Cohn B. Metabolome wide association study of serum DDT and DDE in pregnancy and early postpartum. Reprod Toxicol. 2020;92:129–37. https://doi.org/10.1016/j.reprotox.2019.05.059.
Article
CAS
Google Scholar
Nadal A, Quesada I, Tuduri E, Nogueiras R, Alonso-Magdalena P. Endocrine-disrupting chemicals and the regulation of energy balance. Nat Rev Endocrinol. 2017;13(9):536–46. https://doi.org/10.1038/nrendo.2017.51.
Article
CAS
Google Scholar
Di Cesare M, Soric M, Bovet P, Miranda JJ, Bhutta Z, Stevens GA, et al. The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. BMC Med. 2019;17(1):212. https://doi.org/10.1186/s12916-019-1449-8.
Article
Google Scholar
Baillie-Hamilton PF. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med. 2002;8(2):185–92. https://doi.org/10.1089/107555302317371479.
Article
Google Scholar
Cano-Sancho G, Salmon AG, La Merrill MA. Association between Exposure to p,p'-DDT and Its Metabolite p,p'-DDE with Obesity: Integrated Systematic Review and Meta-Analysis. Environ Health Perspect 2017;125(9):096002, Association between Exposure top,p′-DDT and Its Metabolitep,p′-DDE with Obesity: Integrated Systematic Review and Meta-Analysis, DOI: https://doi.org/10.1289/EHP527.
Song Y, Chou EL, Baecker A, You NC, Song Y, Sun Q, et al. Endocrine-disrupting chemicals, risk of type 2 diabetes, and diabetes-related metabolic traits: a systematic review and meta-analysis. J Diabetes. 2016;8(4):516–32. https://doi.org/10.1111/1753-0407.12325.
Article
CAS
Google Scholar
La Merrill M, Karey E, Moshier E, Lindtner C, La Frano MR, Newman JW, et al. Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring. PLoS One. 2014;9(7):e103337. https://doi.org/10.1371/journal.pone.0103337.
Article
CAS
Google Scholar
Landsberg L. Core temperature: a forgotten variable in energy expenditure and obesity? Obes Rev. 2012;13(Suppl 2):97–104. https://doi.org/10.1111/j.1467-789X.2012.01040.x.
Article
Google Scholar
Ouellet V, Routhier-Labadie A, Bellemare W, Lakhal-Chaieb L, Turcotte E, Carpentier AC, et al. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J Clin Endocrinol Metab. 2011;96(1):192–9. https://doi.org/10.1210/jc.2010-0989.
Article
CAS
Google Scholar
Matsushita M, Yoneshiro T, Aita S, Kameya T, Sugie H, Saito M. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int J Obes. 2014;38(6):812–7. https://doi.org/10.1038/ijo.2013.206.
Article
CAS
Google Scholar
Chiang SH, Bazuine M, Lumeng CN, Geletka LM, Mowers J, White NM, Ma JT, Zhou J, Qi N, Westcott D, Delproposto JB, Blackwell TS, Yull FE, Saltiel AR. The protein kinase IKKepsilon regulates energy balance in obese mice. Cell. 2009;138(5):961–75. https://doi.org/10.1016/j.cell.2009.06.046.
Article
CAS
Google Scholar
Klaus S, Munzberg H, Truloff C, Heldmaier G. Physiology of transgenic mice with brown fat ablation: obesity is due to lowered body temperature. Am J Phys. 1998;274(2):R287–93.
CAS
Google Scholar
Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujisaki M. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58(7):1526–31. https://doi.org/10.2337/db09-0530.
Article
CAS
Google Scholar
Liu X, Wang S, You Y, Meng M, Zheng Z, Dong M, Lin J, Zhao Q, Zhang C, Yuan X, Hu T, Liu L, Huang Y, Zhang L, Wang D, Zhan J, Jong Lee H, Speakman JR, Jin W. Brown adipose tissue transplantation reverses obesity in Ob/Ob mice. Endocrinology. 2015;156(7):2461–9. https://doi.org/10.1210/en.2014-1598.
Article
CAS
Google Scholar
Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359. https://doi.org/10.1152/physrev.00015.2003.
Article
CAS
Google Scholar
Pestana D, Teixeira D, Meireles M, Marques C, Norberto S, Sa C, et al. Adipose tissue dysfunction as a central mechanism leading to dysmetabolic obesity triggered by chronic exposure to p,p'-DDE. Sci Rep 2017;7(1):2738, Adipose tissue dysfunction as a central mechanism leading to dysmetabolic obesity triggered by chronic exposure to p,p’-DDE, DOI: https://doi.org/10.1038/s41598-017-02885-9.
Cypess AM, Kahn CR. Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes. 2010;17(2):143–9. https://doi.org/10.1097/MED.0b013e328337a81f.
Article
CAS
Google Scholar
Ukropec J, Ukropcova B, Kurdiova T, Gasperikova D, Klimes I. Adipose tissue and skeletal muscle plasticity modulates metabolic health. Arch Physiol Biochem. 2008;114(5):357–68. https://doi.org/10.1080/13813450802535812.
Article
CAS
Google Scholar
Zhorov BS, Dong K. Elucidation of pyrethroid and DDT receptor sites in the voltage-gated sodium channel. Neurotoxicology. 2017;60:171–7. https://doi.org/10.1016/j.neuro.2016.08.013.
Article
CAS
Google Scholar
Yaglova NV, Tsomartova DA, Yaglov VV. Effect of prenatal and postnatal exposure to low doses of DDT on catecholamine secretion in rats in different period of ontogeny. Bull Exp Biol Med. 2017;163(4):422–4. https://doi.org/10.1007/s10517-017-3819-6.
Article
CAS
Google Scholar
Ferguson CA, Audesirk G. Effects of DDT and permethrin on neurite growth in cultured neurons of chick embryo brain and Lymnaea stagnalis. Toxicol in Vitro. 1990;4(1):23–30. https://doi.org/10.1016/0887-2333(90)90005-E.
Article
CAS
Google Scholar
Shinomiya N, Shinomiya M. Dichlorodiphenyltrichloroethane suppresses neurite outgrowth and induces apoptosis in PC12 pheochromocytoma cells. Toxicol Lett. 2003;137(3):175–83. https://doi.org/10.1016/S0378-4274(02)00401-0.
Article
CAS
Google Scholar
Wolf Y, Boura-Halfon S, Cortese N, Haimon Z, Sar Shalom H, Kuperman Y, Kalchenko V, Brandis A, David E, Segal-Hayoun Y, Chappell-Maor L, Yaron A, Jung S. Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nat Immunol. 2017;18(6):665–74. https://doi.org/10.1038/ni.3746.
Article
CAS
Google Scholar
Schulz TJ, Huang P, Huang TL, Xue R, McDougall LE, Townsend KL, et al. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature. 2013;495(7441):379–83. https://doi.org/10.1038/nature11943.
Article
CAS
Google Scholar
Pulinilkunnil T, He H, Kong D, Asakura K, Peroni OD, Lee A, Kahn BB. Adrenergic regulation of AMP-activated protein kinase in brown adipose tissue in vivo. J Biol Chem. 2011;286(11):8798–809. https://doi.org/10.1074/jbc.M111.218719.
Article
CAS
Google Scholar
Klingenspor M, Meywirth A, Stohr S, Heldmaier G. Effect of unilateral surgical denervation of brown adipose tissue on uncoupling protein mRNA level and cytochrom-c-oxidase activity in the Djungarian hamster. J Comp Physiol B. 1994;163(8):664–70. https://doi.org/10.1007/BF00369517.
Article
CAS
Google Scholar
Bartness TJ, Wade GN. Effects of interscapular brown adipose tissue denervation on body weight and energy metabolism in ovariectomized and estradiol-treated rats. Behav Neurosci. 1984;98(4):674–85. https://doi.org/10.1037/0735-7044.98.4.674.
Article
CAS
Google Scholar
Dulloo AG, Miller DS. Energy balance following sympathetic denervation of brown adipose tissue. Can J Physiol Pharmacol. 1984;62(2):235–40. https://doi.org/10.1139/y84-035.
Article
CAS
Google Scholar
Hylander BL, Repasky EA. Thermoneutrality, mice, and Cancer: a heated opinion. Trends Cancer. 2016;2(4):166–75. https://doi.org/10.1016/j.trecan.2016.03.005.
Article
Google Scholar
David JM, Knowles S, Lamkin DM, Stout DB. Individually ventilated cages impose cold stress on laboratory mice: a source of systemic experimental variability. J Am Assoc Lab Anim Sci. 2013;52(6):738–44.
CAS
Google Scholar
Speakman JR, Keijer J. Not so hot: optimal housing temperatures for mice to mimic the thermal environment of humans. Mol Metab. 2012;2(1):5–9. https://doi.org/10.1016/j.molmet.2012.10.002.
Article
CAS
Google Scholar
de Graaf-Peters VB, Hadders-Algra M. Ontogeny of the human central nervous system: what is happening when? Early Hum Dev. 2006;82(4):257–66. https://doi.org/10.1016/j.earlhumdev.2005.10.013.
Article
Google Scholar
Derry DM, Daniel H. Sympathetic nerve development in the brown adipose tissue of the rat. Can J Physiol Pharmacol. 1970;48(3):160–8. https://doi.org/10.1139/y70-028.
Article
CAS
Google Scholar
Feurer I, Mullen JL. Bedside measurement of resting energy expenditure and respiratory quotient via indirect Calorimetry. Nutr Clin Pract. 2016;1(1):43–9.
Article
Google Scholar
Muller TD, Lee SJ, Jastroch M, Kabra D, Stemmer K, Aichler M, et al. p62 links beta-adrenergic input to mitochondrial function and thermogenesis. J Clin Invest. 2013;123(1):469–78. https://doi.org/10.1172/JCI64209.
Article
CAS
Google Scholar
Li W, Knowlton D, Van Winkle DM, Habecker BA. Infarction alters both the distribution and noradrenergic properties of cardiac sympathetic neurons. Am J Physiol Heart Circ Physiol. 2004;286(6):H2229–36. https://doi.org/10.1152/ajpheart.00768.2003.
Article
CAS
Google Scholar
Sastre E, Nicolay A, Bruguerolle B, Portugal H. Method for simultaneous measurement of norepinephrine, 3-methoxy-4-hydroxyphenylglycol and 3,4-dihydroxyphenylglycol by liquid chromatography with electrochemical detection: application in rat cerebral cortex and plasma after lithium chloride treatment. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;801(2):205–11. https://doi.org/10.1016/j.jchromb.2003.11.012.
Article
CAS
Google Scholar
Bayles RG, Olivas A, Denfeld Q, Woodward WR, Fei SS, Gao L, Habecker BA. Transcriptomic and neurochemical analysis of the stellate ganglia in mice highlights sex differences. Sci Rep. 2018;8(1):8963. https://doi.org/10.1038/s41598-018-27306-3.
Article
CAS
Google Scholar
MacDougall D, Crummett WB. Et a. guidelines for data acquisition and data quality evaluation in environmental chemistry. Anal Chem. 2002;52(14):2242–9.
Article
Google Scholar
Long GL, Winefordner JD. Limit of detection. A closer look at the IUPAC definition. Anal Chem. 2008;55(7):712A–24A.
Google Scholar
Cannon B, Nedergaard J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol. 2011;214(Pt 2):242–53. https://doi.org/10.1242/jeb.050989.
Article
Google Scholar
Gordon CJ. Thermal physiology of laboratory mice: defining thermoneutrality. J Therm Biol. 2012;37(8):654–85. https://doi.org/10.1016/j.jtherbio.2012.08.004.
Article
Google Scholar
Abreu-Vieira G, Xiao C, Gavrilova O, Reitman ML. Integration of body temperature into the analysis of energy expenditure in the mouse. Mol Metab. 2015;4(6):461–70. https://doi.org/10.1016/j.molmet.2015.03.001.
Article
CAS
Google Scholar
Scholander PF, Hock R, Walters V, Johnson F, Irving L. Heat regulation in some arctic and tropical mammals and birds. Biol Bull. 1950;99(2):237–58. https://doi.org/10.2307/1538741.
Article
CAS
Google Scholar
Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vazquez MJ, et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell. 2012;149(4):871–85. https://doi.org/10.1016/j.cell.2012.02.066.
Article
CAS
Google Scholar
Murano I, Barbatelli G, Giordano A, Cinti S. Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J Anat. 2009;214(1):171–8. https://doi.org/10.1111/j.1469-7580.2008.01001.x.
Article
CAS
Google Scholar
Kim H, Pennisi PA, Gavrilova O, Pack S, Jou W, Setser-Portas J, East-Palmer J, Tang Y, Manganiello VC, LeRoith D. Effect of adipocyte beta3-adrenergic receptor activation on the type 2 diabetic MKR mice. Am J Physiol Endocrinol Metab. 2006;290(6):E1227–36. https://doi.org/10.1152/ajpendo.00344.2005.
Article
CAS
Google Scholar
Himms-Hagen J, Cui J, Danforth E Jr, Taatjes DJ, Lang SS, Waters BL, et al. Effect of CL-316,243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. Am J Phys. 1994;266(4 Pt 2):R1371–82.
CAS
Google Scholar
Shimada K, Ohno Y, Okamatsu-Ogura Y, Suzuki M, Kamikawa A, Terao A, Kimura K. Neuropeptide Y activates phosphorylation of ERK and STAT3 in stromal vascular cells from brown adipose tissue, but fails to affect thermogenic function of brown adipocytes. Peptides. 2012;34(2):336–42. https://doi.org/10.1016/j.peptides.2012.02.012.
Article
CAS
Google Scholar
Prusiner SB, Cannon B, Ching TM, Lindberg O. Oxidative metabolism in cells isolated from brown adipose tissue. 2. Catecholamine regulated respiratory control. Eur J Biochem. 1968;7(1):51–7. https://doi.org/10.1111/j.1432-1033.1968.tb19572.x.
Article
CAS
Google Scholar
Lenders JW, Willemsen JJ, Beissel T, Kloppenborg PW, Thien T, Benraad TJ. Value of the plasma norepinephrine/3,4-dihydroxyphenylglycol ratio for the diagnosis of pheochromocytoma. Am J Med. 1992;92(2):147–52. https://doi.org/10.1016/0002-9343(92)90105-K.
Article
CAS
Google Scholar
De Matteis R, Ricquier D, Cinti S. TH-, NPY-, SP-, and CGRP-immunoreactive nerves in interscapular brown adipose tissue of adult rats acclimated at different temperatures: an immunohistochemical study. J Neurocytol. 1998;27(12):877–86. https://doi.org/10.1023/A:1006996922657.
Article
Google Scholar
Cannon B, Nedergaard J, Lundberg JM, Hökfelt T, Terenius L, Goldstein M. ‘Neuropeptide tyrosine’ (NPY) is co-stored with noradrenaline in vascular but not in parenchymal sympathetic nerves of brown adipose tissue. Exp Cell Res. 1986;164(2):546–50. https://doi.org/10.1016/0014-4827(86)90052-2.
Article
CAS
Google Scholar
Ivanov A, Purves D. Ongoing electrical activity of superior cervical ganglion cells in mammals of different size. J Comp Neurol. 1989;284(3):398–404. https://doi.org/10.1002/cne.902840307.
Article
CAS
Google Scholar
Purves D. Functional and structural changes in mammalian sympathetic neurones following interruption of their axons. J Physiol. 1975;252(2):429–63. https://doi.org/10.1113/jphysiol.1975.sp011151.
Article
CAS
Google Scholar
De Castro F, Sanchez-Vives MV, Munoz-Martinez EJ, Gallego R. Effects of postganglionic nerve section on synaptic transmission in the superior cervical ganglion of the Guinea-pig. Neuroscience. 1995;67(3):689–95. https://doi.org/10.1016/0306-4522(95)00079-X.
Article
Google Scholar
Parker MJ, Zhao S, Bredt DS, Sanes JR, Feng G. PSD93 regulates synaptic stability at neuronal cholinergic synapses. J Neurosci. 2004;24(2):378–88. https://doi.org/10.1523/JNEUROSCI.3865-03.2004.
Article
CAS
Google Scholar
Takao-Rikitsu E, Mochida S, Inoue E, Deguchi-Tawarada M, Inoue M, Ohtsuka T, Takai Y. Physical and functional interaction of the active zone proteins, CAST, RIM1, and bassoon, in neurotransmitter release. J Cell Biol. 2004;164(2):301–11. https://doi.org/10.1083/jcb.200307101.
Article
CAS
Google Scholar
Mermer S, Yalcin M, Turgut C. The uptake modeling of DDT and its degradation products (o,p'-DDE and p,p'-DDE) from soil. Sn Appl Sci. 2020;2(4).
Ricking M, Schwarzbauer J. DDT isomers and metabolites in the environment: an overview. Environ Chem Lett. 2012;10(4):317–23. https://doi.org/10.1007/s10311-012-0358-2.
Article
CAS
Google Scholar
Ishikawa T, Graham JL, Stanhope KL, Havel PJ, La Merrill MA. Effect of DDT exposure on lipids and energy balance in obese Sprague-Dawley rats before and after weight loss. Toxicol Rep. 2015;2:990–5. https://doi.org/10.1016/j.toxrep.2015.07.005.
Article
CAS
Google Scholar
Astrup A, Andersen T, Henriksen O, Christensen NJ, Bulow J, Madsen J, et al. Impaired glucose-induced thermogenesis in skeletal muscle in obesity. The role of the sympathoadrenal system. Int J Obes. 1987;11(1):51–66.
CAS
Google Scholar
Bachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC, Kobilka BK, Lowell BB. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science. 2002;297(5582):843–5. https://doi.org/10.1126/science.1073160.
Article
CAS
Google Scholar
Mattsson CL, Csikasz RI, Chernogubova E, Yamamoto DL, Hogberg HT, Amri EZ, Hutchinson DS, Bengtsson T. Beta(1)-adrenergic receptors increase UCP1 in human MADS brown adipocytes and rescue cold-acclimated beta(3)-adrenergic receptor-knockout mice via nonshivering thermogenesis. Am J Physiol Endocrinol Metab. 2011;301(6):E1108–18. https://doi.org/10.1152/ajpendo.00085.2011.
Article
CAS
Google Scholar
Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 2006;3(5):333–41. https://doi.org/10.1016/j.cmet.2006.04.002.
Article
CAS
Google Scholar
Lyons CE, Razzoli M, Larson E, Svedberg D, Frontini A, Cinti S, Vulchanova L, Sanders M, Thomas M, Bartolomucci A. Optogenetic-induced sympathetic neuromodulation of brown adipose tissue thermogenesis. FASEB J. 2020;34(2):2765–73. https://doi.org/10.1096/fj.201901361RR.
Article
CAS
Google Scholar
Glebova NO, Ginty DD. Growth and survival signals controlling sympathetic nervous system development. Annu Rev Neurosci. 2005;28(1):191–222. https://doi.org/10.1146/annurev.neuro.28.061604.135659.
Article
CAS
Google Scholar
Purves D, Lichtman JW. Geometrical differences among homologous neurons in mammals. Science. 1985;228(4697):298–302. https://doi.org/10.1126/science.3983631.
Article
CAS
Google Scholar
Chandrasekaran V, Lein PJ. Regulation of dendritogenesis in sympathetic neurons. In: Svorc P, editor. Autonomic nervous system. Croatia: InTechOpen; 2018. p. 91–112. https://doi.org/10.5772/intechopen.80480.
Chapter
Google Scholar
Rajapakse N, Ong D, Kortenkamp A. Defining the impact of weakly estrogenic chemicals on the action of steroidal estrogens. Toxicol Sci. 2001;60(2):296–304. https://doi.org/10.1093/toxsci/60.2.296.
Article
CAS
Google Scholar
Welch RM, Levin W, Conney AH. Estrogenic action of DDT and its analogs. Toxicol Appl Pharmacol. 1969;14(2):358–67. https://doi.org/10.1016/0041-008X(69)90117-3.
Article
CAS
Google Scholar
Thomas P, Dong J. Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol. 2006;102(1–5):175–9. https://doi.org/10.1016/j.jsbmb.2006.09.017.
Article
CAS
Google Scholar
Kelce WR, Stone CR, Laws SC, Gray LE, Kemppainen JA, Wilson EM. Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature. 1995;375(6532):581–5. https://doi.org/10.1038/375581a0.
Article
CAS
Google Scholar
Sohoni P, Sumpter JP. Several environmental oestrogens are also anti-androgens. J Endocrinol. 1998;158(3):327–39. https://doi.org/10.1677/joe.0.1580327.
Article
CAS
Google Scholar
Mills LJ, Gutjahr-Gobell RE, Haebler RA, Horowitz DJ, Jayaraman S, Pruell RJ, et al. Effects of estrogenic (o,p'-DDT; octylphenol) and anti-androgenic (p,p'-DDE) chemicals on indicators of endocrine status in juvenile male summer flounder (Paralichthys dentatus). Aquat Toxicol 2001;52(2):157–176, Effects of estrogenic (o,p′-DDT; octylphenol) and anti-androgenic (p,p′-DDE) chemicals on indicators of endocrine status in juvenile male summer flounder (Paralichthys dentatus), DOI: https://doi.org/10.1016/S0166-445X(00)00139-9.
Nohara K, Waraich RS, Liu S, Ferron M, Waget A, Meyers MS, Karsenty G, Burcelin R, Mauvais-Jarvis F. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice. Am J Physiol Endocrinol Metab. 2013;304(12):E1321–30. https://doi.org/10.1152/ajpendo.00620.2012.
Article
CAS
Google Scholar
Hart EC, Charkoudian N, Miller VM. Sex, hormones and neuroeffector mechanisms. Acta Physiol (Oxf). 2011;203(1):155–65. https://doi.org/10.1111/j.1748-1716.2010.02192.x.
Article
CAS
Google Scholar
Wyss JM, Carlson SH. Effects of hormone replacement therapy on the sympathetic nervous system and blood pressure. Curr Hypertens Rep. 2003;5(3):241–6. https://doi.org/10.1007/s11906-003-0027-8.
Article
Google Scholar
Saleh TM, Connell BJ. Role of oestrogen in the central regulation of autonomic function. Clin Exp Pharmacol Physiol. 2007;34(9):827–32. https://doi.org/10.1111/j.1440-1681.2007.04663.x.
Article
CAS
Google Scholar
Kaur G, Janik J, Isaacson LG, Callahan P. Estrogen regulation of neurotrophin expression in sympathetic neurons and vascular targets. Brain Res. 2007;1139:6–14. https://doi.org/10.1016/j.brainres.2006.12.084.
Article
CAS
Google Scholar
Francois M, Torres H, Huesing C, Zhang R, Saurage C, Lee N, et al. Sympathetic innervation of the interscapular brown adipose tissue in mouse. Ann N Y Acad Sci. 2019;1454(1):3–13. https://doi.org/10.1111/nyas.14119.
Article
CAS
Google Scholar
Young JB, Morrison SF. Effects of fetal and neonatal environment on sympathetic nervous system development. Diabetes Care. 1998;21(Suppl 2):B156–60.
Google Scholar
Villarroya F, Vidal-Puig A. Beyond the sympathetic tone: the new brown fat activators. Cell Metab. 2013;17(5):638–43. https://doi.org/10.1016/j.cmet.2013.02.020.
Article
CAS
Google Scholar
Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature. 2011;480(7375):104–8. https://doi.org/10.1038/nature10653.
Article
CAS
Google Scholar
Ivanov AY. Ongoing Activity in Identified Neurons of the Rat Superior Cervical-Ganglion before and after Partial Denervation of the Submandibular-Gland. Neurophysiology+. 1989;21(6):591–6.
Morrison SF, Ramamurthy S, Young JB. Reduced rearing temperature augments responses in sympathetic outflow to brown adipose tissue. J Neurosci. 2000;20(24):9264–71. https://doi.org/10.1523/JNEUROSCI.20-24-09264.2000.
Article
CAS
Google Scholar
Pellegrinelli V, Peirce VJ, Howard L, Virtue S, Turei D, Senzacqua M, et al. Adipocyte-secreted BMP8b mediates adrenergic-induced remodeling of the neuro-vascular network in adipose tissue. Nat Commun. 2018;9(1):4974. https://doi.org/10.1038/s41467-018-07453-x.
Article
CAS
Google Scholar
Ritter R, Scheringer M, MacLeod M, Schenker U, Hungerbuhler K. A multi-individual pharmacokinetic model framework for interpreting time trends of persistent chemicals in human populations: application to a postban situation. Environ Health Perspect. 2009;117(8):1280–6. https://doi.org/10.1289/ehp.0900648.
Article
CAS
Google Scholar
Valvi D, Walker DI, Inge T, Bartell SM, Jenkins T, Helmrath M, et al. Environmental chemical burden in metabolic tissues and systemic biological pathways in bariatric surgery patients: An untargeted metabolomic approach. Environment International. under review.
Kanja LW, Skaare JU, Ojwang SB, Maitai CK. A comparison of organochlorine pesticide residues in maternal adipose tissue, maternal blood, cord blood, and human milk from mother/infant pairs. Arch Environ Contam Toxicol. 1992;22(1):21–4. https://doi.org/10.1007/BF00213297.
Article
CAS
Google Scholar
Lin YJ. Metabolic syndrome in children and adolescents born premature and small-for-gestational age: a scenario of developmental origins of health and disease (DOHaD). Pediatr Neonatol. 2018;59(2):109–10. https://doi.org/10.1016/j.pedneo.2018.02.009.
Article
Google Scholar
Young JB. Developmental origins of obesity: a sympathoadrenal perspective. Int J Obes. 2006;30(Suppl 4):S41–9. https://doi.org/10.1038/sj.ijo.0803518.
Article
Google Scholar
Young JB. Developmental plasticity in sympathetic nervous system response to fasting in adipose tissues of male rats. Metabolism. 2003;52(12):1621–6. https://doi.org/10.1016/S0026-0495(03)00331-7.
Article
CAS
Google Scholar
Bianco-Miotto T, Craig JM, Gasser YP, van Dijk SJ, Ozanne SE. Epigenetics and DOHaD: from basics to birth and beyond. J Dev Orig Health Dis. 2017;8(5):513–9. https://doi.org/10.1017/S2040174417000733.
Article
CAS
Google Scholar
Kubota T, Miyake K, Hariya N, Mochizuki K. Understanding the epigenetics of neurodevelopmental disorders and DOHaD. J Dev Orig Health Dis. 2015;6(2):96–104. https://doi.org/10.1017/S2040174415000057.
Article
CAS
Google Scholar
Wadhwa PD, Buss C, Entringer S, Swanson JM. Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med. 2009;27(5):358–68. https://doi.org/10.1055/s-0029-1237424.
Article
CAS
Google Scholar